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ABSTRACT
Background: The composition of the salivary microbiota has been reported to

differentiate between patients with periodontitis, dental caries and orally healthy

individuals. To identify characteristics of diseased and healthy saliva we thus wanted

to compare saliva metaproteomes from patients with periodontitis and dental caries

to healthy individuals.

Methods: Stimulated saliva samples were collected from 10 patients with

periodontitis, 10 patients with dental caries and 10 orally healthy individuals. The

proteins in the saliva samples were subjected to denaturing buffer and digested

enzymatically with LysC and trypsin. The resulting peptide mixtures were cleaned

up by solid-phase extraction and separated online with 2 h gradients by nano-scale

C18 reversed-phase chromatography connected to a mass spectrometer through an

electrospray source. The eluting peptides were analyzed on a tandem mass

spectrometer operated in data-dependent acquisition mode.

Results: We identified a total of 35,664 unique peptides from 4,161 different

proteins, of which 1,946 and 2,090 were of bacterial and human origin, respectively.

The human protein profiles displayed significant overexpression of the complement

system and inflammatory markers in periodontitis and dental caries compared to

healthy controls. Bacterial proteome profiles and functional annotation were very

similar in health and disease.

Conclusions: Overexpression of proteins related to the complement system and

inflammation seems to correlate with oral disease status. Similar bacterial proteomes

in healthy and diseased individuals suggests that the salivary microbiota

predominantly thrives in a planktonic state expressing no disease-associated

characteristics of metabolic activity.
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INTRODUCTION
Saliva is a biological fluid critically involved in maintenance of oral homeostasis

(Marsh et al., 2016), as qualitative and quantitative changes of saliva associates with

increased frequency and severity of diseases in the oral cavity (Dawes et al., 2015;

Almstahl & Wikstrom, 1999). Furthermore, saliva is easily and non-invasively collected

(Giannobile et al., 2011), making it interesting to screen for biomarkers associated with

oral and general health and disease status (Baum et al., 2011; Zhang et al., 2016).

In the last decade, salivary biomarkers of periodontitis and dental caries have been

intensively investigated (Yoshizawa et al., 2013; Miller et al., 2010). These include salivary

bacterial profiles that differentiate in patients with periodontitis (Paju et al., 2009;

Belstrøm et al., 2014b; Belstrøm et al., 2016b), dental caries (Yang et al., 2012; Belstrøm

et al., 2014a; Belstrøm et al., 2015) and orally healthy individuals. Furthermore, increased

salivary levels of inflammatory protein biomarkers such as interleukin-1b (IL-1b), IL-6
and matrix metalloproteinase-8 (MMP-8) have been described to be associated with

periodontal disease status (Kinney et al., 2011; Ebersole et al., 2013; Rathnayake et al., 2013;

Ebersole et al., 2015). Recently, the salivary transcriptome has been assessed (Spielman

et al., 2012), and some transcriptomic characteristics of saliva have been reported in

patients with dental caries (Do et al., 2015). Collectively, these reports conclude that

biomarkers of different biological origin may be adequately assessed in saliva samples and

support the concept that the biological composition of saliva reflects individual oral

health status.

Mass spectrometry-based proteomics enables characterization of the protein content in

any sample, including proteins of human and bacterial origin. It thus provides the

possibility for simultaneous characterization of bacterial and host specific differences

of saliva associated with oral health and disease. Only three studies have so far attempted

to perform metaproteomic analysis of saliva in oral health (Rudney et al., 2010; Jagtap

et al., 2012; Grassl et al., 2016). To the best of our knowledge, no study has so far compared

metaproteomic profiles of saliva from patients with periodontitis and dental caries to

orally healthy individuals.

The aim of the present study was to characterize the salivary metaproteome in 30 saliva

samples, and compare human and bacterial proteome profiles between patients with

periodontitis, dental caries and orally healthy individuals. The hypothesis was that both

bacterial and human subsets of salivary metaproteome would differentiate between

individuals with different oral health status.

MATERIALS AND METHODS
Study population and sample collection
The study population, clinical examination and collection of saliva samples have been

presented in detail (Belstrøm et al., 2016b). In brief, saliva production was induced by
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chewing on a tasteless paraffin gum, and chewing-stimulated saliva samples were collected

from 10 patients with periodontitis, 10 patients with dental caries and 10 orally

healthy individuals following a standardized protocol (Kongstad et al., 2013). Immediately

after collection saliva samples were divided into four aliquots and stored at -80 �C
for further analysis. One aliquot has previously been analyzed by next-generation

sequencing (the Human Oral Microbe Identification using Next Generation Sequencing,

HOMINGS) (Belstrøm et al., 2016b). All participants signed an informed consent prior

to participation, and the study was approved by the regional ethical committee

(H-15000856-53175) and reported to the Danish Data Authorization (2015-54-0970).

Sample preparation
The saliva proteome samples were prepared as described in (Jersie-Christensen, Sultan &

Olsen, 2016) with a few modifications. Briefly, 1 ml of saliva was mixed with 1.5 ml lysis

buffer (9 M Guanidine hydrochloride, 10 mM Chloroacetamide, 5 mM tris(2-

carboxyethyl)phosphine in 100 mM Tris pH 8.5) and heated for 10 min (99 �C) followed
by 4 min of sonication.

Protein concentration was measured with Bradford protein assay and ranged from

1–2.5 mg/ml. All samples were digested with the same amount of Lysyl Endoproteinase

(Wako, Osaka, Japan) in a ratio of 1:100 w/w calculated from the highest concentration

for 2 h. Samples were diluted to a final volume of 10 ml with 25 mM Tris pH8 and

digested overnight with Trypsin (modified sequencing grade; Sigma) in a 1:100 w/w ratio.

Digestion was quenched by adding 1 ml of 10% trifluoroacetic acid and centrifuged at

2,000 g for 5 min. The resulting soluble peptides in the supernatant were desalted and

concentrated on Waters Sep-Pak reversed-phase C18 cartridges (one per sample) and the

tryptic peptide mixtures were eluted with 40% acetonitrile (ACN) followed by 60% ACN.

Peptide concentrations were determined by NanoDrop (Thermo, Wilmington, DE, USA)

measurement.

Mass spectrometry analysis
A total of 1.5 mg peptide mixture from each sample was analyzed by online nano-scale

liquid chromatography tandem mass spectrometry (LC-MS/MS) in turn. Peptides were

separated on an in-house packed 50 cm capillary column with 1.9 mm Reprosil-Pur

C18 beads using an EASY-nLC 1000 system (Thermo Scientific). The column temperature

was maintained at 50 �C using an integrated column oven (PRSO-V1; Sonation

GmbH, Biberach, Germany). Buffer A consisted of 0.1% Formic acid, and buffer B of

80% ACN, 0.1% Formic acid. The flow rate of the gradient was 200 nl/min and started

at 5% buffer B, going to 25% buffer B in 110 min, followed by a 25 min step going to

40% buffer B and continuing to 80% buffer B in 5 min for a 5 min wash and returning to

5% in 5 min and continuing for re-equilibration for 5 min.

The Q Exactive HF instrument (Thermo Scientific, Bremen, Germany) was run in a

data dependent acquisition mode using a top 12 Higher-Collisional Dissociation

(HCD)-MS/MS method with the following settings. Spray voltage was set to 2 kV, S-lens

RF level at 50, and heated capillary at 275 �C. Full scan resolutions were set to
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60,000 at m/z 200 and the scan target was 3 � 106 with a maximum fill time of 20 ms.

Full-scan MS mass range was set to 300–1,750 and dynamic exclusion to 20 s. Target value

for HCD-MS/MS scans was set at 1 � 105 with a resolution of 30,000 and a maximum

fill time of 60 ms. Normalized collision energy was set at 28.

Data analysis
All 30 raw LC-MS/MS data files were processed together using MaxQuant version

1.5.0.38 (Cox & Mann, 2008) with default settings and match between runs. The

integrated Andromeda peptide search engine and a reversed database approach applying

a 1% FDR at both peptide and protein level was used. The data was searched in two

iterations analogous to a previously described metaproteomics database search strategy

(Jagtap et al., 2013). First, the search space consisted of the full SwissProt protein

database (The UniProt Consortium, 2015) and the Human Oral Microbiome database

(Chen et al., 2010) (both downloaded August 2014). The resulting search output was

then used for reduction of the search space after filtering on different parameters. As a

quality control measure, proteins with less than two unique peptides were removed.

Furthermore, we required proteins to be detected in at least five out of 30 samples.

Accession numbers from the Majority protein IDs column in the proteinGroups.txt

were used to retrieve information about Lowest Common Ancestor (LCA) for each

protein group entry. To find the LCA of a protein group, accession numbers with the

most peptide-associations were selected, mapped to species and their full taxonomic

lineage. The lowest taxonomic rank of the intersection of the latter yielded the LCA. All

LCA searches resulting in the parvorder Catarrhini (primates) were set to be human.

LCAs at taxonomic rank of species and genera, as well as all of their descendants were

used to create a new, reduced search space. The latter was used for the second iteration

of MS data identification and quantification and all accession numbers within a protein

group were used to perform LCA searches. The above functionality was achieved using

the Python programming language. Species names from SwissProt and HOMD were

mapped to NCBI taxonomic identifiers using UniProt (http://www.uniprot.org/docs/

speclist) and NCBI resources (http://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/

tax_identifier.cgi), respectively. Full taxonomic lineages were retrieved from NCBI

Taxonomy database dump files (ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy/). Taxonomic

comparison at genus- and species level was performed using Mann-Whitney U test with

Benjamini-Hochberg correction for multiple testing.

Protein intensities based on summed peptide MS signal intensities were quantile

normalized using the limma package version 3.24.15 under R version 3.2.2. Only

proteins identified with more than one peptide (“razor + unique”) and present in

more than five out of the 30 samples were considered for further analysis. The mass

spectrometry proteomics data have been deposited to the ProteomeXchange

Consortium via the PRIDE (Vizcaı́no et al., 2016) partner repository with the dataset

identifier PXD004319.

For comparative analysis of the human protein profiles, the normalized intensity values

were log2 transformed. For principal component analysis (PCA), missing values were
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replaced with the constant value 19, representing the lowest protein intensity value

measured. Analysis of significance (ANOVA) between groups was performed with

the software package Perseus (http://www.perseus-framework.org). The resulting

differentially expressed proteins were clustered using Euclidian distance after scaling

the data by subtracting the mean intensity value. All p-values were corrected for multiple

comparisons.

Functional annotation of bacterial proteins
Bacterial proteins from HOMD were searched against Hidden Markov Models (HMMs)

of bacterial Nested Orthologous Groups (NOGs) from eggNOG (Huerta-Cepas et al.,

2016) using HMMscan version 3.1 (http://hmmer.org) (Eddy, 2009). For each protein

query the resulting hits were restricted by two criteria. E-values had to be equal or

lower than 1e-4 and a maximum overlap of eight amino acids of HMMs was allowed

(selecting hits with the lowest e-value). All corresponding NOG-names were used to

retrieve Gene Ontology (GO)-terms as well as KEGG pathways from eggNOG.

KEGG pathway enrichment and characterization
To gain insights into differences between the three sample groups, KEGG pathway

enrichment was performed using a modified version of AGOtool (Schölz et al., 2015).

Individual samples were grouped to sample categories and the three paired combinations

used for the enrichment analysis. All bacterial protein groups with an LCA at rank genus

or below were selected. Benjamini-Hochberg correction (FDR) of p-values was applied to

correct for multiple testing. The FDR was set to 1%. The following additional filter

criterion was applied. The fold change had to be equal or higher than 2 or equal or lower

than 0.5.

To get a functional overview of the bacterial proteins, we characterized each individual

sample group by counting the number of protein groups associated with each KEGG

pathway. For visualization purposes (Fig. S2), we selected the most highly associated

terms. Within each group the number of associations was converted to percentages, and

the most highly associated terms retained, until a cumulative sum of 90% was reached.

This reduced the number of KEGG terms from 135 to 50.

RESULTS
General findings
Biomass analyses based on summed protein intensity measures demonstrated that

approximately 95 and 3% of the total protein biomass was of human and bacterial origin,

respectively (Fig. 1). Food-related proteins and proteins that could not be assigned to

kingdom level comprised the rest of the biomass. We identified a total of 35,664 unique

peptides from 4,161 proteins, of which 97% of the identified proteins could be assigned

as bacterial or human proteins, with almost equal numbers of the two (Fig. 1; Table 1).

The protein biomass and numbers between groups showed no significant differences

using ANOVA analysis (Fig. S1).
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Human protein profiling
Principal component analysis (Fig. 2A) of the human proteins in saliva showed decent

separation of samples from patients with periodontitis and dental caries from orally

healthy individuals, based on the most decisive component of the dataset, accounting for

17.9% of the variation. The most enriched KEGG pathway in component 1 and 2 was

‘Complement and coagulation cascades’ (Fig. 2B). Component 2 also separated

samples from patients with dental caries and periodontitis patients from orally healthy

individuals with the component explaining 12.7% of the variation. Two of the most

enriched terms in component 2 in the direction of the orally healthy individuals were

KEGG pathway ‘Salivary secretion’ and GOBP ‘protein glycosylation.’

From a total of 2,090 identified proteins of human origin, 60 proteins were significantly

differentially expressed when performing multiple sample test (ANOVA, p < 0.05).

Hierarchical cluster analysis of the proteins nicely separated the three sample groups,
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Figure 1 Protein biomass and abundance across sample groups. Relative distribution as a measure of

summed intensity and protein count.

Table 1 Overview of proteins identified.

Number of proteins

Caries Healthy Periodontitis Total*

Other** 125 115 120 125

Human 2,084 2,079 2,084 2,090

Bacteria 1,861 1,926 1,924 1,946

-mapped to genus level 1,710 (91.9%) 1,765 (91.6%) 1,762 (91.6%) 1,784 (91.7%)

-mapped to species level 594 (31.9%) 602 (34.1%) 609 (34.6%) 616 (34.5%)

Total 4,070 4,120 4,128 4,161

Notes:
* Unique proteins.
** Food related proteins and proteins that could not be assigned to kingdom level.
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although three periodontitis individuals cluster together with the healthy group (Fig. 3).

We identified three main protein clusters. Cluster I contains human proteins that are

higher expressed in both disease groups compared to controls, and 10 of 20 proteins in
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Figure 2 Principal Component Analysis. (A) PCA plot of individuals with caries (blue), periodontitis (red) and orally healthy individuals (green).

(B) Loadings driving the separation of the PCA plot are mainly proteins belonging to complement and coagulation cascades (purple) for

discriminating diseased from healthy individuals. Proteins belonging to salivary secretion and protein glycosylation (green) are mainly defining the

healthy individuals.
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this cluster are associated with the GO term ‘innate immune response’ (protein name in

purple). Cluster II consist of nine proteins that distinguish the individuals with caries

from the other groups. In cluster III the protein intensities in the caries group are

higher than the mean, for the orally healthy group it is around the mean and for the

individuals with periodontitis lower.
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Bacterial protein profiling
Of the 1,946 proteins of bacterial origin identified, approximately 92% and 34% could be

assigned to genus and species level, respectively (Table 1). A total of 29 different

bacterial genera and 81 species were identified. The five most predominant bacterial

genera were Streptococcus, Prevotella, Veillonella, Rothia and Neisseria collectively

representing approx. 70% of the total bacterial mass. The five most predominant bacterial

species identified were Rothia mucilanginosa, Veillonella atypica, Prevotella histicola,

Prevotella melaninogenica and Streptococcus salivarius. Abundances of the 20 most

predominant bacterial genera and species are displayed in Figs. 4A and 4B. No statistically

significant differences were observed between groups at genus or species level. However, at

genus level there is a trend of higher proportion of Veillonella and lower proportion of

Haemophilus were associated with dental caries and higher proportions of Fusobacterium,

Leptotrichia and Selenomonas and lower proportions of Streptococcus, Rothia and

Haemophilus were associated with periodontitis, when compared to orally healthy

individuals. The same trend is seen at species level where higher proportion of Veillonella

atypica and lower proportion of Haemophilus parainfluenzae were associated with

dental caries, and higher proportions of Fusobacterium periodonticum and Leptotrichia

wadei and lower proportions of Haemophilus parainfluenzae were associated with

periodontitis, when compared to orally healthy individuals. A full list of all bacterial

genera and species identified are presented in Table S1.

KEGG pathway enrichment for bacterial proteins
KEGG pathway enrichment analysis of bacterial proteins resulted in no significant

differences with the application of the previously mentioned fold-change and FDR

filter criteria. The characterization of functional associations of bacterial proteins is

shown in Fig. S2.

DISCUSSION
The purpose of the present study was to compare metaproteome profiles of saliva from

patients with periodontitis or dental caries to that of orally healthy individuals, as we

hypothesized that the composition of the salivary metaproteome would associate with

oral health status. To the best of our knowledge, this is the first study to characterize both

human and bacterial parts of the salivary metaproteome in patients with periodontitis

and dental caries.

In this study, proteins of bacterial origin constituted 46% of the proteome diversity,

despite only 3% of the total biomass being bacterial. This agrees with the previously

reported approx. 1% of DNA in saliva being of bacterial origin (Lazarevic et al., 2012).

We identify 1,946 different bacterial proteins, which is in the same range as the

pioneering studies of the salivary metaproteome (Rudney et al., 2010; Jagtap et al., 2012)

but substantially higher than in dental plaque (983 proteins) (Belda-Ferre et al., 2015).

From the total 1,946 bacterial proteins, 92% and 34% could be assigned to genus and

species level, respectively (Table 1). The percentage of bacterial proteins identified at genus

and species level is considerably higher than what has previously been accomplished in
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metaproteomic analysis of saliva (Rudney et al., 2010; Jagtap et al., 2012). Streptococcus,

Prevotella, Veillonella, Rothia and Neisseria were the most predominant genera

identified, constituting approx. 70% of the biomass across all samples (Fig. 4A). This

phylogenetic distribution is in line with analysis of the same samples using next-

generation sequencing (Belstrøm et al., 2016b), and with previous metaproteomic analysis

of saliva in oral health (Rudney et al., 2010; Jagtap et al., 2012; Grassl et al., 2016). By

contrast, an analysis of 17 plaque samples from patients with dental caries and healthy

controls by metagenomics, metatranscriptomics and metaproteomics found different

bacterial compositions in dental plaque at DNA, mRNA and protein level (Belda-Ferre

et al., 2015). This may reflect differences between studying the metabolically active dental

plaque biofilm and the planktonic, metabolically inactive state of the salivary microbiota,

and it is in concordance with the functional annotation analysis performed (Fig. S2).

Moreover, the finding of higher proportions of Veillonella in saliva samples from patients

with caries and higher proportions of Fusobacterium in samples from periodontitis

patients confirms findings from 16S analysis of the same samples (Belstrøm et al., 2016b).

Interestingly, specific oral bacterial species such as Veillonella parvula and Fusobacterium

periodonticum have been reported to associate with dental caries and periodontitis,

respectively (Takahashi & Nyvad, 2011; Colombo et al., 2009).

Furthermore, 2,090 different proteins of human origin were identified, which is more

than in metaproteome profiling of dental plaque (Belda-Ferre et al., 2015) and less

than a recent study that identified more than 3,700 different human proteins in a mouth

swab analysis (Grassl et al., 2016). The higher number of human protein identifications

in mouth swabs is probably due to swabbing the inside of the complete oral cavity

including the inside of the cheek. In this study, we used stimulated saliva samples, which

may have diluted the concentration of proteins within the samples compared to that

of unstimulated saliva (Yakob et al., 2014; Schafer et al., 2014). This will of course also

affect number of identifications. Based on this finding, unstimulated saliva samples may

be preferred for in-depth analysis of the salivary proteome. However, as collection of

unstimulated saliva samples is considerably more intricate and time-consuming than

collection of stimulated saliva samples, the feasibility of using unstimulated saliva

samples for population-based biomarker screening approaches may be limited (Belstrøm

et al., 2016b). In addition, we have recently compared the salivary microbiota in

unstimulated and stimulated saliva samples, collected from the same individuals, and

reported that comparable microbiotas could be identified using the two types of

samples (Belstrøm et al., 2016a). Consequently, stimulated saliva samples were used

in this study.

Data on the human profile of the salivary metaproteome showed differences between

oral health and disease, as proteins involved in innate immunity and inflammatory

proteins were more abundantly expressed in saliva samples from patients with

periodontitis and dental caries than orally healthy individuals (Fig. 3). Thus, by use of a

contemporary metaproteomics approach we were able to explore that salivary expression

of proteins from the innate immune system associates with periodontitis and dental

caries. Interestingly, these data are in line with previous reports on periodontitis patients
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(Cole et al., 1981; Aurer et al., 1999). Likewise, it has been reported that active

components of the complement system in the gingival crevicular fluid associates with

both periodontitis (Schenkein & Genco, 1977; Courts et al., 1977) and gingivitis (Patters,

Niekrash & Lang, 1989; Attströum et al., 1975). Increased local activation of the

complement system in the periodontal tissues increases vascular permeability,

vasodilatation and recruitment of inflammatory cells, resulting in excessive release of

reactive oxygen species, proteolytic enzymes and interleukins (Okada & Silverman, 1979;

Okuda & Takazoe, 1980; Watanabe et al., 1997). Furthermore, serum levels of

complement proteins, has been suggested to express a linear relationship with the degree

of periodontal inflammation (Henry et al., 1987). Gingivitis is a mild form of gum

disease that results in irritation, redness and swelling caused by inflammation of the

gums. Thus, the abundant expression of complement proteins and inflammatory

mediators in saliva might reflect either a spillover from the gingival crevicular fluid, or

alternatively, mirror increased serum levels of these proteins. Notably, while the

complement system has been acknowledged to have a profound role in the pathogenesis

of periodontitis (Damgaard et al., 2015), the complement system seems to have limited

impact on development of dental caries. The expression of complement proteins and

other inflammatory proteins in saliva from patients with dental caries is most likely

associated with gingivitis in the periodontal tissues adjacent to approximal and gingival

caries lesions, and presumably not directly associated with presence of dental caries as

such.

CONCLUSION
Quantitative proteomics data from the present investigation suggest that the salivary

microbiota predominantly thrives in a planktonic state with limited metabolic activity,

as comparable microbial compositions of the salivary microbiota were obtained based

on different omics analysis. Thus, the bacterial part of the metaproteome seems to be

inadequate for biomarker analysis of periodontitis and caries. Conversely, a set of

human proteins hold the potential to be used as future biomarkers of oral disease

status. However, the cross-sectional study design obviously hampers the possibility to

address causality of this observation. Thus, future large-scale longitudinal studies of

human saliva proteome changes are warranted to reveal the full potential of

quantitative proteomics of saliva as a technique to discover biomarkers of oral health

and disease.
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