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A B S T R A C T

The escalation of global warming, high temperatures, and wildfire frequency in dry ecosystems, 
including semi-arid landscapes, has resulted in increased wildfire regimes, compromising 
ecosystem resistance and resilience. To mitigate these risks, prescribed burning (PB) is being 
employed as a preventive measure to modify fuel loads in forest ecosystems. However, fire can 
also impact soil structure and microbiota, which play critical roles in nutrient cycling, biodi-
versity conservation, and overall ecosystem functioning. Therefore, understanding post-fire 
processes is essential for sustainable forest management. However, while previous studies have 
explored the effects of prescribed fire management on semi-arid soil properties in Mediterranean 
forest ecosystems, gaps remain in our understanding of its specific impact on the physical 
structure, chemical composition, and biological activities of soils.

In this study, we conducted early spring PB in SE Spain in 2021 and assessed the ecological and 
temporal effects of PB on semi-arid soils. Soil respiration (SR) measurements using automatic CO2 
flow chambers were employed to evaluate microbiota recovery. To examine impacts on soil 
structure we evaluated physicochemical characteristics, soil hydraulic conductivity (SHC), and 
soil water repellency (SWR). No significant differences were observed in any of the variables 
studied after one year. However, immediate effects were detected shortly after the PB. Our 
research specifically targeted soil structure and microbiota in a semi-arid landscape with poor 
soils, characterized by slower recovery and potentially fragile ecosystems. These results provide 
valuable insights for forest management practices, indicating that prescribed fire management 
strategies in similar ecosystems are unlikely to cause adverse effects on soil health. However, 
further research is warranted to explore the potential effects of prescribed fire intensity and 
seasonality. Future studies can focus on investigating these factors to provide more targeted 
recommendations for effective forest management strategies and wildfire prevention efforts.

1. Introduction

The escalating risk of wildfires in arid and semi-arid climates with extremely hot and dry summers has become a pressing concern 
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[1]. Ecosystem vulnerability has intensified due to these factors, leading to slow vegetation regeneration, water stress, and degraded 
soil properties such as low organic matter and nutrient content [2,3]. Wildfires have significant impacts on water, air, vegetation, and 
fauna, shaping landscapes and prolonging dry seasons [4]. Effective forest fuel management, particularly through prescribed burning 
(PB), is crucial for fire prevention [5]. Preventive treatments, such as prescribed burning (PB), aim to modify vegetation strata in 
high-fire-risk areas, minimizing the extent and intensity of wildfires [6]. PB is increasingly used as a preventive tool, creating dis-
continuities in vegetation strata both horizontally and vertically [7]. Understanding the impacts of PB on soil microbial communities in 
semi-arid regions with poor soils, where water availability is limited, solar exposure becomes a critical factor affecting various 
ecological processes [8]. Further investigation is needed to unravel the intricate relationships between fire, microbial diversity, and 
ecosystem functioning, providing valuable insights for sustainable conservation and restoration practices [9]. Filling this knowledge 
gap can enhance our understanding of the potential impacts of PB, especially in areas where other tools, like mechanical cutting, have 
limited accessibility.

Fire exerts a significant influence on soil health and microbial communities, impacting crucial processes such as nutrient cycling, 
biodiversity maintenance, and ecosystem functioning [10]. The edaphic microbiota directly influences OM decomposition, fuel load, 
and the nutrient cycling of elements like carbon (C), nitrogen (N), and phosphorus (P) [11]. Assessing the sensitivity of these com-
munities to heat is crucial, as some bacterial communities produce nitrate derivatives (from NO3 in ashes) that become scarce after 
fires [12]. These derivatives can include various nitrogen-containing compounds such as nitrite (NO2− ), nitric oxide (NO), nitrous 
oxide (N2O), and dinitrogen gas (N2), among others. The production of these derivatives is a vital part of the nitrogen cycle in forest 
ecosystems, influencing nutrient availability, greenhouse gas emissions, and overall soil fertility. However, micro-edaphic commu-
nities are extremely vulnerable to slight temperature variations [13], as well as other factors such as weather parameters, season of the 
year, and types of burning or fire [14]. They are one of the most useful bioindicators for measuring fire impact on soil [15]. Therefore, 
understanding the impacts on these microbial communities is vital for sustainable land management practices [16].

Forest fires result in numerous short- and long-term hydrological and geomorphological changes, affecting soil and water [17]. 
Post-fire, vegetation and organic matter depletion leave the soil surface exposed to increased runoff and erosion risks [18]. These 
alterations substantially modify the hydrological response of burned areas, affecting infiltration, surface flow, and erosion patterns 
[19]. Studies indicate that even low-severity fires or PB can influence runoff and soil erosion rates [20–22]. However, specific in-
vestigations are warranted to elucidate the mechanisms underlying these effects, such as the role of microbial communities in soil 
recovery processes and the long-term implications for ecosystem resilience. By conducting targeted studies on vegetation dynamics, 
soil microbial ecology, and hydrological processes, we aim to provide actionable insights for ecosystem management and post-fire 
rehabilitation strategies in dry and hot environments characterized by slowed vegetation regeneration.

PB is one of the strategies commonly used to reduce fuel loads by creating intensity bands, along with other fuels management 
techniques [23]. PB has been shown to promote the growth and germination of native species in some forest areas, although it is 
important to acknowledge that its effects can vary depending on the ecosystem and specific management practices [24,25]. PB timing 
is critical for ensuring its effectiveness and preventing disruption of biotic and abiotic processes [26]. Depending on climatic condi-
tions, low-severity fires can significantly influence soil properties and bacterial communities [27,28]. Therefore, it is imperative to 
determine the optimal timing for PB application across diverse soil and ecosystem types. While PB has proven to mitigate fire severity 
in the southern and western USA, its ecological effects in the Mediterranean Basin remain understudied [29]. Ongoing research is 
investigating the impact of fire on soil in this region, crucial for understanding ecosystem responses and facilitating recovery [30].

In this study, we aim to investigate the effects of an early, low-severity PB on soil properties and ecosystem processes in a semi-arid 
Mediterranean landscape. Our research is grounded in previous findings that suggest prescribed burning can have significant impli-
cations for soil physicochemical properties and biological activity. As other studies [31,32] have indicated, recovery of different soil 
parameters recovered in the short term (one year), due to the low soil temperatures recorded and the heat residence time of PB. 
Enhancing our understanding of PB in the Mediterranean Basin is crucial given the increased risk of wildfires in these regions exac-
erbated by global warming [33,34]. This consideration is crucial due to the high fire risk and recurrent fires in these ecosystems [35]. 
Specifically, we hypothesize that: i) Microbiota activity, as measured by SR, will be initially impacted by the fire, with a rapid recovery 
anticipated within the study period following a low-severity prescribed burn. This hypothesis is based on observations from similar 
ecosystems and previous research indicating the sensitivity of soil microbial communities to fire disturbance. ii) SWR is expected to 
increase, and SHC is expected to decrease initially due to ash generation. However, we anticipate a short-term recovery after the 
low-severity prescribed burn. Our hypothesis considers the influence of fire intensity on these soil properties and their subsequent 
recovery over time. iii) PB is anticipated to influence specific soil physicochemical parameters, including N and C. Even in the context 
of a low-severity burn, we expect alterations to these parameters between burned and unburned areas, potentially resulting in 
increased levels of both N and C in the soil throughout the study period [36,37]. By testing these hypotheses and comparing burned 
plots with control areas, we aim to provide insights into the immediate and subsequent impacts of low-severity prescribed burning on 
soil properties in a typically semi-arid Mediterranean landscape like in our study a Pinus halepensis Aiton forest with an understory 
predominantly composed of Macrochloa tenacissima (L.) Kunth. Our study seeks to bridge gaps in knowledge regarding the ecological 
effects of prescribed burning and inform management practices in fire-prone environments.

2. Materials and methods

2.1. Study area

The PB was carried out in May (spring) 2021 between the municipalities of Ayna and Molinicos (Albacete, SE Spain) by the forest 
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technicians staff of “Junta de Castilla La-Mancha (JCCM)” and “Gestión Ambiental de Castilla-La Mancha (GEACAM)” according to a 
regional burning plan. The study area encompasses an open forest dominated by Pinus halepensis Aiton, with an understory pre-
dominantly composed of Macrochloa tenacissima (L.) Kunth, commonly known as alpha grass. Scattered patches of Salvia rosmarinus 
(L.) Schleid. and Cistus clusii Dunal are also present within the landscape. This forest type is typical of the semi-arid Mediterranean 
landscape of the region, characterized by its susceptibility to small-scale runoff due to the presence of the Sierra del Segura mountain 
range. Although the study area does not feature steep slopes, it is sufficient to generate runoff, particularly during rainfall events. The 
landscape predominantly consists of grassland, reflecting the dominance of alpha grass. The region is highly vulnerable to desertifi-
cation, exacerbated by its location in the southeast of Spain, which is experiencing significant impacts from climate change [38]. The 
centroid in GPS coordinates (UTM zone 30N) of the burned area within the study area is 38.538, − 2.105, with 38.537, − 2.102 for the 
control (unburned) area (Fig. 1).

The research area is located at 781 m a.s.l. The climate there is Mediterranean with hot summers, according to the Csa Köppen- 
Geiger climate classification [39]. The mean annual temperature is 14.3 ◦C and the approximate rainfall is 406 mm per year [40], for 
the period 2001–2021. The smallest rainfalls are in July–August, with an average of 9.3 mm, and the highest are in March–April, with a 
precipitation of 55 mm.

The soils in the study area are from the Beti-Iberian limb of the “Cazorla Alcaraz-Hellín” and are predominantly linked with gaps of 
calcareous formations without advanced horizons, due to a semi-arid climate [41]. In addition, these soils are eutrophic cambisols 
(CMe), with a limited age, which show a non-significant pedogenesis deriving from some rocks of aeolian, colluvial, and alluvial 
origins. Horizon A has poor humus, while the cambic horizon (horizon B) is characterized by the formation of iron oxides and clay 
minerals [42].

2.2. Experimental design

2.2.1. Plots
We set up six square plots (30 m2) with similar conditions (ANNEX; S1) and a SE aspect. The orientation of a site is crucial for 

informed land management decisions [43]. It plays a pivotal role in determining the solar Three of them were installed where the PB 
was to be carried out (Burned = B), and the other three were outside the PB area (Control/Unburned = C). Each plot was separated by 
10 m. While we aimed to minimize spatial pseudoreplication [44], we acknowledge that having one burned and one unburned area 
with multiple plots within each does not constitute true independent replication. This limitation is considered in our analysis and 
discussion. Periodically in all the plots, four sampling times were scheduled for the physico-chemical soil parameters (29/04/21, 
12/05/21, 05/12/21, and 06/05/22) to collect data about annual variability, which is most important immediately after applying PB, 
in the first autumn, and 1 year after burning. These multiple time points allow us to explore the nuanced impact of prescribed burning 
on soil dynamics, including nutrient cycling, which exhibits notable seasonal variations [45]. SR, SHC, and SWR were measured every 
month until the 1-year period had ended. Furthermore, a pre-burning (pre-PB) sampling was conducted seven days before PB to 
characterize the pre-PB state.

For the preliminary soil characterization, soil physico-chemical properties were recorded before the PB (Table 1) in each plot. 

Fig. 1. A) Province of Albacete, Spain. B) Research area, Ayna Municipality in the Province of Albacete, Spain (in the 2021 spring). C) Area where 
was applicated PB (yellow). Plots on the burned area (burned = red), plots in the control area (un-burned = green).
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Checks were made to see if the main variables (SR, SWR, and SHC) did not differ between plots (ANNEX; S1).
We employed a random sampling approach within each zone to select spatially distinct sampling units [46] in each plot. In 

addition, we considered the temporal aspect by collecting data at a single time point, thereby avoiding the potential confounding 
effects of temporal variations [47].

Our research aimed to mitigate concerns regarding pseudoreplication by implementing a carefully considered study design that 
accounted for spatial and temporal dependencies within our data [48]. However, conducting in-situ analyses presents inherent 
challenges due to variations in geomorphological, environmental, and temporal conditions, which may impact the robustness of the 
data analysis. This challenge is consistent with findings from other studies [49,50].

2.2.2. Prescribed burn (PB)
The PB was carried out in May 2021 in the municipality of Ayna (Albacete) by GEACAM and JCCM staff members.
The PB was executed using horizontal fire lines, each separated by 1 m and arranged perpendicularly to one another. Our PB 

strategy involves initiating back-fires or tail-burns, meaning it moved against the wind direction, a method recommended by forest 
technicians in Castilla-La Mancha and supported by relevant studies [51,52]. This approach aims to advance the fire front while 
minimizing the duration of ground contact and mitigates the risk of high temperatures belowground [53].

The PB began in the study area at 1:30 p.m. CET with the following meteorological conditions: temperature (T◦): 24 ◦C; relative 
humidity (RH): 37 %; Wind speed (W): 0.83 m s− 1 SE.

The fuel model was 5 (height less 1.5 m flammable shrub) according to Rothermel [54] and Albini [55] which is analyzed prior to 
treatment. The main shrub layers were Macrochloa tenacissima, Cistus clusii, Salvia rosmarinus, Juniperus oxycedrus, and Genista scorpius 
under an open forest of Pinus halepensis. Fire spreads fundamentally through scrubland, according to the technical notebooks of the 
combustible model taken from the digital terrain model and the phytoclimatic atlas of Spain (MAPAMA, 2022).

To assess burning intensity, we installed six thermocouples (HOBO UX120 4-Channel Analog Logger dataloggers), which is a device 
that records data over time, typically provided by a thermal sensor. These thermocouples were strategically placed at four different 
levels: 2 cm below the ground surface, at the mineral soil surface, above the litterfall, and 30 cm above the ground. This setup allowed 
us to record the temperatures reached during the prescribed burns and to characterize the duration of heat residence in the soil.

During PB, temperatures ranged from 9.1 ± 2.3 ◦C to average temperature (T◦) and 32.1 ± 3.3 ◦C to maximum T◦ as -2 cm under 
mineral soil (overground); 17.1 ± 4.7 ◦C average T◦ and 38.5 ± 6.2 ◦C maximum T◦ on mineral soil (0 cm); 25.2 ± 3.7 ◦C average T◦

and 204.8 ± 11.5 ◦C maximum T◦ in the organic layer (litter); 28.8 ± 5.9 ◦C average T◦ and 247.5 ± 15.4 ◦C was the maximum T◦

above 30 cm of surface soil. Heat residence time on the ground did not exceed 100 ◦C and it was only above litter for 60 ± 0.6 s. The 
litter on the soil before the PB was minimal.

To characterize the fuel load burned, we set up 7 iron spikes of 1m per plot (21 in total) and measured the reduction of the canopy 
layer in depth after PB [56]. The canopy layer had been burned at 68.2 %.

2.2.3. Soil sampling and analysis
Each sample was made up of six subsamples; previously, we removed any element on the surface soil, like stones and litter. The 

subsamples were collected in the first 3–5 cm of soil on a 15 × 15cm2 (±1 cm of precision); at this depth, there is a maximum of 
microbiological activity [57]. In the laboratory, soil samples were passed through a 2 mm sieve and placed at 4 ◦C until the parameters 
were analyzed [58]. The composite sample values obtained were representative of each plot.

In May 2021, soil samples were collected to analyze soil physico-chemical properties. Three composite soil samples per plot were 
obtained from both the burned and control areas, ensuring comparable vegetation cover and soil type before PB (ANNEX 1). Each 
composite sample, considered representative of the entire plot for statistical analyses, was created by combining six randomly sub-
samples from different locations within the plot. The subsamples were collected using a defined 15 × 15 cm square, removing surface 
elements such as litter and stones. The top 2–3 cm of soil, where biological activity is highest, were then carefully excavated using a 
trowel with markings (1 cm precision) [59]. According to our experimental design, 72 soil samples (3 per plot x 3 plots x 2 treatments x 
4 dates) were collected. Eighteen samples were obtained seven days before PB, another 18 were collected 7 days after PB, followed by 
18 samples after 224 days of PB, and finally, 18 samples 1 year after burning. The selection of spring and autumn collection periods was 
crucial as it coincided with significant changes in vegetation and the seasonal dynamics of the plant-soil interface, when is a greater 
movement in soil nutrient cycling [60].

Our sampling approach aimed to capture variations in soil properties associated with prescribed burning over different time in-
tervals. By collecting samples before burning and at three distinct post-burning time points (7 days, 224 days, and 1 year), our study 
primarily focuses on the immediate and short-term effects of prescribed burning on soil physico-chemical properties. The careful 
selection of sampling locations and timing enhances the robustness and reliability of our findings, providing valuable insights into the 

Table 1 
Result of the two-way ANOVA (Treatment and Date) for SR CO2 flux.

Sum Sq Mean Sq F Value P-value

Treatment 0.08 0,08 0.16 0.69
Date 2.66 2.66 4.78 0.03*
Treatment: Date 0.02 0.02 0.03 0.84

* Significance at a significance level of p < 0.05
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dynamic changes in soil properties in the aftermath of prescribed burning events.
The soil was characterized by an analysis of the physico-chemical properties with the most relevant parameters according to other 

studies [61,62]. The analyzed parameters were: texture (clay, silt, and sand contents, % wt. wt− 1.) [63]; total nitrogen (N, %) [64]; 
available phosphorus (P, ppm) [65]; calcium (Ca2+, meq. 100 g− 1); potassium (K+, meq. 100 g− 1); magnesium (Mg2+, meq. 100 g− 1); 
pH; electrical conductivity (EC, mhos cm− 1) by deionized water [66]; total soil organic matter (SOM, %); total soil organic carbon 
(Corg, %) [67].

2.2.4. Soil respiration (SR) by CO2 flux, soil hydraulic conductivity (SHC) by infiltrate rates and soil water repellency (SWR) by water drop 
penetration time (WDPT)

We established 18 respiration points, three in each plot: nine B plots (SRburn) and nine others in the C plots (SRcontrol). In 
consideration of the irregular terrain at each sampling point, a PVC tube (20.7 cm diameter and 10 cm height) was employed to 
establish each measurement station. The collar height was measured post-burial, consistently targeted at a depth of 3–5 cm, to mitigate 
measurement errors in CO2 flux. This approach aimed to enhance the precision of our flux measurements and correct for topographical 
variations in the study area. The SR variable was monitored using a portable analyzer in a closed system composed of a CO2 analyzer. 
This method uses continuous measurements (every second) from the Infrared Gas Analyzer (IRGA) unit to measure the CO2 con-
centration of a gas sample with a large hemispherical chamber: CFLUX-1 Automated Soil CO2 Flux System (CFLUX-1). The chamber 
measured ambient temperature at the same time as respiration. Measurements were taken immediately before and after the PB and 
every month until the 1-year period ended. To reduce influences on diurnal SR fluctuations, all measurements were made between 
09:00 and 15:00. We monitored the ambient temperature evolution using a CO2 flow chamber, recording the mean temperature in both 
B and C plots. Notably, one measurement was taken on a rainy day (ANNEX; S2).

In total, 168 measurements were conducted (two per plot), one day each month until the year of study, with the same dates as SR, 
for SHC using a mini-disk infiltrometer, with each measurement lasting for 300 s, and SWR by WDPT. For the statistical analysis, we 
differentiated B and C plots as a factor for each variable, SHC, in the B (SHCburn) and C (SHCcontrol) plots.

With the infiltration rate, the runoff coefficient (k) was considered, which deals with the relation between the sheet of water that 
precipitates on a surface and the sheet of water that runs off the surface. The infiltration rate was expressed as m hr− 1 comparing B and 
C plots. The value of parameter k vastly varies depending on the land-use type [68]. At the same time, we analyzed SWR, which was 
measured by WDPT. In addition, it is one of the most commonly used techniques to analyze the SWR degree [69]. SWR is quantitatively 
classified when one drop takes longer than 5 s to penetrate it [70]. Repellency classes were based exclusively on the time it took one 
drop to completely penetrate soil: class 0 is not water-repellent (infiltration of a drop at t < 5 s); class 1 is slightly water-repellent (5–60 
s); class 2 is strongly water-repellent (60–600 s); class 3 is severely water-repellent (600s -1hr); classes 4–6 are extremely 
water-repellent as follows: class 4 (1–3 h); class 5 (3–6 h); and class 6 (>6 h).

2.3. Statistical analysis

Statistical analyses were conducted to assess the distribution and homogeneity of our data. Shapiro-Wilk tests were performed to 
assess normality, and Bartlett tests were used to verify homoscedasticity. For the SHC values, logarithmic transformations were applied 
to improve normality, and Anderson-Darling tests were conducted. A one-way repeated measures ANOVA was performed for soil 
analysis, and two-way ANOVAs were applied to evaluate changes in each variable after PB treatment, with time and treatment as 
factors. Statistical significance was set at p < 0.05. Post-hoc analyses of physico-chemical soil parameters were conducted using 
Fisher’s independent least significant difference (LSD) test. Pearson’s correlation test was used to analyze the relationships between 
SWR and SHC. To address the issue of pseudoreplication and data dependency, mixed-effects models were employed to rigorously 
assess treatment effects over time. This approach accounted for the lack of independence among plots within the burned and unburned 
areas. Correlation analysis was utilized to elucidate relationships between selected variables, while principal component analysis 
(PCA) was used to uncover underlying patterns. The mixed-effects models provided a robust framework for assessing the temporal 
effects of the treatment. Statistical analyses were conducted using Rstudio Desktop 2022.07.2 + 576 and IBM SPSS Statistics 24.

3. Results

3.1. Soil physico-chemical analysis

Burning at either time after the PB did not exert significant effects on soil pH, EC, K, Ca, Na, Mg, or soil texture (ANNEX, S3). 
However, significant differences were observed in SOM, N, P, and Corg. Notably, within the immediate post-burn period of 7 days, all 
aforementioned parameters exhibited significant changes, yet subsequently returned to non-significant differences between treat-
ments, both temporally (days post-burn) and following a one-year observational period (ANNEX; S4).

3.2. Soil respiration (SR) in a CO2 flux chamber

On a specific rainy day, measurements were taken from plots, revealing a significant disparity in SR compared to other sampling 
occasions (denoted by bars with ’c’ or ’C’). Consequently, this outlier was excluded from further analysis to ensure robust assessment 
of significant differences. Notably, SR exhibited no statistically significant variance between control (SRcontrol) and B plots, as 
indicated by an F-statistic of 0.16 and a p-value of 0.69 over the study period. However, significant disparities were observed across 
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different measurement dates (seasons), with a p-value <0.05 (Table 1 and Fig. 2). Maximum SR levels were notably recorded during 
spring, while a discernible decline in SR was observed during periods of extreme temperatures, particularly in colder seasons. Sub-
sequently, Pearson’s correlation test revealed a statistically significant positive correlation between SR and T◦, with a p-value <0.05.

3.3. SWR and SHC responses

No statistically significant variances were detected for SHC (F-statistic = 0.06, p-value = 0.80) and SWR (F-statistic = 0.17, p-value 
= 0.68) between B and C plots, nor across different seasons throughout the study year. Over the course of the one-year study period, 
SHC exhibited lower values during summer and early winter but demonstrated an increase during autumn and late winter, reaching its 
peak 148 days post-prescribed burn (PB) (Fig. 3). Conversely, SWR attained its maximum during winter, specifically 224 days post-PB, 
and exhibited a subsequent increase in spring following the one-year study period (Fig. 4). Additionally, a negative correlation was 
observed between SHC and SWR based on Pearson’s correlation test (corr. = − 0.43; p-value = 0.69). In ANNEX, S5, the monthly 
evolution of mean precipitation throughout the study duration is depicted. Particularly noteworthy is the substantial increase in 
maximum precipitation observed during the second spring, occurring one year after the prescribed burning event, with levels ranging 
from 80 to 100 mm. This contrasts markedly with the comparatively lower values recorded during the first spring, where precipitation 
levels hovered around 40 mm. These discernible variations in precipitation between the two springs offer valuable contextual insights 
that may help elucidate observed differences in soil water repellency, as discussed in subsequent sections.

Fig. 5 illustrates the cumulative frequency of SWR by contrasting treatments (B vs. C) across different repellency classes. Notably, 
class 3 exhibited higher occurrence in B plots compared to C plots, although the disparity was not statistically significant (p-value =
0.68).

3.4. Interaction and correlation between treatment and time

The correlation matrix reveals significant correlations among the variables. Notably, there are strong positive correlations between 
N and P (r = 0.88) and between SOM and Corg (r = 0.95). Conversely, there is a negative correlation between SHC and SR (r = − 0.89) 
(Fig. 6).

The PCA results demonstrate the variance explained by each principal component. The first principal component (PC1) accounts for 
85.7 % of the total variance, followed by PC2 15.1 %). PC1 primarily reflects the variability in WDPT, while PC2 capture variations in 
SR and SHC. The PCA biplot, shown in Fig. 7, illustrates the loadings of each variable on the principal components.

The linear mixed-effects models provide insights into the effects of treatment and time on the response variables. For example, the 
model for SOM indicates a significant interaction between treatment and date (t = − 0.62, p > 0.05). Similarly, the models for N, C, P, 
SHC, WDPT, and SR show significant fixed effects for treatment, date, or their interaction. These findings are illustrated in ANNEX; S6, 
which displays the observed data points and fitted lines for each variable across different treatment levels and dates.

Fig. 2. Temporal evolution of the SR rates in the C and B plots (μmol CO2 cm − 2 s-1). The SRcontrol (green bars) corresponds to the C plots and the 
SRburn (yellow bars) to the B plots. There are mean values and standard deviations for the hanging bars. Lowercase letters (a, b, or c) indicate 
significant differences between temporal measurements (taken at each time) in the C plots. Capital letters (A, B, or C) denote significant differences 
among sampling dates (temporal measures) between plots. One measure was taken on a rainy day. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.)

Á. Fajardo-Cantos et al.                                                                                                                                                                                              Heliyon 10 (2024) e37948 

6 



4. Discussion

Our study aimed to investigate the impacts of low-severity PB on soil properties and ecosystem processes in a semiarid Spanish 
forest ecosystem. The findings reveal nuanced dynamics influenced by both the prescribed burn treatment and broader environmental 
factors.

The low-severity PB conducted adhered to established guidelines, ensuring temperatures remained below 400 ◦C with minimal soil 
heat residence time [71–73]. Despite the absence of significant changes in soil pH, EC, K, Ca, Na, Mg, or soil texture following the PB, 
notable alterations were observed in several key parameters [74,75]. Similar results were reported in a review by Certini (2005), who 
found that low-intensity fires often result in minimal changes to soil pH and texture due to limited heat penetration into the soil profile 
[76,77].

The prescribed burn led to a partial combustion of the OM layer, depositing charred residues on the soil surface. This process 
significantly increased SOM, Corg, N, and P levels immediately post-burn, with significant differences observed between B and C plots 
[78–80]. These findings are consistent with those of Raison (1979), who noted that low-severity fires often enhance nutrient avail-
ability by releasing nutrients from burned vegetation and converting organic forms to inorganic ones [81].

Over time, soil P levels tend to normalize due to plant uptake and leaching, while microbial community shifts further influence P 
availability [82,83]. Similarly, increased N levels post-fire result from NH4-N-rich ash deposits and favorable mineralization condi-
tions. However, the absence of significant differences in N levels between B and C plots after one year suggests that short-term pro-
cesses like plant uptake and microbial immobilization may have contributed to nitrogen reduction [84]. This aligns with findings by 
Pereira et al. (2018), who observed similar transient increases in soil nutrients following fire disturbances [85].

Fig. 3. Temporal SHC evolution by infiltration rates in the C and B plots (m hr− 1). SHCcontrol (green bars) corresponds to the unburned/C plots and 
SHCburn (yellow bars) to the B plots. Mean values and standard deviations (hanging bars). (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.)

Fig. 4. Temporal SWR evolution by WDPT in the C and B plots (drop s− 1). WDPTcontrol (green bars) corresponds to the unburned/C plots and 
WDPTburn (yellow bars) to the B plots. Mean values and standard deviations (hanging bars). (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.)
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SR exhibited complex seasonal variations influenced by microclimatic factors beyond temperature alone. While a positive corre-
lation with temperature aligns with expectations [86], observed reductions in SR during hot summer periods suggest additional factors 
at play. Long-term UV exposure and temperatures above 25 ◦C can suppress SR due to microbial inhibition [87]. Conversely, frost 
events in winter could further depress bacterial activity, resulting in minimum SR values [88]. These patterns are comparable to those 
reported by Conant et al. (2011), who demonstrated that extreme temperatures and moisture conditions significantly modulate soil 
microbial activity and respiration rates [89].

Our study highlights the critical role of seasonal rainfall and intrinsic soil moisture in shaping SR dynamics. While detailed pre-
cipitation data were available, the lack of specific information on fuel and soil moisture hinders a comprehensive evaluation. 
Nonetheless, insights from previous studies underscore the significance of these factors in SR dynamics [90,91]. Even in arid regions, 
SR is influenced not only by temperature but also by soil moisture content, significantly affecting microbial activity and SR dynamics 
[92–95] Understanding these interplays is vital for accurate ecosystem assessments [91,92].

Contrary to expectations, no significant differences in SWR were found between B and C plots, with notable variations in the 
second-year spring coinciding with increased precipitation [96–98]. The observed SWR surge may be attributed to enhanced organic 
matter decomposition, microbial activity, and seasonal dynamics influenced by precipitation [99]. Conversely, SHC exhibited pro-
nounced seasonal fluctuations, with higher values in colder, wetter seasons and lower values in hotter, drier periods. The negative 
correlation between SHC and SWR suggests complex interactions between soil physical properties and water infiltration capacity [100,

Fig. 5. Accumulative SWR frequency by WDPT (drop s− 1) in the C and B plots. Repellency classes 1–3.

Fig. 6. Correlation matrix between variables with significant differences between treatments. Higher numbers and more intense blue a direct 
positive relationship, lower numbers (and negative) with more intense red colors. (MO = ) SOM: The total soil organic matter; Corg: The total soil 
organic carbon; N: The total nitrogen; P: The available phosphorus. Soil respiration (SR); soil hydraulic conductivity (SHC) Water drop penetration 
time (WDPT). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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101]. Minimal infiltration differences were noted between the B and C plots, although significant seasonal intra-annual variability was 
observed [102]. Our study provides valuable insights into the nuanced interplay of climatic and ecological factors on soil water 
repellency, emphasizing the need for comprehensive analyses that consider both prescribed burning effects and broader environmental 
influences [103,104]. Similar findings were noted by Doerr et al. (2006), who reported seasonal variability in soil hydraulic properties 
following fire events [105–107].

The correlation matrix revealed significant relationships among various soil properties and ecosystem processes. For instance, a 
positive correlation was observed between SOM and nutrient content (N, P, and Corg), indicating potential synergistic effects on soil 
fertility and ecosystem productivity [108]. Conversely, SHC negatively correlated with soil texture, suggesting a complex interplay 
between soil physical properties and water infiltration capacity [109,110]. These correlations underscore the interconnected nature of 
soil variables and highlight the importance of considering multiple factors in ecosystem assessments. PCA identified distinct patterns of 
variance in the dataset, with principal components capturing underlying gradients in soil properties and environmental conditions. 
Component loadings indicated that PC1 primarily represented variation in nutrient content and organic matter levels, while PC2 
reflected variability in soil texture and moisture regimes [111–113]. These findings align with prior research, highlighting the utility of 
PCA in elucidating complex ecological patterns [114,115]. Mixed-effects models revealed significant treatment effects on variables 
such as SOM, N, P, and Corg, indicating the impact of fire on soil nutrient dynamics and carbon cycling [116]. Temporal trends showed 
transient treatment effects, underscoring the dynamic nature of ecosystem responses to fire disturbance [117]. These results emphasize 
the importance of long-term monitoring to assess recovery trajectories and inform management strategies, as recommended by 
Shakerby R.A (2011) and Alcañiz et al. (2018) [118,119].

In summary, our study elucidates the complex interplay between prescribed burning, environmental factors, and soil properties in 
semiarid forest ecosystems. The observed dynamics underscore the need for holistic approaches integrating multiple factors to 
accurately assess ecosystem responses to fire disturbance. Future research should focus on long-term effects of PB recurrence and its 
implications for ecosystem functioning and management strategies.

Our research aimed to address concerns regarding pseudoreplication; however, we recognize that our design, with one burned and 
one unburned area and multiple plots within each, still presents a limitation. Although we attempted to reduce pseudoreplication 
through plot separation, the lack of true independent replication is acknowledged. We utilized mixed-effects models to account for the 
lack of independence among plots and performed checks for normality and homogeneity of variance to justify the use of ANOVA. 
Despite these measures, future studies should incorporate multiple independent treatment areas to ensure true replication and enhance 
statistical robustness.

5. Conclusions

Our study demonstrates the resilience of semiarid forest ecosystems to low-severity prescribed burns, with most soil properties 
exhibiting no significant changes one-year post-burn. Initial variations in specific physicochemical properties were primarily due to 

Fig. 7. The figure displays the principal component analysis (PCA) plot illustrating multivariate patterns in the dataset. Dim1 = PC1; Dim2 = PC2. 
The squared cosine (cos2) represents the contribution of each variable to the principal component (PC). It indicates how well each variable is 
represented by the PC. (MO = ) SOM: The total soil organic matter; Corg: The total soil organic carbon; N: The total nitrogen; P: The available 
phosphorus. Soil respiration (SR); soil hydraulic conductivity (SHC) Water drop penetration time (WDPT).
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organic matter deposition and ash percolation. Nutrient dynamics analysis revealed increased phosphorus availability and heightened 
microbial activity. Interestingly, there were no significant differences in SWR and SHC between burned and control plots, although an 
inverse correlation between SHC and SWR over time suggests complex seasonal and microbial interactions. Soil respiration showed no 
significant short-term differences, with variations largely linked to temperature fluctuations.

Effective prescribed burn implementation necessitates meticulous planning, considering factors such as recent rainfall, vegetation, 
and soil type. Our findings highlight the importance of informed decision-making in forest management and wildfire prevention. 
Prescribed burning proves to be a valuable tool for wildfire prevention and sustainable forest management in semiarid landscapes. 
Continued research is essential to refine management strategies and enhance ecosystem resilience.

Data availability

Sharing research data helps other researchers evaluate your findings, build on your work and to increase trust in your article. We 
encourage all our authors to make as much of their data publicly available as reasonably possible. Please note that your response to the 
following questions regarding the public data availability and the reasons for potentially not making data available will be available 
alongside your article upon publication.

Has data associated with your study been deposited into a publicly available repository?
No
Please select why. Please note that this statement will be available alongside your article upon publication. as follow-up to "Data 

Availability Sharing research data helps other researchers evaluate your findings, build on your work and to increase trust in your 
article. We encourage all our authors to make as much of their data publicly available as reasonably possible. Please note that your 
response to the following questions regarding the public data availability and the reasons for potentially not making data available will 
be available alongside your article upon publication.

Has data associated with your study been deposited into a publicly available repository?”
Data will be made available on request.

CRediT authorship contribution statement
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in semiarid south-eastern Spain, J. Arid Environ. 75 (2011) 1254–1261, https://doi.org/10.1016/j.jaridenv.2011.03.004.
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[117] J.A. González-Pérez, F.J. González-Vila, G. Almendros, H. Knicker, The effect of fire on soil organic matter—a review, Environ. Int. 30 (2004) 855–870, 

https://doi.org/10.1016/j.envint.2004.02.003.
[118] R.A. Shakesby, Post-wildfire soil erosion in the Mediterranean: review and future research directions, Earth Sci. Rev. 105 (2011) 71–100, https://doi.org/ 

10.1016/j.earscirev.2011.01.001.
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