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Abstract: This paper presents a study concerning the preliminary treatments in radiofrequency
(RF)oxygen (O2) plasma used to obtain a hydrophilic effect on raw cotton fabrics followed by
electroconductive thin film deposition to obtain electroconductive textile surfaces. In addition,
this study presents a multivariate correlation analysis of experimental parameters. The treatment
using RF plasma O2 aimed to increase the hydrophilic character of the raw fabric and adherence of
paste-based polymeric on polyvinyl alcohol (PVA) matrix and nickel (Ni), silver (Ag) or copper (Cu)
microparticles. The purpose of the research was to develop electroconductive textiles for flexible
electrodes, smart materials using a clean technology such as radiofrequency (RF) plasma O2 to obtain
a hydrophilic surface with zero wastewater and reduced chemicals and carbon footprint. To achieve
the foreseen results, we used advanced functionalization technologies such as RF plasma O2, followed
by scraping a thin film of conductive paste-based Ni, Ag or Cu microparticles, and multivariate
correlation methods to observe the dependence between parameters involved (dependent and
independent variables). Overall, the fabrics treated in plasma with O2 using a kHz or MHz generator
and power 100–200 W present an excellent hydrophilic character obtained in 3 min. After RF O2

plasma functionalization, a thin film based on polymeric matrix PVA and Ni microparticles have
been deposited on the fabric surface to obtain electroconductive materials.

Keywords: plasma; coating; conductive; thin film; textile; multivariate correlation analysis

1. Introduction

Plasma treatment was successfully used in numerous applications for textile cleaning [1,2]
or hydrophobization. Primarily, plasma activation using work gas oxygen was used for
polyester to increase the wettability [3–5] or improve the polypyrrole adhesion [6]. More-
over, for cotton fabrics [7–10], RF plasma oxygen was used to generate the surface activation
for preliminary surface preparation to be treated with ZnO nanoparticles [11,12] or tita-
nium dioxide [13,14]. In addition, several types of research present the use of plasma O2
treatment to improve the metal absorption [15,16] or to generate an antibacterial [17–19]
or antimicrobial activity [20] on cotton fabric modified by low-temperature plasma. Nu-
merous investigations use plasma to create electroconductive surfaces [21] using silver
nanoparticles and polypyrrole [22] or copper [23]. Mainly plasma was preferred because it
is a friendly environmental technology having zero waste and a reduced carbon footprint.
In addition, at the laboratory or industrial stage, surface modification can be performed
using low-pressure plasma and atmospheric-pressure plasma [24]. Some scientific papers
present some tests using the gaseous mixtures (Ar/O2 and He/O2) plasma activation of
polyester (PES) or poly (ethylene terephthalate) fabrics to improve the hydrophilic and ag-
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ing effects [25–27]. The material’s surface becomes hydrophilic using plasma O2 activation
due to the formation of polar groups (C=O, O-C=O) on the surface [27,28].

In some cases, the discharge diagnostics are carried out, such as the applied voltage
shape or waveform [29–31] dependence on the barrier discharge. In our experiment, the
dependencies current and voltage on time were not investigated.

The main goal of this study was to develop textile materials with electroconductive
properties to be used as flexible electrodes by applying a preliminary treatment based on
RF plasma O2 technology on the raw fabrics with a fibrous composition of 100% cotton,
followed by coating with a thin film based on polymeric matric polyvinyl alcohol (PVA)
and nickel microparticles. In addition, a laboratory testing program has been elaborated to
examine the electrical surface resistance; the physical-mechanical characteristics such as air
permeability, vapor permeability, thickness and mass; and the influence of the RF plasma
O2 finishing processes in comparison with classical finishing processes such as alkaline
boiling-bleaching for obtaining a hydrophilic effect of the textile surface.

2. Materials and Methods

We used the advanced functionalization technology RF plasma oxygen (Figure 1) to
achieve the foreseen results and scrap conductive paste-based nickel on the textile surface.
The experiments were performed using a low-pressure RF-based plasma system (CD400
PLC Europlasma, Oudenaarde, Belgium). The low-pressure plasma technique creates
plasma using an RF generator, which utilizes the energy of an electrical field to dissociate
a process gas under vacuum conditions. The parallel ground and positive electrodes are
mounted in the vacuum chamber (Figure 1a), separated by ceramic spacers. The voltage
supply of the system is connected to the electrodes on the backside of the system by RF-
feedthrough. The plasma state is obtained by applying a high voltage (500–550 V) between
the ground and RF electrode in the radiofrequency (RF) range. However, the voltage value
cannot be set from the software interface menu. In the vacuum chamber, the textile materials
are placed in cassettes (Figure 1a) made of aluminum and have 400 × 400 mm dimensions.
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Figure 1. RF plasma O2. (a) vacuum chamber with cassettes; (b) RF plasma O2 using RF1 generator 13.56 MHz; (c) RF 
plasma O2 using RF2 generator 40kHz. 

Figure 1. RF plasma O2. (a) vacuum chamber with cassettes; (b) RF plasma O2 using RF1 generator 13.56 MHz; (c) RF
plasma O2 using RF2 generator 40 kHz.

During the process, electrical energy from the RF generator is applied to these elec-
trodes, which excites the oxygen (O2) present in the vacuum chamber. The dissociated gas
with excited and unstable species modifies the fabric surface.

Mainly, a higher power creates higher activity of the excited species. In our exper-
iments, we used the constants such as time 3 min and gas flow 200 sccm, varying only
the RF power generator types (RF1 having 13.56 MHz frequency or RF2 having 40 kHz
frequency), pressure, and power to observe the hydrophilic effects generated on the textile
surfaces treated in RF plasma O2.

The textile and electrical properties such as wettability and electrical resistance were
investigated using adequate devices such as the Video Camera Angle (VCA)-Optima
(AST Products, Inc., Billerica, MA, USA) device and Surface Resistance Tester Warmbier
METRISO B530 (Wolfgang Warmbier GmbH & Co., Hilzingen, Germany)—with concentric
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ring probes. To analyze the dependence between dependent and independent variables,
correlation and statistical variation methods were used.

In the experiment, 22 samples(INCDTP, Bucharest, Romania) (100% cotton and 100%
polyamide fabrics) were treated in RF O2 plasma using an RF1 generator (Seren IPS Inc.,
Vineland, NJ, USA) in MHz or RF2 kHz followed by scraping with a paste-based poly-
meric PVA and distilled water (dH2O), organic solvents from Sigma Aldrich, Taufkirchen,
Germany (Acetone, Ethanol, C4H8O2) and Ni microparticles (Sigma Aldrich, Taufkirchen,
Germany); drying at room temperature and crosslinking for 3–5 min. From all samples,
8 samples were treated on RF O2 plasma using an RF1 generator in MHz, and an RF2
generator was used for 14 samples, followed by scraping with a paste, drying and crosslink-
ing. All samples were electrically evaluated and were treated in plasma using the specific
plasma process parameters (Table 1). For samples 1–22, the following parameters are
used for multivariate analysis: surface resistance (Rs), mass (M), thickness (δ), vapor per-
meability (Pv) and air permeability (Pa) (Table 1). The samples used for RF plasma O2
functionalization and presented in Table 1 have been developed based on seven weaved
structures from 100% cotton yarns such as plain weave 1/1 with cotton yarns Nm 20/2
on weft for samples 3, 11 and 19; plain weave 1/1 with cotton yarns Nm 20/3 on weft for
samples 4, 12 and 20; twill 2/2 for samples 1, 9 and 17; twill 3/1 for samples 2, 10 and 18;
panama for samples 5, 13 and 21; weft rib weave for samples 6, 14 and 22; and warp rib
weave for samples 7 and 15. In addition, samples 5 and 16 are made of polyamide and
weaved structure plain weave 1/1. Of samples 1–16 preliminary treated in RF plasma O2,
samples 1–8 used RF1 generator and power 200 W, and samples 9–16 used RF plasma O2
with RF2 generator and 100 W power. However, the weaved structures do not influence
the surface resistance. For all samples developed being obtained, the values of 103 Ω
for surface resistance mean that the conductivity is good, and the materials obtained are
electroconductive. For samples 17–22, it can be observed that the surface resistance is
between 1012–1013 Ω which means that samples 17–22 are electrical insulators. The sam-
ples presented in Table 1 have been developed based on seven weaved structures from
100% cotton yarns (plain weave 1/1 with yarns Nm20/2 (3, 11 and 19), plain weave 1/1
with cotton yarns Nm 20/3 (4, 12 and 20), twill 2/2 (1, 9 and 17), twill 3/1 (2, 10 and
18), panama (5, 13 and 21), weft rib weave (6, 14 and 22), and warp rib weave (7, 15)).
The values for physico-mechanical and electrical tests performed before deposition of the
conductive paste may be caused by different treatments performed in plasma by varying
the RF generator, power and work gas pressure and the variation of thickness for the
conductive layer deposited by scrapping method on the textile surface. Moreover, we
observed, by measuring the contact angles using the VCA Optima device (AST Products,
Inc., Billerica, MA, USA) (Figure 2) using a drop of 4 µL distilled water, that the samples
treated using RF1 generator and power 200 W andRF2 generator and power 100 W present
a pronounced hydrophilic character in comparison with the samples treated using the RF2
generator having a frequency of 40 kHz and power 50 W.

The surface resistances were evaluated using two devices:

1. To measure the Rs[Ω] in Table 1 was used a portable Surface Resistance Meter (Quan-
tachrome, Beijing, China) and the surface resistance (Rs [Ω]) was measured as the
ratio between the continuous voltage applied between the two parallel electrodes on
the surface of a test sample and the current between these electrodes, neglecting any
polarization phenomena on the electrodes.

2. Surface resistance (noted with REDS [Ω]) was measured using a high precision
device Warmbier METRISO B530 Surface Resistance Tester (Wolfgang Warmbier
GmbH & Co., Hilzingen, Germany) based on concentric electrodes (Figure 3) and
supply voltage:

- 10 V for samples treated in RF plasma O2 using an RF2 generator 40 kHz and
power of 100 W, respectively, an RF1 generator of 13.56 MHz frequency and
power 200 W;
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- 100 V for samples treated in RF plasma O2 using an RF2 generator of 40 kHz
frequency and power 50 W.

In the case of samples 1–16 (Table 1), preliminarily treated using RF plasma O2 using
RF1 MHz generator and power 200 W or RF2 generator and 100 W power, the fabrics being
conductive, the RESD data was captured for 10 V supply voltage. In the case of the samples
17–22 (Table 1), preliminarily treated using RF2 kHz generator and power 50 W, and the
fabrics being electrical insulators, RESD data acquisition was possible only for a supply
tension of 100 V.

Table 1. RF O2 plasma process parameters and electrical characterization of the samples after coating with polymeric pastes
based on PVA and Ni microparticles.

No Rs [Ω]
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ng RF1 Plasma O2 Using MHz Generator Physical-Mechanical Characteristics

Power
[W]

Gas Flow
[sccm]

Time
[min]

Presssure
[mTorr]

* M
[g/m3]

** δ
[mm]

*** Pv
[%]

**** Pa
[l/m2/s]

1 103 11.7 0.25 200 200 3 100.4 503.6 1.36 31.88 148.8
2 103 12.8 0.61 200 200 3 100.4 492.8 1.296 30.73 171.8
3 103 10.6 0.4 200 200 3 100.4 398.4 1.014 32.26 92.82
4 103 6 0.6 200 200 3 100.4 453.2 1.074 30.15 67.84
5 103 6.8 0.04 200 200 3 100.4 470.8 1.366 31.11 74.84
6 103 3.3 0.02 200 200 3 100.4 476.8 1.322 30.34 90.4
7 103 7.8 0.07 200 200 3 100.4 454.8 1.12 31.11 46.44
8 103 4.5 7.69 200 200 3 100.4 431.6 0.814 26.69 130

RF Plasma O2 using RF2 kHz generator

9 103 - 0.16 100 200 3 84.8 522 1.39 32.26 161.2
10 103 - 2.69 100 200 3 84.8 510.4 1.36 32.67 184.6
11 103 - 0.01 100 200 3 84.8 410 1.01 35.74 88.12
12 103 - 0.01 100 200 3 84.8 477.6 1.09 34.72 64.12
13 103 - 0.17 100 200 3 84.8 512.4 1.36 32.67 67.18
14 103 - 0.01 100 200 3 84.8 502.4 1.36 30.84 97.36
15 103 - 0.04 100 200 3 84.8 473.2 1.15 33.08 47.92
16 103 - 7.09 100 200 3 84.8 437.2 0.81 29 120.8

17 1012 - 3.53 50 200 3 93.1 516.4 1.39 31.2 157.2
18 1012 - 4.03 50 200 3 93.1 506.4 1.294 29.2 160.4
19 1012 - 2.39 50 200 3 93.1 401.2 1.002 31.7 90.8
20 1012 - 2.31 50 200 3 93.1 456.8 1.064 29 60.82
21 1013 - 3.37 50 200 3 93.1 508.8 1.412 28.3 70.1
22 1012 - 4.07 50 200 3 93.1 459.6 1.084 27.9 31.12

* M—mass[g/m2], ** δ—thickness [mm], *** Pv—Vapor permeability [%], **** Pa—Air permeability [l/m2/s].
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Several raw fabrics presented in Table 2 were treated using the preliminary classical
cleaning method alkaline boiling-bleaching (samples A1–A3) and alkaline boiling-bleaching
followed by hydrophobization using a dispersion of fluorine compound NUVA TCC
(CLARIANT AG, Muttenz, Switzerland) (samples A4–A6). After initial treatment on the
fabrics, a thin-film based polymeric matrix PVA, organic solvents and silver (Ag), nickel
(Ni), copper (Cu) has been deposited in A1–A6 (Table 2) by scraping followed by free
drying at room temperature (18–20 ◦C) for 20–24 h and crosslinking at 150–160 ◦C for
3–5 min (Table 2). For these samples, the main physical-mechanical characteristics are
presented in Table 2, i.e., mass (M), thickness (δ) and air permeability (Pa). In addition, for
samples presented in Table 2, the electrical surface resistance (Rs1 [Ω] measured before
crosslinking and Rs2 [Ω] measured after crosslinking) was measured. Samples A1–A6
have been developed based on 3 weaved structures from 100% cotton yarns: twill 2/2 for
samples A1 and A4, twill 3/1 for samples A2 and A5, and plain weave 1/1 with cotton
yarns Nm 20/2 on weft for samples A3 and A6.

Table 2. Physico-mechanical and electrical characterization of the experimental samples (raw fabrics) functionalized by
coating with polymeric pastes based PVA—and metallic microparticles Cu, Ni and Ag.

No. Nuva TCC Ni Cu Ag PVA H2O * Rs1 [Ω] ** Rs2 [Ω] M [g/m2] δ [mm] Pa [L/m2/s]

A1 x x x 109 1012 992.8 2.932 8.148
A2 x x x 103 103 950.4 3.9 10.148
A3 x x x 103 103 1020.4 3.248 3.248
A4 x x x x 109 1010 1125.2 4.106 90.3
A5 x x x x 103 103 966.4 4.00 90.383
A6 x x x x 108 103 1002.8 4.762 141

* Rs1 measured before crosslinking; ** Rs2 measured after crosslinking.

The purpose of the experiments was to compare the classical alkaline boiling-bleaching
followed by conductive paste scraping (samples A1–A3), the classical alkaline boiling-
bleaching followed by hydrophobization using NUVA TTC and conductive paste scraping
(samples A4–A6) and the conductive paste deposition after functionalization in RF plasma
O2 to avoid classical cleaning treatments that harm air and water through intensive pollu-
tion and high chemical consumption. From Table 2, we can observe that the samples treated
with conductive paste-based Ni and Ag are conductive because the surface resistance is
103 Ω and are not dependent on the surface type (hydrophilic or hydrophobic). In the case
of the samples A1 and A4 having initial surfaces that are hydrophilic and hydrophobic,
respectively, and treated with a conductive paste-based Cu, we can observe that the surface
resistances after crosslinking are 1012 Ω and 1010 Ω, respectively, which means that sample
A1 has an insulator character, and sample A4 has an antistatic character.
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3. Results
3.1. Characterization of the Samples Treated Using RF Plasma O2 and Conductive Paste
3.1.1. Surface Morphology Using SEM

The surface morphology was obtained by scan electron microscopy Quanta 200 SEM
(FEI, Cleveland, OH, USA) using 2000×magnification.

The surface morphologies of the fabrics treated using RF plasma O2 and samples coated
with conductive paste-based polymeric matrix and Ni are presented in Figures 4–6 (corre-
sponding to the samples 18, 2 and 10 from Table 1). In Figures 5b and 6b, a clusterization of the
Ni microparticles is evident. The sample from Figure 5b was treated using RF plasma and
MHz generator and exhibited a pronounced hydrophilic effect. However, we can observe
in Figure 5b a massive clusterization in the case of the sample preliminarily treated using
RF plasma O2 and RF1 MHz generator and power 200 W in comparison with the sample
treated using RF2 kHz generator and power 50 W (Figure 4b). In addition, we can observe
in Figures 6b and 4b that Ni microparticles are more clusterized in the case of the fabric
preliminarily treated with RF plasma O2 and generator RF2 and power 100 W (Figure 6b) in
comparison with the sample treated using RF2 kHz generator and power 50 W (Figure 3b).
Figure 7 is presented the raw fabric (100% cotton, twill 3/1 structure used initially for
samples 18, 2 and 10 from Table 1) untreated in plasma and used to obtain samples 2, 10,
18 from Table 1. In comparison with samples presented in Figures 4a and 6a (treated in RF
plasma), we can observe that the surfaces of the samples treated in plasma look smoother
and have a reduced surface roughness at the fiber surface level.

3.1.2. Surface Topography Using Optical Microscopy

Table 3 presents the analysis of the topography of textile surfaces based on digital
electron microscopy (60×magnification) for raw fabrics hydrophilized in RF plasma O2
using a 13.56 MHz RF1 generator and materials with polymeric deposits based on PVA
matrix and nickel (Ni) microparticles. In Table 4 are presented the images, obtained
through digital electron microscopy (60× magnification), of the samples obtained by
classical technologies (boiling-bleaching (samples 1–3) and hydrophobization using NUVA
TTC (samples 4–6)) and scraping of conductive pastes based on PVA matrix and Ni, Cu
and Ag microparticles. For all samples, the scraping size is the same in all the samples and
the photos in Table 3.
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Table 3. Surface topography of the textiles functionalized in RF plasma O2 using RF1 generator.

Sample No. After Hydrophilization in RF Plasma O2 Using
RF1 Generator

Surface After Deposition of Thin-Film Based
PVA Matrix and Nickel Microparticles

1
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Table 3. Cont.

Sample No. After Hydrophilization in RF Plasma O2 Using
RF1 Generator

Surface After Deposition of Thin-Film Based
PVA Matrix and Nickel Microparticles

6
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3.1.3. Chemical Composition 
The chemical composition was investigated using the ESD (Energy Dispersive Spec-

troscopy) analysis and elemental mapping overlay for samples 18, 2 and 10 (Table 1) per-
formed using Energy Dispersive X-Ray Analysis (EDAX) (AMETEK, Inc., Montvale, NJ, 
U.S.A.) and the results are presented in Table 5. Using the smart phase mapping tool from 
EDAX the spectra and elemental and phase maps were collected automatically. These 
samples from Table 1 are noted here: 
- Sample 18 from Table 1 is S1; 
- Sample 2 from Table 1 is S2; 
- Sample 10 from Table 1 is S3. 

Figures 8–11 present the ESD spectra (Figures 8 and 10) and the element smart map-
ping (Figures 9 and 11) for sample no. S1 treated in RF plasma using a kHz generator and 
power 50 W (Figures 8 and 9) and then coated with conductive paste-based Ni micropar-
ticles (Figures 10 and 11). Figures 12–15 present the ESD spectra (Figures 12 and 14) and 
the element smart mapping (Figures 13 and 15) for sample S2 treated in RF plasma using 
RF1 generator and power 200 W (Figures 12 and 13) and treated using RF plasma O2 fol-
lowed by coating with Ni-based paste (Figures 14 and 15). Figures 16–19 present the ESD 
spectra (Figures 16 and 18) and the element smart mapping (Figures 17 and 19) for sample 
S3 treated in RF plasma using RF2 generator and power 100 W (Figures 16 and 17) and 
treated using RF plasma O2 followed by coating with Ni-based paste (Figures 18 and 19). 
The prominent peaks of C and O (Figures 8, 10, 12, 14, 16 and 10) are because cotton fibers 
contain 94% cellulose ((C6H10O5)n), and other substances such as protein, pectin sub-
stance, oil, fat, wax, ash, organic acids [32]. In addition, the cotton bolls contain an approx-
imate percent of 4% potassium (K) which is necessary to the growth and development of 
cotton [33–35]. The energy peak corresponding to the element Cl in ESD spectra (Figures 
8, 10, 12 and 16) on the ESD spectra mean that Cl and K element is present on the fabric 
analyzed and can have the provenience from the substances used for warps preparation 
(gluing the warps for preparation of the yarns to be used on warp direction) before weav-
ing.). Figures 10, 14 and 18 show that Ni peaks for samples treated with conductive 
paste-based Ni microparticles can be observed. By comparison, it can be observed that 
the Ni peaks are more pronounced in Figure 14 (corresponding to the sample treated 
in RF plasma O2 using RF1 generator and 200 W power) than Figure 18 (corresponding 
to the sample treated in RF plasma O2 using RF2 generator and 100 W power). 
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The chemical composition was investigated using the ESD (Energy Dispersive Spec-
troscopy) analysis and elemental mapping overlay for samples 18, 2 and 10 (Table 1)
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NJ, USA) and the results are presented in Table 5. Using the smart phase mapping tool
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from EDAX the spectra and elemental and phase maps were collected automatically. These
samples from Table 1 are noted here:

- Sample 18 from Table 1 is S1;
- Sample 2 from Table 1 is S2;
- Sample 10 from Table 1 is S3.

Table 5. Chemical composition (% wt).

Sample No. C O Cl K Ni

S1treated using RF2, 50 W 38 53 3 6 -
S1treated with Ni paste 31 36 2 4 26
S2treated using RF1, 200 W 39 54 2 2 -
S2 treated with Ni paste 7 9 - - 83
S3treated using RF2, 100 W 40 54 3 4 -
S3 treated with Ni paste 9 11 - 2 78

Figures 8–11 present the ESD spectra (Figures 8 and 10) and the element smart map-
ping (Figures 9 and 11) for sample no. S1 treated in RF plasma using a kHz generator
and power 50 W (Figures 8 and 9) and then coated with conductive paste-based Ni mi-
croparticles (Figures 10 and 11). Figures 12–15 present the ESD spectra (Figures 12 and 14)
and the element smart mapping (Figures 13 and 15) for sample S2 treated in RF plasma
using RF1 generator and power 200 W (Figures 12 and 13) and treated using RF plasma O2
followed by coating with Ni-based paste (Figures 14 and 15). Figures 16–19 present the ESD
spectra (Figures 16 and 18) and the element smart mapping (Figures 17 and 19) for sample
S3 treated in RF plasma using RF2 generator and power 100 W (Figures 16 and 17) and
treated using RF plasma O2 followed by coating with Ni-based paste (Figures 18 and 19).
The prominent peaks of C and O (Figures 8, 10, 12, 14 and 16) are because cotton fibers
contain 94% cellulose ((C6H10O5)n), and other substances such as protein, pectin sub-
stance, oil, fat, wax, ash, organic acids [32]. In addition, the cotton bolls contain an
approximate percent of 4% potassium (K) which is necessary to the growth and develop-
ment of cotton [33–35]. The energy peak corresponding to the element Cl in ESD spectra
(Figures 8, 10, 12 and 16) on the ESD spectra mean that Cl and K element is present on the
fabric analyzed and can have the provenience from the substances used for warps prepara-
tion (gluing the warps for preparation of the yarns to be used on warp direction) before
weaving). Figures 10, 14 and 18 show that Ni peaks for samples treated with conductive
paste-based Ni microparticles can be observed. By comparison, it can be observed that the
Ni peaks are more pronounced in Figure 14 (corresponding to the sample treated in RF
plasma O2 using RF1 generator and 200 W power) than Figure 18 (corresponding to the
sample treated in RF plasma O2 using RF2 generator and 100 W power).
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From Figure 11, it is evident that the adherence of the paste and distribution of
the 26% Ni is lower on the sample S1 treated in RF plasma using RF2 and 50 W power
in comparison with the samples treated in RF plasma using RF1 generator and power
200 W (Figures 16 and 17) and RF2 generator and power 100 W (Figures 18 and 19). In
Figures 15 and 19, it can be observed that Ni has a good mapping and tends to create
appropriate clusters on the surface of the sample S2 (83%) and sample S3 (78%).

4. Discussion

The experiments in RF plasma O2 were prepared using a variation in power (200 W,
100 W and 50 W), in frequency (using two different RF generators having the frequencies
13.56 MHz (RF1) and 40 kHz (RF1)).

The samples treated in RF plasma O2 using the generator RF1 and power 200 W
become hydrophilic. In addition, the samples treated in RF plasma O2 using the generator
RF2 and power 100 W become hydrophilic.

On the other hand, the samples treated in RF plasma O2 using the generator RF2 and
power 50 W continued to be hydrophobic.

The correlation between surface resistance after free drying or crosslinking (dependent
variable) and other independent variables (Pa, Pv, δ and M) was investigated by analyzing
the correlation coefficient Pearson (1) between RESD and M, Pa, Pv and δ. The correlation
coefficients were calculated for all samples preliminarily treated using RF plasma O2 with
RF1 generator and power 200 W, RF2 and power 100 W, and RF2 and power 50 W:

rxy =
1
n ∑(x− x)(y− y)

sxsy
(1)

where:

x, y represents the individual values of the variables x and y;
x, y represents the arithmetic mean of all the values of x, y;
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sx, sy represents the standard deviation of all values x and y.

In the case of the fabrics treated in RF plasma using RF1 and power 200 W, Figures 20–25
present the 3D representation of the surface resistance (RESD free drying), after free drying at
room temperature (18–20 ◦C) for 20–24 h, depending on the independent variables (mass
and thickness (Figure 20), air permeability and thickness (Figure 21), vapor permeability
and thickness (Figure 22), air permeability and vapor permeability (Figure 23), mass
and vapor permeability (Figure 24) and mass and air permeability (Figure 25) to observe
the variation of the RESD free drying in correlation with these independent variables. To
appreciate the inverse or direct correlation between the dependent variable RESD free drying
and independent variables (mass, thickness, vapor permeability and air permeability), the
correlation coefficients between the RESD free drying and mass (2), air permeability (3), vapor
permeability (4) and thickness (5) were calculated.
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Figure 25. 3D representation RESD free drying = f(M, Pa) for samples preliminarily treated in RF plasma O2 using RF1 generator
and power 200 W.

Analyzing the values of the correlation coefficients between surface resistance (RESD)
after free drying and M, Pa, Pv and δ (rRESD , M = 0.2209 (2), rRESD , Pa = 0.5307 (3),
rRESD , Pv = 0.5993 (4) and rRESD , δ = 0.2921 (5)), it can be observed that the correlation coef-
ficients are positive. Between the surface resistance (RESD) and air permeability (Pa) and
vapor permeability (Pv), it is a direct correlation, and this indicates that a textile fabric
having higher values for Pa and Pv surface will generate the increase of surface resistance
value. Moreover, between RESD and thickness and mass, it is an insignificant dependence.

Figure 20 presents the 3D representation of the multiple correlations between
RESD free drying and (M, δ) and the black dots represent the appropriate points for RESD free drying
depending on mass (M) and thickness (δ).

Figure 21 presents the 3D representation of the multiple correlations between RESD free drying
and (Pa, δ) and the black dots represent the fitting points for RESD free drying depending on air
permeability (Pa) and thickness (δ).

Figure 22 presents the 3D representation of the multiple correlations between RESD free drying
and (Pv, δ) and the black dots represent the fitting points for RESD free drying depending on
vapor permeability (Pv) and thickness (δ).

Figure 23 presents the 3D representation of the multiple correlations between RESD free drying
and (Pa, Pv) and the black dots represent the fitting points for RESD free drying depending on air
permeability (Pa) and vapor permeability (Pv).
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Figure 24 presents the 3D representation of the multiple correlations between RESD free drying
and (M, Pv) and the black dots represent the fitting points for RESD free drying depending on
mass (M) and vapor permeability (Pv).

Figure 25 presents the 3D representation of the multiple correlations between RESD free drying
and (M, Pa) and the black dots represent the fitting points for RESD free drying depending on
mass (M) and air permeability (Pa).

rRESD , M =

∣∣∣∣ 1.0000 0.2209
0.2209 1.0000

∣∣∣∣⇔ r12RESD ,M = r21RESD ,M = 0.2209 (2)

rRESD , Pa =

∣∣∣∣ 1.0000 0.5307
0.5307 1.0000

∣∣∣∣⇔ r12RESD ,Pa = r21RESD ,Pa = 0.5307 (3)

rRESD , Pv =

∣∣∣∣ 1.0000 0.5993
0.5993 1.0000

∣∣∣∣⇔ r12RESD ,Pv = r21RESD ,Pv = 0.5993 (4)

rRESD , δ =

∣∣∣∣ 1.0000 0.2921
0.2921 1.0000

∣∣∣∣⇔ r12RESD ,δ = r21RESD ,δ = 0.2921 (5)

In the case of the fabrics treated in RF plasma using RF1 and power 200 W, Figures 26–31
present the 3D representation of the surface resistance (RESD after crosslinking), after crosslink-
ing, depending on the independent variables (mass and thickness (Figure 26), air per-
meability and thickness (Figure 27), vapor permeability and thickness (Figure 28), air
permeability and vapor permeability (Figure 29), mass and vapor permeability (Figure 30),
mass and air permeability (Figure 31)) to observe the variation of the dependent variable
RESD after crosslinking in correlation with these independent variables. To evaluate the inverse
or direct correlation between the dependent variable RESD after crosslinking and independent
variables (mass, thickness, vapor permeability and air permeability), the correlation coeffi-
cients between the RESD crosslinking and mass (6), air permeability (7), vapor permeability (8),
and thickness (9) were calculated.
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By analysis of the values for correlation coefficients between surface resistance (RESD)
after crosslinking and M, Pa, Pv and δ (rRESD , M = −0.3497 (6), rRESD , Pa= 0.2917 (7),
rRESD , Pv = −0.9086 (8), rRESD , δ = −0.7475 (9)), it can be observed that between the surface
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resistance (RESD) and vapor permeability (Pv), thickness (δ) and mass (M), the correlation
coefficients are negative, and the inverse correlation indicates that in the case of a textile
fabric coated with a conductive paste-based Ni, the increase of the values for δ, Pv and M
will generate a reduction of the RESD value. However, between RESD and Pa, the correlation
coefficient is moderately positive, which means a direct insignificant dependence between
these variables.

Figure 26 presents the 3D representation of the multiple correlations between
RESD after crosslinking and (M, δ) and the black dots represent the fitting points for
RESD after crosslinking depending on mass (M) and thickness (δ).

Figure 27 presents the 3D representation of the multiple correlations between
RESD after crosslinking and (Pa, δ) and the black dots represent the fitting points for
RESD after crosslinking depending on air permeability (Pa) and thickness (δ).

Figure 28 presents the 3D representation of the multiple correlations between
RESD after crosslinking and (Pv, δ) and the black dots represent the fitting points for
RESD after crosslinking depending on vapor permeability (Pa) and thickness (δ).

Figure 29 presents the 3D representation of the multiple correlations between
RESD after crosslinking and (Pa, Pv) and the black dots represent the fitting points for
RESD after crosslinking depending on air permeability (Pa) and vapor permeability (Pv).

Figure 30 presents the 3D representation of the multiple correlations between
RESD after crosslinking and (M, Pv) and the black dots represent the fitting points for
RESD after crosslinking depending on mass (M) and vapor permeability (Pv).

Figure 31 presents the 3D representation of the multiple correlations between
RESD after crosslinking and (M, Pa) and the black dots represent the fitting points for
RESD after crosslinking depending on mass (M) and air permeability (Pa).

rRESD , M =

∣∣∣∣ 1.0000 −0.3497
−0.3497 1.0000

∣∣∣∣⇔ r12RESD ,M = r21RESD ,M = −0.3497 (6)

rRESD , Pa =

∣∣∣∣ 1.0000 0.2917
0.2917 1.0000

∣∣∣∣⇔ r12RESD ,Pa = r21RESD ,Pa = 0.2917 (7)

rRESD , Pv =

∣∣∣∣ 1.0000 −0.9086
−0.9086 1.0000

∣∣∣∣⇔ r12RESD ,Pv = r21RESD ,Pv = −0.9086 (8)

rRESD , δ =

∣∣∣∣ 1.0000 −7475
−0.7475 1.0000

∣∣∣∣⇔ r12RESD ,δ = r21RESD ,δ = −0.7475 (9)

In the case of the fabrics treated in RF plasma using RF2 and power 100 W, Figures 32–37
present the 3D representation of the surface resistance (RESD after crosslinking), after crosslink-
ing, depending on the independent variables (mass and thickness (Figure 32), air permeabil-
ity and thickness (Figure 33), vapor permeability and thickness (Figure 34), air permeability
and vapor permeability (Figure 35), mass and vapor permeability (Figure 36) and mass and
air permeability (Figure 37) to observe the variation of the RESD after crosslinking in correlation
with the independent variables (mass, thickness, vapor permeability and air permeability).
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In the case of the samples preliminarily treated using RF plasma O2 with RF2 generator
and power 100 W, the correlation coefficients (10)–(13) have been calculated:

rRESD , M =

∣∣∣∣ 1.0000 −0.3093
−0.3093 1.0000

∣∣∣∣⇔ r12RESD ,M = r21RESD ,M = −0.3093 (10)

rRESD , Pa =

∣∣∣∣ 1.0000 0.3934
0.3934 1.0000

∣∣∣∣⇔ r12RESD ,Pa = r21RESD ,Pa = 0.3934 (11)

rRESD , Pv =

∣∣∣∣ 1.0000 −0.6898
−0.6898 1.0000

∣∣∣∣⇔ r12RESD ,Pv = r21RESD ,Pv = −0.6898 (12)

rRESD , δ =

∣∣∣∣ 1.0000 −0.5845
−0.5845 1.0000

∣∣∣∣⇔ r12RESD ,δ = r21RESD ,δ = −0.5845 (13)

Analyzing the values of the correlation coefficient rRESD , Pa(11), which is positive, it can
be observed that between the surface resistance (RESD) and air permeability (Pa), there is
a direct correlation, and these variables are in a direct proportionality relationship, and this
indicates that the increase of the Pa value generates the increase of the RESD and reduction
of the electrical conductivity. In addition, we can observe that between RESD and M, Pv and
δ, the correlation coefficients are negative. The inverse correlation indicates that increasing
the value of the parameters M, Pv and δ will reduce surface resistance and increase the
conductivity.

Figure 32 presents the 3D representation of the multiple correlations between
RESD after crosslinking and (M, δ) and the black dots represent the fitting points for
RESD after crosslinking depending on mass (M) and thickness (δ).

Figure 33 presents the 3D representation of the multiple correlations between
RESD after crosslinking and (Pa,δ) and the black dots represent the fitting points for
RESD after crosslinking depending on air permeability (Pa) and thickness (δ).

Figure 34 presents the 3D representation of the multiple correlations between
RESD after crosslinking and (Pv,δ) and the black dots represent the fitting points for
RESD after crosslinking depending on vapor permeability (Pv) and thickness (δ).

Figure 35 presents the 3D representation of the multiple correlations between
RESD after crosslinking and (Pa, Pv) and the black dots represent the fitting points for
RESD after crosslinking depending on air permeability (Pa) and vapor permeability (Pv).

Figure 36 presents the 3D representation of the multiple correlations between
RESD after crosslinking and (M, Pa) and the black dots represent the fitting points for
RESD after crosslinking depending on mass (M) and air permeability (Pa).

In Figure 37 presents the 3D representation of the multiple correlations between
RESD after crosslinking and (M, Pv) and the black dots represent the fitting points for
RESD after crosslinking depending on mass (M) and vapor permeability (Pv).



Materials 2021, 14, 5609 24 of 28

In the case of the fabrics treated in RF plasma using RF2 and power 50 W, Figures 38–43
present the 3D representation of the surface resistance (RESD after crosslinking), after crosslink-
ing, depending on the independent variables (mass and thickness (Figure 38), air permeabil-
ity and thickness (Figure 39), vapor permeability and thickness (Figure 40), air permeability
and vapor permeability (Figure 41), mass and vapor permeability (Figure 42) and mass and
air permeability (Figure 43) to observe the variation of the RESD after crosslinking in correlation
with the independent variables (mass, thickness, vapor permeability and air permeability).
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Figure 43. 3D representation RESD after crosslinking = f(M, Pv) samples preliminarily treated in RF plasma O2 using RF2

generator and power 50 W.

In the case of the samples preliminarily treated using RF plasma O2 with RF2 generator
and power 50 W, the correlation coefficients have been calculated (14)–(17):

rRESD , M =

∣∣∣∣ 1.0000 0.6297
0.6297 1.0000

∣∣∣∣⇔ r12RESD ,M = r21RESD ,M = 0.6297 (14)

rRESD , Pa =

∣∣∣∣ 1.0000 0.2382
0.2382 1.0000

∣∣∣∣⇔ r12RESD ,Pa = r21RESD ,Pa = 0.2382 (15)

rRESD , δ =

∣∣∣∣ 1.0000 0.5099
0.5099 1.0000

∣∣∣∣⇔ r12RESD ,δ = r21RESD ,δ = 0.5099 (16)

rRESD , Pv =

∣∣∣∣ 1.0000 −0.4407
−0.4407 1.0000

∣∣∣∣⇔ r12RESD ,Pv = r21RESD ,Pv = −0.4407 (17)
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Analyzing the correlation coefficients between RESD after crosslinking and M, Pa, Pv and δ

(rRESD , M = 0.6297 (14), rRESD , Pa = 0.2382 (15) and rRESD , δ = 0.5099 (16)), we can observe
the coefficients are positive, and there is a direct correlation between variables, which
means that an increase in the surface resistance can be generated by increasing the M, Pa
or δ. In addition, the correlation coefficient rRESD , Pv (17) is negative, indicating an inverse
correlation and inverse proportionality report between RESD and Pv.

Figure 38 presents the 3D representation of the multiple correlations between
RESD after crosslinking and (M, δ) and the black dots represent the fitting points for
RESD after crosslinking depending on mass (M) and thickness (δ).

Figure 39 presents the 3D representation of the multiple correlations between
RESD after crosslinking and (Pa, δ) and the black dots represent the fitting points for
RESD after crosslinking depending on air permeability (Pa) and thickness (δ).

Figure 40 presents the 3D representation of the multiple correlations between
RESD after crosslinking and (Pv, δ) and the black dots represent the fitting points for
RESD after crosslinking depending on vapor permeability (Pv) and thickness (δ).

Figure 41 presents the 3D representation of the multiple correlations between
RESD after crosslinking and (Pa, Pv) and the black dots represent the fitting points for
RESD after crosslinking depending on air permeability (Pa) and vapor permeability (Pv).

Figure 42 presents the 3D representation of the multiple correlations between
RESD after crosslinking and (M, Pa) and the black dots represent the fitting points for
RESD after crosslinking depending on mass (M) and air permeability (Pa).

Figure 43 presents the 3D representation of the multiple correlations between
RESD after crosslinking and (M, Pv) and the black dots represent the fitting points for
RESD after crosslinking depending on mass (M) and vapor permeability (Pv).

5. Conclusions

In conclusion, the samples treated in RF plasma O2 using RF1 generator at 13.56 MHz
frequency and power 200 W and using RF2 generator at 40 kHz frequency and 100 W power
present an excellent hydrophilic character only in 3 min compared to samples treated in RF
plasma O2 using the RF2 generator at 40 kHz frequency and power 50 W.

Moreover, in the case of samples functionalized in plasma and coated with PVA paste-
based Ni particles, it was observed that the samples become conductive after drying at
room temperature (18–20 ◦C) for 20–24 h.

In addition, in the samples hydrophobized with NUVA TTC and treated with poly-
meric paste-based PVA matrix and Cu microparticles, after crosslinking, the surface resis-
tance was increased ten times, from 109 Ω to 1010 Ω, and the resurface resistance value is
a specific value for antistatic fabrics.

Analyzing the correlation coefficients, we can conclude that the correlation coefficients
between RESD after crosslinking and M, δ and Pv are negative in the case of the samples pre-
treated in RF plasma O2 using RF1 generator and 200 W power, and this indicates a strong
inverse correlation and an inverse proportionality relationship between these variables.
However, the correlation coefficient between RESD after crosslinking and Pa is positive, and this
shows a direct correlation and direct proportionality between these variables and suggests
that increasing the Pa (due to the textile structure and air gaps in the fabric because the air
is an excellent electrical insulator) will generate the increasing of the RESD after crosslinking.

The fabrics that are treated in RF plasma O2 using RF1 generator and power 200 W
and RF2 generator and 100 W power, followed by coating with a thin film based on PVA
matrix, organic solvents and Ni microparticles present a good conductivity, reduced surface
resistance and can be used for sensors development.

The development of conductive textiles for flexible electrodes using clean technology
such as RF plasma oxygen leads to decreasing the wastewater, chemicals, carbon footprint
and pretreatment time.
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