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Ran GTPase activates several target molecules to induce
microtubule formation around the chromosomes and centro-
somes. In fission yeast, in which the nuclear envelope does not
break down during mitosis, Ran targets the centrosomal
transforming acidic coiled-coil (TACC) protein Alp7 for spindle
formation. Alp7 accumulates in the nucleus only during mitosis,
although its underlying mechanism remains elusive. Here, we
investigate the behaviour of Alp7 and its binding partner, Alp14/
TOG, throughout the cell cycle. Interestingly, Alp7 enters the
nucleus during interphase but is subsequently exported to the
cytoplasm by the Exportin-dependent nuclear export machinery.
The continuous nuclear export of Alp7 during interphase is
essential for maintaining the array-like cytoplasmic microtubule
structure. The mitosis-specific nuclear accumulation of Alp7
seems to be under the control of cyclin-dependent kinase (CDK).
These results indicate that the spatiotemporal regulation of
microtubule formation is established by the Alp7/TACC–Alp14/
TOG complex through the coordinated interplay of Ran and CDK.
Keywords: cyclin-dependent kinase; microtubule; nuclear transport;
Ran GTPase; TACC–TOG
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INTRODUCTION
Ran GTPase is widely known as the universal regulator of
nucleocytoplasmic transport (Ohno et al, 1998). Ran predomi-
nantly exists in its GTP form in the nucleus owing to the activity of
the guanine nucleotide exchanging factor (RanGEF/RCC1). In
general, cargo proteins that contain a nuclear localization signal
(NLS) are recognized by the nuclear import factor Importin-a.
Once the cargo enters the nucleus, the Importin complex uses the
GTP-bound Ran that is concentrated in the nucleus to unload the
cargo. Nuclear export is regulated in the opposite direction by
Exportin/Crm1. The Ran system is also essential for mitotic spindle
formation. Interestingly, the molecular mechanisms by which Ran
exerts its influence on nuclear transport and microtubule
formation are identical in principle (Karsenti & Vernos, 2001;
Hetzer et al, 2002; Zheng, 2004; Kalab & Heald, 2008). The
‘target’ molecules for Ran, which promote mitotic spindle
assembly, are captured by Importin. Around the chromosomes,
however, Ran-GTP exists at high concentration, which induces
dissociation of the targets, thereby leading to microtubule
formation around the chromosomes. Several such targets for
Ran have been identified in higher eukaryotes, including TPX2,
NuMA and HURP.

By contrast, the only target identified so far in yeast is Alp7/
transforming acidic coiled-coil (TACC) protein (also known as
Mia1) of the fission yeast Schizosaccharomyces pombe (Sato &
Toda, 2007). The alp7 mutant shows mitotic defects such as
impaired spindle formation and chromosome mis-segregation
(Oliferenko & Balasubramanian, 2002; Sato et al, 2003, 2004).
TACC forms a conserved microtubule-associated protein (MAP)
complex with the tumour overexpressed gene (TOG) subunit
(Gergely, 2002). In fission yeast, Alp7/TACC interacts with a TOG
orthologue Alp14 and localizes to the cytoplasmic microtubules
during interphase, whereas it localizes to the spindle pole body
(SPB; a yeast centrosome equivalent), nuclear spindle microtubules
and kinetochores during mitosis. This mitosis-specific nuclear
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localization of Alp7 might suggest that Ran targets Alp7 only
during mitosis. To understand how and when the Alp7–Alp14
complex is targeted by Ran and localizes to the nucleus, we sought
to examine the behaviour of Alp7 and Alp14 during the cell cycle.

RESULTS AND DISCUSSION
Alp7 localizes to the nucleus only during mitosis (Fig 1A). There
are two main possible ways to achieve mitosis-specific nuclear
accumulation of Alp7: (i) the nuclear entry of Alp7 is inhibited
during interphase but potentiated during mitosis, and (ii) the
nuclear entry of Alp7 is not restricted to mitosis, but it is only
during mitosis that Alp7 is retained in the nucleus. To discriminate
between these two possibilities, we used leptomycin B (LMB), an
inhibitor of the nuclear export factor Exportin/Crm1 (Kudo et al,
1998). Cells bearing Alp7–YFP (yellow fluorescent protein) with
the SPB marker Cut12–CFP (cyan fluorescent protein) and the
microtubule marker mRFP-Atb2 (monomeric red fluorescent
protein (RFP)-tagged a2-tubulin) were prepared and LMB was
added. Within 1 h, nuclear accumulation of Alp7–YFP was
observed, although cells were still in interphase, as judged from
their microtubule structures (Fig 1B). This suggests that Alp7
undergoes nucleocytoplasmic shuttling—Alp7 enters the nucleus
during interphase but is immediately exported to the cytoplasm
by Exportin/Crm1. Alp7 was also identified independently in a
genome-wide screen for proteins that accumulate in the nucleus
in an LMB-dependent manner (Matsuyama et al, 2006).

In general, TACC is required for the localization of TOG to the
mitotic centrosome. This is also true for fission yeast, as Alp7/
TACC is essential for the localization of Alp14/TOG to mitotic
SPBs (Sato et al, 2004). As an NLS is present in Alp7 (Sato & Toda,
2007), the role of the Alp7/TACC subunit might be to import the
Alp14/TOG subunit into the nucleus. To explore this possibility,
Alp14 was visualized together with CFP–tubulin in the alp7-RARA
(R122A/R124A) mutant, in which the intrinsic NLS has been made
inactive (Sato & Toda, 2007). Alp14–rRFP co-localized with
Alp7-RARA–GFP (green fluorescent protein) to the cytoplasmic
microtubules even 1.5 h after LMB addition, at which time wild-type
Alp7–GFP and Alp14–rRFP (refoldable RFP) had accumulated in
the nucleus (Fig 1C). These results verify that the nuclear entry of
Alp14/TOG is dependent on a functional NLS in Alp7/TACC.

Many of the cargo proteins that are exported by Exportin/Crm1
contain a nuclear export signal (NES), which consists of
a characteristic cluster of leucine residues. To identify the NES
in Alp7, we performed a domain analysis by deleting the
amino-terminal or carboxy-terminal part of Alp7. Deletion of the
C-terminal 45 amino-acid residues caused constitutive accumula-
tion of Alp7 in the nucleus, irrespective of the cell-cycle stage,
which suggests that NES activity resides in this region (Alp7-
DC45–GFP; Fig 2A,B). This region contains two putative NES-like
sequences with clustered leucine and hydrophobic residues
(Leu 430-Leu 440 and Leu 454-Leu 470; supplementary Fig S1A
online). To delineate the NES sequence, Leu 433 and Leu 435,
Leu 461 or other hydrophobic residues were mutated to alanine.
The Alp7-L433A/L435A–GFP protein behaved in a manner similar
to wild-type Alp7–GFP (supplementary Fig S1B,C online).
Furthermore, the Alp7-L454A–, Alp7-M457A– and Alp7-V462–
GFP proteins localized normally to the cytoplasmic dots with
Alp14–rRFP (supplementary Fig S2 online). By sharp contrast, the
Alp7-L461A–GFP construct led to Alp7 accumulation mostly in

the nucleus during interphase, although localization to the
cytoplasmic microtubules was still observed (Fig 2C; supplemen-
tary Figs S1D and S2 online), indicating that the intrinsic NES
activity of Alp7 was significantly impaired.
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As this domain is located in the TACC domain, the L461A
mutation might also abrogate the function of Alp7. In fact, the
alp7-L461A mutant showed few microtubule bundles in the
cytoplasm (supplementary Fig S1D online), which is reminiscent
of the alp7D mutant (Sato et al, 2004; Zheng et al, 2006).
Consistent with this, Alp7-L461A failed to complement either
the hypersensitivity of the alp7D mutant to thiabendazole
(TBZ; a microtubule depolymerizing drug) or growth at high
temperature (supplementary Fig 1E online). Thus, the alp7-L461A
mutant lost its intrinsic NES activity and its ability to organize
cytoplasmic microtubules.

Next, we sought to determine why Alp7-L461A was not
functional. Given that our previous study had shown that the
C-terminal TACC domain containing Leu 461 is responsible for
Alp14 binding (Sato et al, 2004), we looked for an interaction
between Alp7-L461A and Alp14. Intriguingly, Alp14 co-localized
neither with Alp7-DC45 nor with Alp7-L461A, which is particu-
larly evident during mitosis (Fig 2B,C). Even during interphase,
Alp14 localization to interphase microtubules was greatly
compromised (Fig 2B,C). These observations raised the possibility
that the interaction between Alp7-L461A and Alp14 was
impaired. A yeast two-hybrid assay showed that this was indeed
the case (Fig 2D). The short C-terminal fragment of Alp14 (Alp14

D696) and the Alp7 TACC fragment, which lacks the N terminus
(Alp7 DN), showed elevated affinities for full-length Alp7 and
Alp14, respectively (Sato et al, 2004). Alp7-L461A did not,
however, interact even with Alp14 D696 (Fig 2D). Similarly,
introduction of the L461A mutation into Alp7 DN (Alp7 DN-
L461A) abolished the interaction with both full-length Alp14 and
Alp14 D696 (Fig 2E). Collectively, these results show that L461 has
a dual function in Alp7 function: it is a part of the NES, and it is
involved in the interaction with its binding partner Alp14/TOG.
Alternatively, Alp7 might need to interact with Alp14 to be
exported to the cytoplasm. Alp7 did not, however, accumulate in
the nucleus in the alp14D mutant, which excludes the possibility
that Alp14 functions as a nuclear export factor for Alp7
(supplementary Fig S3 online).

Alp7 shuttles between the cytoplasm and the nucleus but is
retained to the cytoplasmic microtubules during interphase and to
the nuclear spindle during mitosis. It is, therefore, possible that the
microtubule structure per se might function as an anchoring
platform. The absence of cytoplasmic microtubules did not,
however, cause nuclear accumulation of Alp7 (supplementary
Fig S4 online). Thus, interphase microtubule structures do not
function as tethering devices. We then questioned whether
altering the localization of Alp7 would, in turn, affect microtubule
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structure. Therefore, we forced Alp7 to accumulate in the nucleus
by adding a robust canonical NLS sequence to the N terminus of
this protein (PKKKRKV; NLS-Alp7). On fusing an inactive NLS
peptide (PAAARKV) to Alp7 (NLSmut-Alp7) as a control, the
protein co-localized with Alp14–rRFP to the cytoplasmic micro-
tubules (Fig 3A), as was the case for wild-type Alp7. By contrast,
NLS-Alp7–GFP accumulated in the nucleus and recruited Alp14
to the nucleus (Fig 3B). It should be noted that in these cells
cytoplasmic microtubules were short and fragmented (Fig 3B).
This is probably because the Alp7–Alp14 complex was seques-
tered in the nucleus, which caused a shortage of this complex in
the cytoplasm that led to the subsequent disorganization of the
microtubules; this is reminiscent of the alp14 deletion mutant
(Garcia et al, 2001). The shorter cytoplasmic microtubules
seen in NLS-Alp7–GFP-containing cells were distinct from those
observed in the NES-defective alp7-DC45 (or alp7-L461A) mutant
(Fig 2B,C), in which the nuclear accumulation of Alp7 was also
observed but Alp14 was still localized to the cytoplasmic
microtubules. This difference suggests that Alp14 on the cyto-
plasmic microtubules exerts its ability to stabilize microtubules
independently of the Alp7/TACC subunit. Alternatively, some
population of Alp7 might still associate with Alp14 in the Alp7-
DC45 (or alp7-L461A) mutant on the microtubules, thereby
providing the activity to stabilize microtubules. Whichever is the
case, these results show that nuclear export of the Alp7–Alp14
complex is essential for maintaining the cytoplasmic microtubule
structure. Therefore, nucleocytoplasmic shuttling of the Alp7–
Alp14 complex is required for cell cycle-dependent microtubule

assembly, interphase cytoplasmic microtubule arrays and nuclear
mitotic spindles.

Then what determines the cytoplasmic and nuclear retention of
Alp7 during interphase and mitosis, respectively? Two possible,
albeit not mutually exclusive, situations might occur on entry into
mitosis: (i) the acceleration of nuclear import, and (ii) the
inhibition of nuclear export. To distinguish between these two
possibilities, the signal intensity of GFP fluorescence from wild-
type or truncated Alp7–GFP fusion proteins, the latter of which
had a defective NES, was quantified during both interphase and
mitosis. A line was drawn along the long axis of a cell, along
which the signal intensity of Alp7–GFP was measured. Nuclear
accumulation of the full-length Alp7–GFP (Alp7FL–GFP) signal
clearly occurred during mitosis but not during interphase, which
validates these measurements (Fig 4A). Importantly, the nuclear
intensity along the section of the NES-lacking Alp7-DC45–GFP,
which was detectable during interphase, did not increase on
mitotic entry (Fig 4B), although total nuclear volume might
have slightly increased. Hence, instead of the NLS, NES
activity might be responsible for the mitosis-specific nuclear
accumulation of Alp7.

To verify the downregulation of NES during mitosis, LMB was
added to both interphase and mitotic cells, and Alp7–YFP signals
were quantified as described above (Fig 4C). As LMB blocks
nuclear export, this experiment should evaluate whether nuclear
export of Alp7 is active during mitosis. Although the Alp7–YFP
signal was increased in the interphase nucleus in response to the
addition of LMB (Fig 4C, left), it was not augmented further in the
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Fig 3 | Nuclear export of Alp7 is essential for maintaining cytoplasmic microtubule integrity. Cells expressing Alp14–rRFP and CFP–tubulin together

with either (A) NLSmut-Alp7–GFP or (B) NLS-Alp7–GFP were observed. (A) Alp7–GFP fused with NLSmut (an inactive NLS) behaved in a manner

similar to wild-type Alp7–GFP. (B) When NLS-Alp7–GFP was expressed, Alp14–rRFP also accumulated in the nucleus. Note that cytoplasmic

microtubules were short and fragmented, leading to bent cell morphology. Scale bar, 5 mm. CFP, cyan fluorescent protein; GFP; green fluorescent

protein; NLS, nuclear localization signal; rRFP, refoldable red fluorescent protein.
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mitotic nucleus (Fig 4C, right). This strongly suggests that nuclear
export of Alp7–YFP does not occur during mitosis. We conclude
that the inhibition of NES activity leads to Alp7 accumulation in
the nucleus in a mitosis-specific manner, although we cannot
completely exclude the possibility that activation of the NLS,
as well as inhibition of the NES, occurs. It should be noted that
the NES coincides with the Alp14-binding site (Leu 461). It is,
therefore, tempting to speculate that Alp14 and Crm1 might
compete with one another for Alp7 binding. If so, an increased
affinity between Alp14 and Alp7 in the nucleus might be able to
inhibit nuclear export of the Alp7–Alp14 complex by blocking the
accessibility of Crm1. Further studies are required to test the
competition model between Alp14 and Crm1.

Which factor inactivates the NES of Alp7 during mitosis?
Possible candidates are mitotic kinases. Cdc2/Cdc13 (CDK/cyclin B)
is localized at mitotic SPBs and spindles (Alfa et al, 1990;
Decottignies et al, 2001). Given this localization, we speculated
that CDK might well be such a regulator. To assess this possibility,
we observed Alp7–GFP in temperature-sensitive cdc2 or cdc13
mutants, but the ambiguous localization of Alp7 in these
conditional mutants hampered our ability to draw a solid
conclusion (data not shown). As an alternative approach, the
analogue-sensitive cdc2-as mutant (Dischinger et al, 2008) was
used. Addition of the analogue 1NM-PP1 to inhibit CDK caused a
significant loss of nuclear Alp7 during mitosis (Fig 5; supplemen-
tary Fig S5 online). Alp7 in particular was lost from the
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nucleoplasm and spindle microtubules, although a certain amount
of Alp7 remained at the SPBs. These results indicate that the
nuclear accumulation of Alp7 requires CDK activity. Experiments
using the cdc13 shut-off mutant (cdc13s.o.) during meiotic
prophase also supports the requirement of CDK activities for
nuclear accumulation of Alp7 (supplementary Fig S6 online).

Is there any reason for Alp7 to enter the nucleus during
interphase, apparently without a specific purpose? We envisage
that in fission yeast the system to accelerate or decelerate the
velocity of nuclear import depending on the cell-cycle stage might

not be well developed or advantageous. Instead, the fission yeast
might have evolved to devise the NES, the activities of which are
specifically downregulated during mitosis, which is under the
control of CDK. Kinesin-8 Klp5 and Klp6 shuttle between the
nucleus and the cytoplasm; as is the case for Alp7 and Alp14, they
also localize to cytoplasmic microtubules during interphase and to
the nuclear spindle during mitosis (Unsworth et al, 2008).
Furthermore, the protein phosphatase Clp1/Flp1 is retained in
the cytoplasm during late mitosis by the Sid2 kinase and the 14-3-3
proteins (Chen et al, 2008). It would be intriguing to address
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how these proteins establish nuclear and cytoplasmic retention in
a cell cycle-dependent manner.

Ran maintains the nucleocytoplasmic balance of microtubule
formation through the transport of Alp7 (and Alp14). CDK shifts
this nucleocytoplasmic shuttling towards nuclear retention on
entering mitosis. Our findings here, therefore, have revealed that
Ran, Exportin and CDK coordinate the spatiotemporal regulation
of microtubule formation in which Alp7/TACC, together with
Alp14/TOG, is a crucial component. It is still unknown how CDK
affects NES activity, as no consensus sites for phosphorylation by
CDK were found around the NES of Alp7. Further studies are
awaited to clarify the molecular mechanism by which CDK
regulates the mitotic nuclear retention of Alp7–Alp14.

METHODS
Strains and plasmids. Detailed methodologies about the con-
struction of strains and plasmids are described in the supplemen-
tary information online. Strains used in this study are listed in
supplementary Table S1 online.
Microscopy and LMB treatment. Experimental procedures have
been described previously (Sato & Toda, 2007; Sato et al, 2009).
Briefly, we used the DeltaVision-SoftWoRx system (Applied
Precision, Issaquah, WA, USA). Signal intensity of fluorescent
proteins was quantified using ImageJ (National Institutes of
Health). For LMB experiments, images for the first time point
were taken without LMB (for 0 min). LMB was then added
at a final concentration of 100 ng/ml (Kudo et al, 1998; Sato et al,
2001).
Note added in proof. After this work was accepted, the following
paper appeared that reports nucleocytoplasmic shuttling of Alp7,
similar to our work. Ling YC, Vjestica A, Oliferenko S (2009)
Nucleocytoplasmic shuttling of the TACC protein Mia1p/Alp7p
is required for remodeling of microtubule arrays during the cell
cycle. PLoS ONE 4: e6255.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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