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Natural proteins are often only slightly more stable in the
native state than the denatured state, and an increase in envi-
ronmental temperature can easily shift the balance toward
unfolding. Therefore, the engineering of proteins to improve
protein stability is an area of intensive research. Thermostable
proteins are required to withstand industrial process condi-
tions, for increased shelf-life of protein therapeutics, for
developing robust ‘biobricks’ for synthetic biology applications,
and for research purposes (e.g., structure determination). In
addition, thermostability buffers the often destabilizing effects
of mutations introduced to improve other properties. Rational
design approaches to engineering thermostability require
structural information, but even with advanced computational
methods, it is challenging to predict or parameterize all the
relevant structural factors with sufficient precision to antici-
pate the results of a given mutation. Directed evolution is an
alternative when structures are unavailable but requires
extensive screening of mutant libraries. Recently, however,
bioinspired approaches based on phylogenetic analyses have
shown great promise. Leveraging the rapid expansion in
sequence data and bioinformatic tools, ancestral sequence
reconstruction can generate highly stable folds for novel ap-
plications in industrial chemistry, medicine, and synthetic
biology. This review provides an overview of the factors
important for successful inference of thermostable proteins by
ancestral sequence reconstruction and what it can reveal about
the determinants of stability in proteins.

Native protein structures are complex three-dimensional
arrangements of functional groups, which have evolved to
carry out discrete biological functions that almost always
depend on the maintenance of specific spatial relationships.
However, native protein structures typically represent a
metastable balance between conformational flexibility and
stability that can be disturbed by environmental factors such as
heat, organic solvents, chaotropic agents, and pH (1). Both
enthalpic and entropic factors determine how a linear polymer
of amino acid residues folds reproducibly into a specific
structure, including intramolecular interactions between
different structural elements and the degree of solvation of
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polar and hydrophobic regions of the structure (2). Any
change to the sequence of a protein can affect these factors and
therefore alter the ability of a polypeptide chain to fold into a
functional structure.

Nature has explored only a small proportion of the available
sequence space, so there is much scope to engineer novel
proteins with useful properties. However, to be useful for in-
dustrial applications, most novel proteins must fold easily into
stable domains (3, 4) (an exception being intrinsically disor-
dered proteins), and so, an understanding of factors that un-
derpin stable structures is essential for effective protein design.
Studies have shown that more robust protein scaffolds are
better able to accept potentially destabilizing mutations that
confer novel activities or properties (5, 6). Indeed the robust-
ness of different folds is a key factor behind the power law
describing the extent to which different folds have been
exploited in evolution: inherently stable folds are observed
more commonly (7).

Enzymes represent a particular case where evolution has
produced versatile and specific catalysts that can lower the
activation energy of chemical reactions. Just as in nature, in
industry, enzymes have the potential to improve the efficiency
and sustainability of many chemical processes. Increasing the
operational temperature of chemical reactions improves yield
and reduces waste by enhancing reaction rates, improving
reagent solubility and reducing microbial contamination;
however, most native enzymes have limited stability even un-
der their normal physiological conditions and are rapidly de-
natured at elevated temperatures. Since the biocatalyst (i.e., the
enzyme or a cell containing it) is often the most expensive part
of a biocatalytic process, to be commercially competitive
against chemocatalysis, the enzymes used need to have long
operational lifetimes (3). While enzymes from thermophilic
organisms are one option, it is rarely possible to find an
enzyme in a thermophile with the catalytic profile of interest.
Therefore, the operational stability of ‘mesophilic’ enzymes
usually needs to be extended, and intensive efforts over the last
�40 years have been put toward engineering enzymes to be
more thermostable.

Industrial biocatalysis is not the only motivation for stabi-
lizing proteins however. Thermostable enzymes have also
found wide application in basic research, for example, the PCR
is only possible due to the use of thermostable polymerases,
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originally sourced from thermophiles, which enable the itera-
tive replication and amplification of specific DNA templates.
The development of numerous protein therapeutics has pro-
vided added impetus for engineering other types of protein for
thermostability. Thermostable proteins have a longer shelf life
and can be used in a wider range of therapeutic contexts than
less stable proteins. More recently, the emergence of synthetic
biology has expanded the use of independently folding and
stable protein domains as biobricks in bioinspired devices. Yet
another motivation for stabilizing proteins by engineering is
that more stable homologs of proteins are often needed for
structural and mechanistic studies, since they are typically
more easily expressed and purified, and stand up better to
biophysical characterization.

While analysis of proteins from thermophiles has provided
valuable information on factors that can stabilize particular
protein folds, not all proteins of interest have thermophilic
homologs and it has become clear that the success of stabili-
zation strategies is often dependent on the structural context.
Good structural data are important for most rational and
computational approaches to enhancing protein thermosta-
bility. However, structures are not always available, and the
alternative, ‘blind’ approach of directed evolution usually re-
quires intensive characterization of large libraries of mutants.
Fortuitously, another source of inspiration from nature has
emerged in recent years, namely the resurrection of thermo-
stable ancestral enzymes, which alongside consensus ap-
proaches, leverages the huge expansion in available sequence
from genome sequencing projects. This review will briefly
summarize traditional approaches to engineering proteins for
thermostability, then explore the use of ancestral sequence
reconstruction (ASR) as an alternative strategy for engineering
and elucidation of the determinants of thermostability.

Conventional approaches to the engineering of
thermostability

The free energy difference between the folded and unfolded
states of a protein is only �5 to 15 kcal/mol (1) and often only
a few interactions are needed to stabilize a protein. However,
determining the appropriate changes to make, without un-
wanted effects on protein function, has been an ongoing
challenge. Figure 1 compares the alternative approaches to
engineering thermostability in terms of information required,
typical screening effort required, and the extent of sequence
space that can be sampled.

Rational and computational design

Rational design methods have been used most commonly
and have involved designing in improved hydrophobic core
packing, salt bridges, and disulfide bonds. Alternatively con-
straining the most flexible regions of proteins by shortening
loops, replacing glycine, and introducing proline residues has
been useful. Critically, all of these approaches rely on having
structural information of the protein of interest and involve
some hypothesis as to the basis to the putative stabilization
effect.
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The success of different rational approaches will vary with
the structural context presented by an individual protein and
be affected by the complex landscape of epistatic interactions.
Recently, rational design has been facilitated by numerous
computational tools (reviewed by (6, 8–18), which have ach-
ieved notable successes (e.g., (19) where the thermostability of
an alcohol dehydrogenase was increased to �94 �C). Many
computational tools rely on machine learning and extensive
databases for training data. However, in such cases, the quality
of the data available determines the accuracy of such tools and
the available data are biased toward particular types of muta-
tion (10). Current computational tools have difficulty
modeling small but often critical alterations in stability (2, 20).
Expansion and standardization of the information available
from databases, plus high throughput approaches that can
afford comprehensive data obtained under comparable con-
ditions, such as deep mutational scanning and analysis of
combinatorial data (21), may facilitate better predictions by
augmenting training data. Artificial intelligence approaches,
such as AlphaFold (22), should also make the prediction and
design of protein stability more robust and are likely to lead to
another step change. Importantly, AlphaFold predicts struc-
tures that can then be used as inputs for other methods that
require them, such as PROSS (23).
Directed evolution

Directed evolution emerged in the 1990s as a useful ‘blind’
or ‘brute force’ technique for stabilization of proteins that was
independent of any prior hypothesis concerning the mecha-
nism of stabilization. It mimics the process of natural selection
by using iterative rounds of genetic diversification (such as
random mutagenesis or recombination of related sequences)
combined with phenotypic screening and selection for high
thermal stability and other required properties. In the absence
of structural information on which to base hypotheses,
random mutagenesis can be used to find residues that deter-
mine stability, which can then be targeted by saturation
mutagenesis.

Directed evolution approaches employing entirely random
methods for sequence diversification require large screening
efforts to detect useful mutants (Fig. 1). While it is possible to,
for example, assess activity at a stringent temperature in high
throughput fashion, more detailed analysis of melting tem-
peratures (Tms) or temperatures at which half the population
of proteins remains intact or active (T50 values) is resource
intensive. Therefore, strategies that focus directed evolution
efforts on smaller, more fertile areas of sequence space have
been sought. The focus has been on identifying flexible regions
to target (e.g., by iterative saturation mutagenesis combined
with B-factor analysis (24)) or using structure-guided
computational approaches (25, 26).

Any given random mutation is more likely to be deleterious
or neutral than beneficial (27), which places a limit on the
number of random point mutations (typically one to two,
maximum) that can be introduced per sequence, per iteration.
Therefore, only a relatively small area of sequence space



Figure 1. Comparison of approaches to engineering thermostability, in terms of typical screening effort (library size) and information required,
and the extent of sequence space that can be sampled. Approaches are grouped broadly into directed evolution, rational (including computer-aided)
design, and phylogenetic methods (i.e., evolutionary methods that rely on data mining of sequences in natural evolutionary trees as opposed to directed
evolution experiments). Note that there is some overlap between approaches (e.g., site saturation mutagenesis can be used for rational design as well as
directed evolution strategies; computational methods can be used to augment directed evolution and phylogenetic approaches), and different methods are
often combined.
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around the starting protein can be explored by point muta-
genesis, due to the likelihood that deleterious mutations will
accrue (Fig. 1). However, directed evolution approaches based
on recombination of naturally occurring sequences can sample
a larger volume of sequence space. Such libraries are enriched
in functional mutants since, almost always, the residue intro-
duced at a given position is found naturally, that is, has been
‘vetted’ by evolution in at least one of the parents (not elimi-
nated by purifying selection). However, regions of homologous
proteins that have diverged in different evolutionary branches
and acquired different epistatic relationships with other
structural elements in a protein fold, can be incompatible
when fragments of homologs are recombined, leading to loss
of stabilizing interactions or introduction of steric clashes or
electrostatic repulsion.

Computational approaches have been applied to improve
directed evolution strategies, just as for rational design. In
particular, structure-based approaches have been used to in-
crease the average structural integrity of mutant libraries
created by recombinatorial evolution. Chief amongst these
approaches is SCHEMA, which uses the sequences of ho-
mologous proteins and a representative structure to estimate
optimal positions for recombination to minimize the disrup-
tion of interactions that stabilize the protein fold (28, 29). In an
extension of this approach, Gaussian processes, a Bayesian
learning technique that was trained on 242 measurements of
J. Biol. Chem. (2022) 298(10) 102435 3
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individual cytochrome P450 chimeras generated by a
SCHEMA approach, was used to model the stability landscape
of chimeric cytochrome P450 libraries and allowed the iden-
tification of a mutant that showed a further 5.3 �C increase in
T50 (26). Importantly, mutants identified by these ‘augmented’
recombination approaches differ from the starting points in
dozens to hundreds of positions, meaning they would not be
readily identified by conventional rational or random point
mutagenesis methods. In that respect, they are analogous to
extensive fold optimization approaches enabled by Rosetta and
other recent computational approaches to protein (re)design.
The difference is that mutation and selection is used as the
‘algorithm’, leveraging evolutionarily proven folds found in
nature as templates.

The consensus approach

Over the last �25 years, alternative approaches to leveraging
the information implicit in natural evolutionary pathways for
engineering thermostability have emerged, namely the
consensus approach and ASR. Assuming the function of a
protein confers a growth advantage on the organism, natural
selection will tend to select for stabilizing residues and against
residues that destabilize the structure. Thus, consensus resi-
dues are at least unlikely to be frankly destabilizing, unless they
confer a selection advantage that is independent of, and greater
than, the destabilizing effect. Therefore, consensus residues
that are at least marginally stabilizing would tend to dominate
a position over long-term evolution (30, 31). Many studies
have taken advantage of this approach to improve stability by
introducing ‘consensus’ residues at one or more positions in a
protein of interest (e.g., (30, 32–38); Figure 1). One advantage
of this strategy is that it only requires a set of homologous
sequences. However, the inference of which residues represent
the ‘consensus’ can be heavily biased by imbalances in the
amount of sequence information available for certain organ-
isms relative to others. Consequently, it can be hard to
dissociate stochastic or historical effects from the true
consensus residues at a given position.

ASR

ASR has frequently yielded ancestor proteins that are more
thermostable than their extant counterparts, providing some
support for the hypothesis that primordial organisms were
thermophilic. The earliest example was the inference of an
ancestral sequence of 3-isopropylmalate dehydrogenase
(IPMDH) from the last universal common ancestor (39). Seven
ancestral residues introduced into an extant IPMDH found in
an extreme thermophile, Sulfolobus strain 7, increased the
thermostability of the extant form, supporting the idea that last
universal common ancestor was a thermophile. Multiple
complete elongation factor Tu (EF Tu) proteins from Pre-
cambrian (>�500 million years ago; Ma) bacteria (40) were
inferred by ASR using a phylogeny consisting of forms found
in mesophilic, thermophilic, and hyperthermophilic bacteria.
The EF Tu inferred at the node representing the most recent
common ancestor of mesophilic bacteria was resurrected and
4 J. Biol. Chem. (2022) 298(10) 102435
found to have an optimal substrate-binding temperature of
�55 �C compared to �37 �C for an extant EF Tu from mes-
ophilic bacteria. The most basal ancestor of all lineages showed
a comparable optimal temperature for substrate binding (�65
�C) to extant forms from thermophiles. Analysis of seven in-
termediate ancestors revealed a trend of progressively
increased thermostability going back in time from 0.5 to 3.5
billion years ago (Ga); the Tm values of the youngest ancestors
were �44 to 48 �C compared to �65 to 74 �C for the oldest
ancestors (41).

This foundational work was followed by similar studies in
which sets of ancestral proteins of various evolutionary ages
were resurrected and assessed for their thermostability as a
means of assessing the experimental support for the existence
of a thermophilic universal common ancestor (42–44), un-
derstanding the evolution of thermophily (45–47), and
exploring the properties of ancestral proteins (48, 49). These
studies have covered a broad range of protein families,
phylogenetic taxa (bacteria and eukarya; including plants,
animals, and fungi), and evolutionary ages (from a few hun-
dred thousand years up to four billion years old). The pre-
vailing observation has been that the mesostable proteins in
existence today evolved from more thermostable forms. En-
hancements in stability of ancestral proteins over directly
related extant forms have ranged from a few degrees to more
than 40 �C (Fig. 2; Table 1). However, it is also clear from
recent bacterial phylogenies (45, 50) that thermophily may
also have developed de novo in specific lineages of microor-
ganisms that have evolved to fill niches in high temperature
environments.
The use of ASR as an engineering technique

The observation that ancestral proteins were frequently
more thermostable than their extant descendants (39, 41, 42,
44, 45, 51–53) inspired the use of ASR as a tool for engineering
thermostable proteins, particularly for industrial biocatalysis.
The earliest studies used the ancestral mutation method
(Fig. 1), where a subset of residues from the inferred ancestor
was introduced into an existing protein to alter its properties
(51, 54). The T50 of an IPMDH from Thermus thermophilus
was enhanced by 3.2 to 5.5 �C by introducing four residues
from the IPMDH inferred in the common ancestor of Bacteria
and Archaea (51, 55). Likewise, the Tm of β-amylase from
Bacillus circulans was enhanced by 0.2 to 3.2 �C by intro-
ducing seven residues from the most ancient bacterial β-
amylase (54).

This ancestral mutation method was further developed by
Cole and Gaucher in the evolution-guided engineering
approach, Reconstructing Evolutionary Adaptive Paths (REAP)
(56), whereby phylogenetic and sequence analysis was used to
identify amino acid substitutions in evolutionary branches that
are likely to alter or enhance protein properties. REAP has also
been promoted as a method for identifying ancestral residues
that enhance thermostability (57); however, to date, there are
no explicit examples of its implementation for this purpose to
our knowledge.



Figure 2. Changes in experimentally determined thermostability (T50 or Tm) versus estimated evolutionary age observed in resurrected ancestors
compared to their related extant forms. An overall trend is seen toward greater thermostability in older ancestors but the magnitude of the effect differs
markedly between different proteins and with the overall stability of the extant form. The data used in this analysis are from the studies listed in Table 1;
only those that proposed an estimated age for respective ancestors are shown here. Different colors represent individual studies and for each phylogeny,
directly related lineages are connected by solid lines. Sources in the order shown in the figure are: (41–43, 45, 47–49, 63, 64, 97, 109, 115–122).
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More recent studies, facilitated by inexpensive gene syn-
thesis, have resurrected complete ancestral forms for devel-
oping stabilized proteins. Some reports have focused on a
specific application, such as using an ancestral coagulation
factor VIII in infusion therapy to treat hemophilia (58), an
ancestral phenylalanine/tyrosine ammonia-lyase for supple-
mentary treatment of hereditary tyrosinemia (59) or an
ancestral spiroviolene synthase to more easily obtain a crystal
structure to elucidate structure and mechanism of the extant
form (60). However, other studies have been undertaken on
protein families generally appreciated for their potential as
biocatalysts in chemical and pharmaceutical industries,
bioremediation, biomass decomposition, biosensing, and cell
imaging, amongst others (61–64). As with rational and
directed evolution approaches, ASR has been incorporated
into computational design algorithms (23).
The ASR process and factors influencing success

Despite the general success of ASR in generating stabi-
lized proteins, there is a degree of uncertainty in all resur-
rected ancestors and errors in the inference may result in
failure to express a folded, functional, or thermostable
protein (65). There is no way to verify that a resurrected
protein is historically accurate, but for the purposes of en-
gineering a thermostable variant, this is less important than
for studies of protein evolution. Nevertheless, the way in
which the reconstruction is done can affect the sequence
and consequently inferences drawn regarding the
characteristics of the resultant proteins, such as stability or
specific activity (65, 66). Studies on simulated datasets have
revealed factors that lead to inconsistent or atypical results
(67–69). Uncertainties in each of the individual inputs (i.e.,
the multiple sequence alignment (MSA), tree and evolu-
tionary model) compound in the inference process, with
relatively greater impacts seen in the inference of ancestors
from highly diverse groups of sequences, that is, where there
is more ambiguity in the alignment and positions of in-
sertions of deletions (indels).
Collection, curation, and alignment of sequences

Three major components are required for an ASR (Fig. 3):
an MSA of available extant sequences, a phylogenetic tree
showing their relationship to each other, and an evolutionary
(substitution) model. Firstly, all available extant protein se-
quences descended from the ancestor of interest are aligned,
along with sequences from an evolutionarily related out-
group. The sequence collection is perhaps the one most
important factor influencing the quality of the inference, as
there is the risk of including erroneous extant sequences or
misaligning them (67, 69). A basic principle of any compu-
tational method applies: trash input leads to trash output.
Including as wide a set of extant sequences as possible will
strengthen the probability that the reconstruction will be
accurate (70, 71). It is essential that the extant sequences are
error free, yet sequence databases are rife with sequences
containing transcription errors and miscalled exons, introns,
J. Biol. Chem. (2022) 298(10) 102435 5



Table 1
Changes in thermostability of resurrected ancestors inferred in ASR studies compared to their extant counterparts

Protein Taxon
Measure
of stability

Ancestor
stability (�C)

Descendanta

stability (�C) Δ stability (�C)
Estimated

ageb Reference

Elongation factor Tu All bacteria
Mesophilic bacteria

Optimal binding 65
55

38–65
38

+0 to +17
+17

Precambrian
Precambrian

(40)

Elongation factor Tu All bacteria Tm 65–73 40–64 +1 to +33 3.8 Ga (41)
Mitochondria and bacteria: Proteobacteria, cyanobacteria,
Thermus, Deinococcus, Chloroflexi, chloroplast

63 40–64 −1 to +24 2.8 Ga

Proteobacteria, mitochondria 55–58 39–58 +2 to +18 2.7 Ga
Bacteria (Firmicutes) 60–62 46–48 +12 to +16 2.5 Ga
Mitochondria 51–53 − − 1.6 Ga
Bacteria (α-Proteobacteria) 44–50 − − 0.9 Ga
Bacteria (γ-Proteobacteria) 40 − − 0.8 Ga

Thioredoxin All bacteria Tm 113 89 +24 4.2 Ga (48)
All archaea, eukaryotes 113 91–122 −9 to +20 4.1 Ga
All archaea 113 122 −9 4 Ga
Bacteria: Cyanobacteria, Aquificae, Deinococcus,
Chloroflexi, chloroplast.

122 1- −1 2.5 Ga

Bacteria (γ-Proteobacteria) 108 89 +19 1.6 Ga
All eukaryotes 103 91–93 +10 to +12 1.6 Ga
Animals/fungi 91 93 −2 1.4 Ga

3-isopropylmalate dehydrogenase Bacteria (Bacillus) Tm 65.3 47.6–64.7 +0.6 to +18 0.95 Ga (45)
Bacteria (Bacillus) 55.5 47.6–64.7 +0.6 to +18 0.85 Ga
Bacteria (Bacillus) 47.6 61–64.7 −17 to −13 0.8 Ga
Bacteria (Bacillus) 64.7 61 +3.7 0.7 Ga
All bacteria Tm 88–90 43–86 +2 to +47 4 Ga (115)

Nucleoside diphosphate kinase All bacteria Tm 98–109 99 −1 to +10 4 Ga (42)
All archaea 99–113 100 −1 to +13 4 Ga
Cyanobacteria Tm 100 67–93 +7 to +33 2.9 Ga (43)
Nostocales 78 - − 2.2 Ga
Viridiplantae 81–83 59–74 +7 to +24 0.775 Ga
Embryophyta 64–80 - − 0.45 Ga
Cyanobacteria Tm 68 46–75 −7 to +22 1.7 Ga (119)
Cyanobacteria 67 46–75 −8 to +21 1.0 Ga
Cyanobacteria 65 46–70 −5 to +19 0.9 Ga
Cyanobacteria 70 46–70 0 to +24 0.7 Ga
Cyanobacteria 70 46 +24 0.6 Ga
Cyanobacteria 69 46 +23 0.5 Ga

β-lactamase Bacteria (Gram +ve & -ve) Tm 87 51–65 +22 to +36 3 Ga (49)
Bacteria (Gram +ve) 85–90 55–59 +26 to +35 2.1 Ga
Bacteria (γ-Proteobacteria) 88 55–59 +29 to +33 1.6 Ga
Bacteria (Enterobacteria) 68 55–59 +9 to +13 0.6 Ga

Ribonuclease H1 Bacteria (α/β/γ/δ-Proteobacteria, Thermus, Deinococcus) Tm 77 51–89 −12 to +26 −
−
−
−
−
−
-

(46)
Bacteria (Thermus, Deinococcus) 77 89 −12
Bacteria (Thermus) 83 89 −6
Bacteria (α/β/γ/δ-Proteobacteria) 70 51–68 +2 to +19
Bacteria (γ-Proteobacteria) 68 51–68 +0 to +17
Bacteria (γ-Proteobacteria) 67 51–68 −1 to +16
Bacteria (Enterobacteria) 68 51–68 +0 to +17

Hydroxynitrile lyase Plants (Tracheophytes) Tm 80 54–70 +10 to +26 <0.1 Ga (121)
F420-dependent dehydrogenase Bacteria/Archaea Tm 53 43–46 +7 to +10 >3 Ga (122)
Peroxidase Plants T50 45 42–73 −28 to −3 0.11 Ga (120)
Periplasmic binding protein All Bacteria Tm �75

�80
52–80

−
−5 to +23 - (123)

Serum paraoxonase Vertebrates
Mammals

Tm 63
69

47
47

+16
+22

0.5 Ga
0.1 Ga

(97)

Haloalkane dehalogenase
(and luciferase)

Bacteria/fungi Tm 74 50–76 −2 to +24 −
−
−
−
−

(62)
Bacteria/fungi 71 50–76 −5 to +21
Bacteria 73 54–76 −3 to +19
Bacteria 76 54–75 −1 to +22
Bacteria 75 54–59 +16 to +21
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Table 1—Continued

Protein Taxon
Measure
of stability

Ancestor
stability (�C)

Descendanta

stability (�C) Δ stability (�C)
Estimated

ageb Reference

Cnidarians/Echinoderms Tm 71 64 +7 − (124)
Generic/Ligninolytic peroxidase Fungi (Polyporales) T50 67 54–69 −2 to +13 0.15 Ga

−
−
−

(125)
Fungi (Polyporales) 62 54–69 −7 to +10
Fungi (Polyporales) 69 54–58 +11 to +15
Fungi (Polyporales) 58 54 +4

Adenylate kinase Bacteria (Firmicutes) Tm 89 48–88 +1 to +41 2.6–3 Ga
−
−
−
−
−
−
−

(47)
Bacteria (Aerobic Firmicutes) 87 48–77 +10 to +39
Bacteria (Aerobic Firmicutes 77 48–76 +1 to +29
Bacteria (Bacilli) 76 48–76 0 to +28
Bacteria (Bacilli) 73 48–76 +3 to +25
Bacteria (Bacilli) 66 54–76 +10 to +12
Bacteria (Bacilli) 80 76 +4
Bacteria (Bacilli) 73 54 +19

Diterpene cyclase Bacteria (Streptomyces) Tm 64 57–71 −7 to +7 −
−
-

(101)
Bacteria (Streptomyces) 71 56–57 +14 to +15
Bacteria (Streptomyces) 56 57 −1

Chalcone isomerase (CHI)/CHI-like Land plants Tm 82 40–80 +2 to +42 − (126)
Land plants 80 − - −
Land plants 88 50 +38 −

Rubisco Bacteria (Proteobacteria, Cyanobacteria,Firmicutes) Tm − 71 − 3.2 (117)
Proteobacteria 69 71 −2 2.4
β/γ proteobacteria − 71 − 1.9

L-threonine
3-dehydrogenase

Bacteria (β−Proteobacteria, Cytophagia,
Sphingobacteria, Flavobacteria)

Tm 56 50 +6 − (100)

Ketol-acid reductoisomerase Bacteria (Proteobacteria, Bacteroidetes,
Verrucomicrobia, Fibrobacteres, Spirochetes)

Tm 59 43 +6 − (63)

Cytochrome P450 (CYP3 Family) Vertebrates 60T50 66 35–38 +28 to +31 0.45 Ga (63)
Cytochrome P450 (CYP2D Subfamily) Tetrapods 60T50 67 42–45 +22 to +25 0.4 Ga (64)
Cytochrome P450, CYP11A Subfamily Vertebrates Tm

10T50
Tm

10T50

74
67.5
49
45

49
42
49
42

+25
+25.5
+0
+3

0.4 Ga
−

(109)

Mammals

Triosephosphate isomerase Opisthokonta Tm 66 59–66 +0 to +7 − (127)
All animals 66 54 +12 −
Vertebrates 54 − − −
Fungi 66 59–66 +0 to +7 −
Fungi 66 59 +7 −

Endoglucanase Bacteria (Firmicutes) 30T50 79 65–85 −6 to +14 2.8 Ga (116)
L-arginine oxidase Bacteria (γ-Proteobacteria) 10T50 92 65–81

65–74
65

+11 to +27
+7 to +16

+9

−
−
−

(128)
81
74

L-amino acid oxidase −
−
−

10T50 40
�64
�63

63–64 −23 to +24 − (65, 129)
63 +1 −
− − −

Fatty acid photo-decarboxylase Algae Tm 31–36/44–49.4 14–24/35.5–36.5 +7 to +22
+7.5 to +13.9

− (130)

Geranylgeranylglyceryl
phosphate synthase

Crenarchaeota, Thaumarchaeota, Euryarchaeota Tm >95–108 78–126 −31 to −18 −
−
−
−
−
−
−
−
−

(131)
Bacteroidetes >95 58–105 −10 to +37
Crenarchaeota, Thaumarchaeota, Euryarchaeota >95–113 78–126 −31 to +35
Thaumarchaeota, Euryarchaeota 88–89 78–126 −38 to +11
Crenarchaeota >95 − −
Euryarchaeota >95–118 >95–126 −31 to +23
Thaumarchaeota 81–85 78–80 +1 to +7
Bacteroidetes 58 >95–105 −37 to −47
Euryarchaeota >95–103 >95–126 -31 to +8

Lipase Gram-negative bacteria Tm
Topt

72
70

−
30–55

−
+15 to +40

1.4 Ga (118)

a Descendant stability refers to both extant forms and younger ancestors that are direct descendants of the corresponding form listed under Ancestor stability. Studies are arranged in order of the date of the first study on the protein
concerned.

b Age estimates are only included where explicitly stated in the source.
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Figure 3. Outline of the ASR process. Extant protein sequences collected from sequence databases are iteratively aligned and curated to remove poor
quality or potentially erroneous data then used to generate a phylogenetic tree. The tree, alignment, and an amino acid substitution model are used as
inputs for ancestral inference using probabilistic methods. Ancestors from points of interest in the evolutionary tree are then reverse translated and the
corresponding ORFs synthesized and expressed in a heterologous host, for example, E. coli. The resurrected ancestors can then be characterized for various
biochemical properties or used as templates for further protein engineering. ASR, ancestral sequence reconstruction.
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insertions, deletions, and frameshifts, many of which probably
result from the imperfect interpretation of start, stop, and
splice sites in the corresponding nucleotide sequences from
genome sequencing studies. Since the speed of sequencing
has vastly outpaced other biochemical approaches over the
last decade, experimental verification is performed on only
relatively few of the available sequences, and partial or erro-
neous sequences are frequently loaded into public sequence
databases. Occasionally, the source for a DNA sequence is
also misattributed, which can cause problems at the subse-
quent stage of tree generation. This means it is important to
manually curate the MSA to remove sequences likely to
contain errors, while maintaining the broadest possible
coverage of the extant sequence space (Fig. 4). In our expe-
rience, this process is the most labor-intensive part of un-
dertaking an ASR, especially with very large sequence
alignments, yet is rarely mentioned in descriptions of the
approach and often not given sufficient consideration in
computational tools that incorporate ASR in strategies for the
design of thermostable proteins.

Various alignment tools are available, of which maximum
likelihood (ML) methods are generally preferred. However,
handling of indels is a point of difference (reviewed in (71));
problems with interpreting indels have been shown to cause
artefactual lengthening of ancestors (69). Standard two-
dimensional arrays of aligned residues involve implicit judg-
ments (or guesses!), as to which residues in an alignment are
homologous, whereas in practice, such relationships are far
from obvious in highly variable regions of an alignment or
between distantly related proteins. Methods that represent
relationships between residues in sets of proteins as partial
order alignment graphs that do not require decisions to be
made as to the position of deletions and insertions are under
development (70, 71) and should minimize the confounding
effects of subjective decisions about alignments on ancestral
inferences (69).
Inference of the phylogenetic tree

The second requirement is a phylogenetic tree explaining
the evolutionary relationships between these sequences
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(Fig. 3). This can be taken from the literature if a well-
corroborated gene tree is available that includes all extant
branches for which sequences are available; however, it is more
commonly inferred from the MSA using a statistical (e.g., ML)
approach. It is important that the tree is as accurate as possible
and bootstrapping is used to evaluate the topology, as the
inference at each ancestral node is dependent on its position in
the tree, the lineages that it gave rise to, and their order of
evolution. Even small differences in the MSA can affect the
relative position of different branches. Importantly, the gene
tree for the protein under reconstruction is not necessarily the
same as the accepted species tree due to factors such as
incomplete lineage sorting (72). Nonetheless, in the absence of
significant horizontal gene transfer, there is usually general
agreement in the overall topology and inferences have been
shown to be relatively robust to difference in phylogenetic
trees (68). Similarly, the third input, the choice of evolutionary
model (discussed further below) has been found to have less
impact on ASR accuracy than the alignment (73).

Ancestral inference methods

Once the MSA and phylogenetic tree have been refined, a
method of statistical inference is applied, which uses the in-
formation in the MSA and phylogenetic tree and an evolu-
tionary model to predict the ancestral state at all internal
nodes of the tree (Fig. 3). There are three inference methods
that have typically been used for ASR studies, maximum
parsimony (MP; (74)), ML (75) and Bayesian inference (BI;
(76)). There is no definitively correct inference method, and
ASR tools are continually being developed to increase accu-
racy. No single ASR tool has been preferred in the literature;
however, ML methods are used most commonly.

MP methods

MP methods were the first to be developed and are based on
the principle of parsimony, that is, the simplest explanation of
an event or observation is the preferred explanation. In the
context of ASR, MP infers ancestral states that minimize the
total number of character changes required to give rise to the
sequences observed at the tips of the phylogenetic tree.



Figure 4. Examples of sequence curation required for ASR. A, representative changes in the overall alignment during sequence curation. The red
rectangle at the top left of each image shows an equivalent area of the alignment. The overall number of sequences decreases during curation as sequences
with likely artefacts (insertions, deletions, and frameshifts) resulting from miscalling of start, stop, and splice sites are removed. Removal of such sequences,
especially those containing insertion artefacts, improves the ability to align the remaining sequences such that the overall alignment length decreases
markedly. B–E, arrows indicate sequences with likely artefacts. B, very short sequence fragments are typically removed since they may not encode a
functional protein, whereas sequences that lack a small proportion of the overall coding sequence at the N or C termini can be retained without disrupting
the ASR. C, incorrectly called start and stop sites lead to massively extended sequences, which appear as clear outliers in sequence alignments. If these
sequences are retained in the alignment used for the ASR, the inferred ancestors will have similar artefactual extensions, so extensions are typically pruned
to the consensus start and stop sites. D, artefactual insertions, deletions, and frameshifts appear as sequences with marked differences to phylogenetic
near-neighbors over an extended area of the alignment. Such artefacts are readily visible in highly conserved regions but may not be apparent in regions of
higher variability or in alignments with highly diverse sequences. Biochemical expertise can also be used to interpret the likelihood of these sequences
being correct, that is, from what is known about the structure, a prediction be made as to whether the fold would tolerate such a disruption to the typical
sequence. E, likely pseudogenes are evident from a pattern of numerous, possibly minor deviations from the sequence of phylogenetic near-neighbors
distributed across the ORF. ASR, ancestral sequence reconstruction.
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While efficient, the parsimony method has several short-
comings (77). First, at positions that have changed more than
once across the tree, there are often several equally parsimo-
nious ancestral states and there is no way of selecting which is
most likely to be correct. This becomes more problematic as
the degree of diversity between the terminal extant sequences
increases (78) and therefore only ancestors of extant sequences
that are well conserved can be unambiguously reconstructed,
making this method unsuitable for highly diverse protein
groups. A second criticism is that MP oversimplifies evolution
and does not consider amino acid substitution biases. An MP
algorithm ranks all evolutionary changes as equally probable
when, in reality, some mutations, for example, conservative
amino acid changes, are more likely than others (79). Thirdly,
MP methods assume that the same amount of evolutionary
time has passed along every branch of the tree, ignoring
branch length, and therefore preferentially choosing evolu-
tionary paths in which one mutation occurred along a short
branch rather than alternatives where multiple changes have
occurred along a long branch (80).
ML methods
With the recognition that MP approaches oversimplified

evolution, phylogenetic methods based on likelihood estima-
tion were developed and have been most commonly used for
ASR to date. ML accounts for the fact that not all mutation
events are equally likely to occur (81) by incorporating the use
of an amino acid substitution rate matrix that describes the
probability of different mutations based on a hypothetical
evolutionary model. ML evaluates the probability of every
possible ancestral state at every residue based on the proba-
bility that all the residues found at that site at the tips of the
tree would have evolved given this ancestral amino acid state,
the phylogeny, and the evolutionary model. The inferred
ancestral sequence is that which maximizes the likelihood at
all positions. The more widely used amino acid substitution
models are the Dayhoff (82), Whelan, and Goldman (WAG;
(83)), Le and Gascuel (LG; (84)), and Jones-Taylor-Thornton
(JTT; (85)). All are empirical models developed from
different databases of protein sequences and commonly
implemented in ASR tools. It is not possible a priori to
J. Biol. Chem. (2022) 298(10) 102435 9
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determine the most suitable model to use; typically, a number
of models will be tested in parallel and the one that best fits the
protein family of interest (typically as evaluated from the gene
tree obtained) will be chosen. While these empirical models
remain popular, many more sophisticated substitution models
have been developed that take into account constraints on
protein folding and epistatic interactions and which have been
found to be more accurate (86). However, these models are not
well established yet in ASR studies because they are more
computationally intensive and not as easily incorporated into
the currently used phylogenetic frameworks.

ML ancestors can be inferred in a “marginal” or “joint”
manner (75). In a joint reconstruction, the most likely ances-
tral state at all internal nodes is inferred, whereas a marginal
reconstruction infers the most likely sequence at a single node.
By focusing on a single node, marginal reconstruction is more
efficient and tends to be more commonly used in ASR studies;
however, it does not necessarily give the globally optimal
sequence and can only be considered as an approximation to
the joint reconstruction (87).

One shortcoming of ML is that it does not account for
uncertainty in the reconstruction. It assumes that the phylo-
genetic tree and evolutionary model are accurate, which is
often not true, particularly for highly divergent proteins, and
this can lead to errors in the inference.
BI

Like ML, BI is a probabilistic method; however, BI in-
corporates uncertainty into the reconstruction (76). Rather
than providing a single best estimate for an internal node, BI
provides the posterior probability of the ancestral state. There
are two methods of BI, the more simplistic empirical method
(75) and the complex hierarchical method (76). Empirical BI
is computationally similar to ML, but rather than calculating
the most likely ML character state based on their respective
probability distributions, the probability distributions are re-
ported directly. In an empirical Bayesian approach, the pos-
terior probability distribution is calculated based on a single
phylogenetic tree and evolutionary model and does not ac-
count for uncertainty in these parameters. Therefore,
empirical BI still faces the issue of inference errors due to
inaccurate assumptions. The more complex hierarchical
Bayesian approach incorporates uncertainty about the phy-
logeny and evolutionary model into the reconstruction. This
method calculates the posterior probability of the ancestral
state by averaging its probability over all possible trees and
models of evolution, weighted by how likely these trees and
models are, given the observed data (76). While the hierar-
chical Bayesian approach is superior in its ability to incor-
porate uncertainty, it is computationally intensive and
realistically limited to analyzing relatively small numbers of
sequences.

ML was shown to be sufficiently robust to phylogenetic
uncertainty that there was no significant benefit from using BI
(68). In addition, a study assessing the accuracy of MP, ML,
and BI methods found that ML was the most accurate with an
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average of �94% of all sites correctly inferred, compared to
�92% using BI and �90% using MP (88).

The reliability of outcomes from ASR

ASR can only infer the most probable ancestor based on the
inputs provided. Therefore, in many studies, multiple ancestral
sequences have been inferred by different methods to assess
how robust the observed ancestral properties (e.g., thermo-
stability) are to the alternative inputs and the use of different
algorithms (analogous to sampling the experimental error by
performing replicates in a typical biochemical experiment).
Alternative tree topologies (40–42, 68, 89), evolutionary/
amino acid substitution models (41, 90), and methods of sta-
tistical inference (45, 46, 63) have been assessed in parallel.
Marginal ML approaches provide the posterior probability of
each residue at each position in an ancestor, so multiple,
plausible ancestors by choosing alternative residues in
ambiguous positions of the ancestral sequence (91)—the so-
called ‘ancestral cloud’ approach (41, 42, 49, 63, 92, 93)—or
by resurrecting an ‘alt-all’ ancestor that has the least likely, yet
still plausible, alternative residue at all ambiguous sites (94). In
all such studies, the measured thermostability of the alterna-
tive ancestors has proven to be remarkably robust to meth-
odological differences.

Early studies using the ancestral mutation method also
indirectly addressed the idea that thermostability seen in
ancestral proteins was the result of chance. When ancestral
residues were introduced into extant IPMDH (39), isocitrate
dehydrogenase (44) and glycyl tRNA synthetase (52) the pro-
portion of mutants that showed improved thermostability
were 5/7, 4/5, and 6/8, respectively. The likelihood of
increasing the thermostability of a protein using random
mutagenesis is substantially lower with one of the most suc-
cessful reports being that of esterase, where only 1/3 mutants
were found to have improved stability (95, 96), consistent with
most random mutations being likely to be deleterious than
advantageous with respect to any property (27).

Ancestral reconstructions versus consensus approaches

It has been proposed that there is an inherent systematic
bias in the statistical inference methods used in ASR that re-
sults in overestimation of protein stability. Evidence for this
was first proposed in a seminal study that assessed the accu-
racy of MP, ML, and BI using computational population
evolution simulations (88). ML was found to overestimate
stability by �1.5 kcal/mol compared to 0.4 and 0.05 kcal/mol,
using MP and BI, respectively. It was proposed that the sta-
bilizing bias of ML and MP was due to the tendency of these
methods to infer consensus residues as the most likely
ancestral residues (88, 97).

Various studies have compared the thermostability of
consensus variants versus ancestral proteins (42, 56, 98–101)
and in most cases have found the ancestral form to be supe-
rior. Cole and Gaucher (56) generated a consensus EF Tu
protein along with the ancestral form from the Last Bacterial
Common Ancestor (LBCA) with which it shared 76% sequence
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identity. While the consensus variant showed a �20 �C in-
crease in Tm over an extant EF Tu from Escherichia coli (60 �C
versus 39 �C), the LBCA ancestor showed a higher Tm (73 �C).
Likewise, a consensus nucleoside diphosphate kinase (Tm of 84
�C) showed lower thermostability than 14 ancestors obtained
using several inference methods and tree topologies, for the
nodes representing the LBCA and Last Archeal Common
Ancestor (Tm values of 99–114 �C; 42). Four ancient bacterial
β-lactamases (0.5, 1, 1.5, and 2 billion years old; 49) and three
consensus β-lactamase sequences were generated (99). Two of
these consensus sequences were inferred from the same set of
sequences used initially (49), one of which did not express and
the other showed a Tm of 60 �C versus 88 �C for the ancestral
form. The third consensus was calculated from a broader set of
sequences than used to infer the ancestors and showed a Tm of
79 �C, which was lower than three of the four resurrected
ancestors (49). Other studies that assessed the effect of
consensus mutations on β-lactamases were only able to reach a
maximum Tm of 61.5 �C (31) and 66.2 �C (32) compared to
�90 �C achieved by ASR (99).

It is reasonable to expect that many residues in a consensus
mutant are actually ancestral; since, as explained by Tawfik
et al. (97), a good proportion of consensus residues may have
originated in the ancestor, with the sequences in successive
lineages changing through genetic drift. The stochastic nature
of genetic drift means that the ancestral state can still be
identified as the consensus (97). However, it is highly unlikely
that any given ancestor would show the consensus amino acid
at all the potentially biased positions.

Experimental characterization of consensus proteins has
revealed that they often display severely compromised activity,
are completely inactive, or are not expressed at all (33, 99, 101,
102), issues that are rarely reported for ancestral sequences.
These deficiencies may be due to the consensus approach
failing to account for epistatic interactions, that is, combining
incompatible residues that arise in different lineages as a result
of divergent evolution. In addition, unless some type of
weighting is applied, consensus sequences are biased toward
the clades or species that have received intensive attention in
sequencing projects and therefore make up a larger proportion
of available sequence information.

Unlike the methods of ML and MP, BI is not thought to be
biased toward consensus residues and may only slightly
overestimate stability (88). Observing high thermostability in
ancient Bayesian-inferred ancestors would be strong evidence
that thermostability is not an artifact of the inference method;
however BI is less commonly used overall than ML for ASR
studies. Various studies have compared ancestors inferred
using ML and BI to assess whether there is a difference, yet no
consistent bias has been seen. The sequences of the ML and BI
versions of two IPMDH (LeuB) ancestors differed by �7% to
10%, that is, 25 to 36 amino acids (45); the optimal tempera-
ture for activity (Topt) of the ML inferred ancestors was 46 �C
and 70 �C versus 64 �C and 68 �C, respectively, for the cor-
responding BI versions. The Tm values of ML ancestors for
three adenylate kinases were +4, +0.3, and -6 �C different from
the corresponding BI ancestors (47). Importantly, in addition
to assessing the differences in thermostability, studies have
compared the theoretical accuracies of the two methods and
have shown ML approaches to be just as accurate and in some
cases more accurate than BI, despite their potential to over-
estimate stability (68, 88, 103).

Ultimately, even if ML does bias toward thermostability, an
extra �1.5 kcal/mol (88) can be equated to a �6 �C change in
Tm (based on experiments measuring the effect of point mu-
tations on the thermal stability of bacteriophage T4 lysozyme
that indicate a change of �4 �C in the folding temperature for
every kcal/mol change in ΔΔG (104)). This increase is well
below what has been observed in many ASR studies that have
shown enhancements in stability of �30 to 35 �C in resur-
rected ancestors (Table 1).
What can be learned from the types of interactions
underpinning ancestral thermostability?

As ancestral forms often have dozens, if not hundreds, of
residue changes from an extant form or between any two
nodes in a given tree, it is difficult to identify those changes
that are responsible for conferring stability, as noted in many
studies (45, 51, 97, 105, 106). Some studies have proposed
stabilizing mechanisms based on sequence information alone;
however, it is uncommon that strong correlations are observed
between any particular biochemical property and thermosta-
bility (45). Increased hydrophobicity has also been found to
correlate with higher Tm in ancestral EF Tu proteins (107).
Other proposed stabilizing mechanisms include improved core
packing, reduced mobility of loops, and changes in surface
charges, all similar to observations from studies improving the
thermostability of extant forms (97).

Understanding the context of a residue in the protein tertiary
structure is important in predicting its stabilizing effect, and
this has been facilitated by crystallization of some ancestral
proteins (42, 47, 105, 106, 108). A comparison of the crystal
structures of three adenylate kinase ancestors with two extant
forms revealed several unique salt bridges that disappear
sequentially in forms with decreasing thermostability but are
found in more thermostable extant forms (47). The crystal
structure of an ancestral nucleoside diphosphate kinase
revealed a reduction in its nonpolar accessible surface and
increased numbers of intersubunit ion pairs and hydrogen
bonds (42). Molecular dynamics simulations performed using
the crystal structures of ancestral, consensus, and extant EF Tu
proteins revealed stabilizing networks of ionic and hydrophobic
interactions and a greater average buried area in more ther-
mostable forms. However, even with a crystal structure, it is not
always straightforward to identify stabilizing interactions.
Despite the availability of crystal structures of seven Precam-
brian thioredoxins that were up to 24 �C more stable than
extant forms, no significant differences were identified between
the extant and ancestral forms, in terms of polar or apolar
solvent-accessible surface areas, the number of hydrogen bonds
or salt bridges, or surface charge distributions (105).

One way to confirm the stabilizing residues of interest is to
test their effect experimentally. Studies using the ancestral
J. Biol. Chem. (2022) 298(10) 102435 11
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mutation method have assessed the stabilizing effect of one or a
few ancestral residues and revealed hydrophobic packing,
hydrogen bonding, and the formation of ion pairs (39, 44, 47, 51,
52, 54) to be important. In othermutagenesis studies, residues in
the ancestral proteins have been altered to abolish stability as a
way of identifying important interactions (47, 63, 109).

Thus, analysis of ancestral structures has provided com-
plementary information to studies on proteins from thermo-
philes and underscored the importance of a variety of
stabilizing interactions. Importantly, however, ASR has
allowed identification of thermostable homologs of proteins
for which thermostable variants are either not available or
phylogenetically remote (e.g., for the very diverse cytochrome
P450 family), simply on the basis of abundant sequence in-
formation. This should make it more straightforward to
determine the causative changes above the background noise
of neutral drift. In our experience, a correlation is generally
seen between evolutionary age and thermostability (110), so
choosing ancestors that are more or less closely related should
enable specific changes to be identified, by restricting the
number of differences between the forms in question. How-
ever, to date, insufficient studies have been performed for the
full benefit of this approach to be realized.
Perspectives for future use of ASR to engineer thermostability

Proteins are the fundamental agents that achieve chemistry
on biological timescales, transmit and receive signals at the
molecular level, and serve as structural modules from which
many cellular structures are built up in nature. Therefore, they
are also the principal feedstock and inspiration for efforts to (re)
design biological catalysts, protein therapeutics, metabolic
pathways, signal transduction relays, biosensors, synthetic gene
circuits, and other novel bioinspired ‘devices’ for chemical,
biotechnological, and synthetic biology applications. However, a
two-step approach is often needed to protein engineering, the
first being to make the protein more thermostable in order to
buffer the potentially destabilizing effects of mutations needed
for subsequent optimization of function (12).

It is ironic that such forward looking fields should gain
inspiration from ASR, an approach that looks back in time
through the evolutionary record. Natural sequence diversity is
a rich resource of functional structures, but using ASR to
explore the evolutionary history of protein sequence, structure,
and function markedly extends the toolbox available for pro-
tein engineers. Ancestral proteins represent additional di-
versity that is enriched in functional and robust proteins; the
‘extinct’ intermediates in the evolutionary record must vastly
outnumber the collection of forms extant today. Importantly,
neither structural data nor extensive screening of mutant li-
braries is required for ASR, only extensive sequence infor-
mation (that is increasingly available from genome sequencing
efforts) combined with bioinformatic tools for interpretation
of protein evolution. Much is to be gained by integrating
across multiple approaches to protein engineering, for
example, recombining stable structural modules from ances-
tral proteins (111) and applying advanced methods for
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computational design to ancestors used as robust scaffolds for
designing new proteins (12).

While there is no idealmethod for inferring themost probable
ancestor and ASR is highly dependent on the quality of the
sequence information and alignment used, structure-aware
approaches (reviewed recently in (112)) and tailoring of evolu-
tionary models show great promise for improving confidence in
the inferences obtained. Improvements in machine learning
(113) and particularly ab initio structure prediction (e.g.,
AlphaFold), should accelerate the improvement of ASR ap-
proaches, the engineering of proteins using ancestral templates,
and the interpretation of information gained from studying
ancestral proteins. Indeed, stable ancestors offer opportunities
for obtaining insights into the structure and function of poorly
characterized protein families that may not be feasible, or are at
least much more challenging to achieve, with extant proteins.

One particularly exciting prospect is to rerun evolution
in vitro from robust ancestors and apply different, artificial
selection pressures, both to optimize the properties of proteins
to match the needs of industrial or medical applications, but
also to reveal how such properties develop in the absence of
confounding, pleiotropic influences that constrain evolution
in vivo. Combining such experiments with machine learning
(113), molecular dynamics simulations, and advanced bio-
physical methods for structure determination, including the
analysis of (un)folding pathways (114), should provide insights
into how changes in sequence, structure, and conformation
affect function. Such studies promise to inform our under-
standing of natural proteins but also efforts to reshape them to
provide clever, bioinspired solutions to global challenges
across fields as diverse as medicine, industrial chemistry,
agriculture, and environmental management, indeed any area
in which proteins can serve useful purposes.
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