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Abstract

In commercial research and development projects, public disclosure of new chemical

compounds often takes place in patents. Only a small proportion of these compounds

are published in journals, usually a few years after the patent. Patent authorities make

available the patents but do not provide systematic continuous chemical annotations.

Content databases such as Elsevier’s Reaxys provide such services mostly based on

manual excerptions, which are time-consuming and costly. Automatic text-mining

approaches help overcome some of the limitations of the manual process. Different

text-mining approaches exist to extract chemical entities from patents. The majority

of them have been developed using sub-sections of patent documents and focus on

mentions of compounds. Less attention has been given to relevancy of a compound in a

patent. Relevancy of a compound to a patent is based on the patent’s context. A relevant

compound plays a major role within a patent. Identification of relevant compounds

reduces the size of the extracted data and improves the usefulness of patent resources

(e.g. supports identifying the main compounds). Annotators of databases like Reaxys

only annotate relevant compounds. In this study, we design an automated system

that extracts chemical entities from patents and classifies their relevance. The gold-

standard set contained 18 789 chemical entity annotations. Of these, 10% were relevant

compounds, 88% were irrelevant and 2% were equivocal. Our compound recognition

system was based on proprietary tools. The performance (F-score) of the system on

compound recognition was 84% on the development set and 86% on the test set. The

relevancy classification system had an F-score of 86% on the development set and

http://creativecommons.org/licenses/by/4.0/
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82% on the test set. Our system can extract chemical compounds from patents and

classify their relevance with high performance. This enables the extension of the Reaxys

database by means of automation.

Database URL: https://data.mendeley.com/datasets/6hykykmn65/1

Background

The number of chemistry-related publications has massively
increased in the past decade (1). These publications are
mainly in the form of patent applications and scientific jour-
nal articles. A crucial step in the early stages of medicinal
chemistry activities is the exploration of the chemical space
covered by these sources (1–4). In commercial research and
development projects, initial public disclosure of new chem-
ical compounds often takes place in patent applications
(4, 5). On average, it takes an additional 1 to 3 years for
a small fraction of these chemical compounds to appear
in journal publications (5). Therefore, a large selection of
these chemical compounds is only available through patent
documents (6). Additionally, chemical patent documents
contain unique information such as reactions, experimental
conditions, mode of action (7), bioactivity data and cata-
lysts (1, 3). Analyzing such information becomes crucial (1,
4, 5, 8), as it allows the understanding of compound prior
art, it provides a means for novelty checking and validation,
and it points to starting points for chemical research in
academia and industry (3, 7, 9, 10).

Patent data are freely available through different patent
offices. Major patent authorities include the European
Patent Office (EPO) (11), the United States Patent and
Trademark Office (USPTO) (12) and the World Intellectual
Property Organization (WIPO) (13). Depending on the
patent authority, the data are made available in the form
of XML, HTML, text PDF, Optical Character Recognition
(OCR) PDF or image PDF. Patent documents usually follow
a systematic structure consisting of title, bibliographic
information [such as patent number, dates, inventors,
assignees and International Patent Classification (IPC)
classes], abstract, description and claims. Most of the
chemical data are available in the experimental section of
the description, while chemical compounds that are claimed
(i.e. will become protected by the patent) are available in the
claim section (4). Drawings, sequences or other additional
information will normally be found at the very end of the
patent.

While patent authorities make available the patent
documents, they do not provide systematic continuous
chemical annotations and full-text searching capabilities
(3), so manual or automatic excerption processes have
been considered (1, 5, 7, 14). Manual excerption processes
result in high-quality content but are costly and time-

consuming, and are therefore limited to commercial content
providers (5). Examples of content databases are Elsevier
Reaxys (15, 16), CAS SciFinder (17), and Thomson Reuters
Pharma (18). These commercial resources provide high-
quality content, such as compounds and their associated
structures, facts associated to compounds, and reactions.

Automatic approaches to extract information from patents
have recently come into existence to overcome some of the
aforementioned cost and time limitations. Examples of such

resources include SureChEMBL (3), SCRIPDB (19), ChEBI
database (20), IBM database (21), NextMove Software’s
reaction database (22) and databases that combine data
from different sources [e.g. PubChem (23)]. SureChEMBL
provides continuous, up-to-date chemical annotations with
structures derived from USPTO, EPO, WIPO and the
Japanese Patent Office (JPO) (24). The information is

extracted from full-text patents (except JPO), images and
attachment files (3). This information is mostly derived
by text mining and image mining. SCRIPDB is a chemical
structure database from compounds and reactions. This

information is built based on the digital chemical structure
files provided by USPTO for a subset of its patents (grant
patents, from 2001 until 2011) (19). The ChEBI database

provides chemistry compounds and structures extracted
from a subset of patent documents from the EPO office
(20). The IBM database provides chemical compounds and
structures derived from a subset of EPO, WIPO and USPTO
patents (21). This information is derived by text-mining

approaches. The reaction database of NextMove Software
is also automatically generated by text mining the relevant
experimental sections of patents covering the period 1976–
2013 (22). It proves difficult to maintain public databases

and many of the above have become outdated.

Some of the automatic resources mentioned above
incorporate the textual data content supplied by the content
providers to build their database (such as SCRIPDB).

Others use image mining and text mining approaches
to extract data from the patent full-text document (e.g.
SureChEMBL and IBM). Image-mining approaches convert
images attached to patents into structures using image-
to-structure tools [e.g. CLiDE Pro (25) in SureChEMBL]
(4). These tools have limitations in the interpretation of
individual drawing features (such as chemical bonds) found
in the structure diagrams of some images (25) and will not
further be considered in this study. Text-mining approaches

https://data.mendeley.com/datasets/6hykykmn65/1
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focus on the recognition of chemical compounds in patents
(4). Each recognized small compound should also be
associated with a chemical structure. Different text-mining
approaches exist to extract chemical entities from patents.
The approaches can be categorized as dictionary based,
morphology based (or grammar based) or statistical (26–
29). Dictionary-based approaches use matching methods
to identify compounds mentioned in a dictionary (e.g.
generic drug names) within patents. This approach is
limited by the compounds contained in the dictionary.
Addition of all systematic compound identifiers to a
dictionary is almost impossible as they are algorithmically
generated based on the structure of a compound and a set
of rules (30). Grammar-based approaches use these rules
to overcome this limitation and provide functionality to
recognize systematic identifiers (26). Statistical approaches
use supervised machine-learning techniques to recognize
chemical compounds. These statistical-based recognizers
are trained on manually annotated chemical terms (7).
Among the three approaches, statistical approaches have
been shown to perform the best (4, 31, 32) but they
require a large annotated corpus for training (26, 33)
and cannot associate structures with compounds (4, 27,
34). Correctness of the associated chemical structure to a
recognized compound is essential in the field of chemistry
(34, 35). Often a combination of the methods above in the
form of an ensemble system is used for chemical compound
recognition (31, 36). All systems require a gold-standard
corpus for training, developing and testing performance
(30). Producing such a corpus is laborious and expensive
(7). It involves development of well-defined annotation
guidelines, selection and training of domain experts for
annotation, selection of the data, annotation of the data
by multiple annotators and finally harmonization of the
annotations (7).

Extracting information from patents automatically
is fast but has limitations (7, 29, 37). The majority of
patent text-mining systems have been developed, trained
and tested using the title and abstract of the patent
documents. Therefore, their usage is not evaluated on
full-text documents (31, 36). More importantly, automatic
extraction is mostly focused on extraction of all chemical
compounds mentioned. In manually excerpted databases,
the focus is on relevant compounds (5, 38). A compound
is relevant to a patent when it plays a major role within
the patent application (e.g. starting material or a product
in a reaction specified in the claim section). Relevant
compounds are a small fraction of all the compounds
mentioned within the patent document (9, 39). Automatic
identification of the relevant compounds would greatly
reduce the amount of extracted data from patents and can
improve the usefulness of patent resources. Furthermore,

these compounds can be used in predictive analyses
to identify the key compounds within the patent (key
compounds are the main compounds protected by the
patent application and are usually well-hidden within the
context) (9, 39). To our knowledge, automatic identification
of relevant compounds within patents has not yet been
investigated.

The objective of this study is to identify relevant
chemical compounds in patents using an automatic
approach. To develop and evaluate our approach, a patent
corpus with named-entity and relevancy annotations was
built.

Materials and methods

Figure 1 shows the relevancy classification workflow. The
chemical patents are pulled through patent offices. The
patent source documents are first normalized into a unified
format. They are then fed into the chemical entity recog-
nition system that consists of two different named-entity
extraction systems, Chemical Entity Recognizer (CER; Else-
vier, Frankfurt, Germany) (40) and OCMiner (OntoChem,
Halle, Germany) (41). CER extracts chemical entities and
tags them in the normalized input document. OCMiner
further enriches the output of CER by extracting addi-
tional chemical entities and assigning confidence scores
to all extracted entities of both systems. The associated
structures of chemical compounds extracted by CER or
OCMiner are generated, validated and standardized using
the Reaxys Name Service (42). The chemical annotations
in the patent corpus are used to train and test the chemical
entity recognition system. The relevancy annotations in
the corpus are used to train and test the relevancy clas-
sifier, which labels the chemical entities extracted by the
chemical entity recognition system as relevant or irrele-
vant. Below we describe each of the components in more
detail.

Normalization

The variety of input sources and file types needs to be
normalized into a unified text representation (4). The nor-
malization step is performed by converting all input files
(e.g. XML, HTML and PDF) into a unified XML rep-
resentation format. Predefined XML tags corresponding
to heuristic information such as document sections (title,
abstract, claims, description and metadata) are used within
this unified representation. The normalization also converts
all character encodings into UTF-8 (8-bit Unicode Transfor-
mation Format).

During normalization, we store a one-to-one mapping
between each character in the original text and the cor-
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Figure 1. Workflow of the relevancy classification.

responding character in the normalized document. This
provides us with the possibility to go back to the original
document from the normalized text and vice versa. It also
minimizes the efforts to update the annotations in the patent
corpus in case of changes in normalization methodology
(note that the documents in the corpus have also been
normalized).

Patent corpus development

The development of the chemical patent corpus with chem-
ical entity and relevancy annotations was done in two
phases. Figure 2 illustrates the corpus creation process. The
first phase focuses on building a corpus with chemical entity
annotations. In phase 2 the corpus obtained from phase
1 is used to assign relevancy annotations to the entities
annotated in phase 1. In this phase, annotators also flagged
any compounds with spelling mistakes. For each phase, a
set of well-defined guidelines was developed that helped
achieve annotation consistency.

Chemical entity annotation guideline

The chemical entity annotation guideline was developed
based on our previous patent corpus development guideline
(7), previous work by other scholars (32, 43–46), and the
help of subject matter experts in Elsevier. The guidelines
define the entities to be annotated. For each entity, positive
and negative examples were provided. Additionally, any
exception was defined and illustrated through examples.
The guideline also defined how the annotation should
be performed within the brat rapid annotation tool
(47, 48). Brat allows online annotation of text using
pre-defined entity types. Annotators were asked to

annotate chemical compounds (e.g. tetrahydrofuran),
chemical classes (e.g. zirconium alkoxide) and suffixes or
prefixes of these compounds (e.g. ‘stabilized’ as prefix in
‘stabilized zirconia’ and ‘nanoparticles’ as suffix in ‘silver
nanoparticles’).

Chemical compounds could be annotated in three cat-
egories: mono-component compound (pure chemical com-
pounds, e.g. systematic identifiers, trivial names, elements
and chemical formulas), compound mixture part (e.g. ‘Mag-
nesiaflux’, which scientifically is a mixture of 30% MgF2
and 70% MgO) or prophetic compound (specific com-
pounds that are uncharacterized within the text and are
mentioned in claims or descriptions only for intellectual
property protection).

Compound classes could be annotated in six categories:
chemical class (natural products or substructure names,
e.g. heterocycle), biomolecules (e.g. insulin), polymers (e.g.
polyethylene), mixture classes (e.g. opium), mixture part
classes (e.g. quinupristin) or Markush (textual description
of a Markush formula, e.g. HaXbC-C-H).

Relevancy annotation guideline

For the relevancy annotation, a new set of guidelines were
developed, which defined how relevant compounds should
be identified. The legal status of a compound (e.g. prophetic
or claimed) and its characterization (e.g. NMR or MS
measurement), properties (e.g. superconductivity), effects
(e.g. toxicity) and transformation (e.g. reaction) were taken
into consideration for defining the guidelines. The relevancy
annotation did not include suffixes and prefixes of com-
pounds. In brief, relevancy is assigned as follows:

• Prophetic compounds and Markush classes are relevant.
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Figure 2. Patent corpus development.

• Compound mixture parts, mixture part classes, mixture
classes, polymers and biomolecules are irrelevant.

• Mono-component compounds and chemical- classes are
assigned relevance based on the context of the full patent
text. They are considered relevant to the patent if (a)
the entity is present in the title or abstract section of
the patent, (b) the entity is part of a reaction context
(e.g. product, intermediate product, catalyst or starting
material used in synthetic procedures) or (c) the entity
or its measured property belongs to the invention in the
claim section and is connected to the core invention of the
patent. The mono-component compounds and chemical
classes are irrelevant if (a) the entity is only introduced for
further explanation and is described beyond the inven-
tion, (b) the entity is described for reference or compari-
son or (c) the entity is involved in a chemical reaction but
not a starting material, product or catalyst.

Data selection

Patent documents are long and extensive. Annotation
of full-text documents is time-consuming and expensive.
Complexity was reduced by selecting snippets of patent text
from a large set of patent documents that represented the
diversity of the data. We downloaded all EPO patents
with IPC class A or C (corresponding to chemistry)
from a 3-month period in 2016 (15, 16). This yielded
19 274 patents, which were divided into snippets as
follows. First, each patent was divided into six snippets
containing title, abstract, claims, description, metadata
and non-English section of the patent. Second, since
the performance of the brat toolkit drops on long
files (7), snippets of more than 50 paragraphs were
further divided into multiple snippets. From this set
of snippets, a small set was selected for annotation.

We performed random stratified sampling based on the
sub-classes of IPC A and C (list available at https://www.
wipo.int/classifications/ipc/en/). In addition, the following
conditions were satisfied: 10% of the snippets were from
titles, 10% from abstracts, 40% from claims and 40% from
descriptions, and all snippets were from different patents.

We selected a total of 131 snippets, which constitute
our patent corpus. The IPC sub-classes that occurred most
frequently were A61K, A61B, C07D, A61F, A61M and
C12N.

Chemical entity annotation process

We selected 10 chemistry graduates as annotators. The
annotators were located in different European countries.
To train the annotators, 11 of the 131 patent snippets were
distributed among the annotators using the brat annotation
tool (47, 48). The snippets were pre-annotated with an
untuned version of the chemical entity recognition soft-
ware that is used in this study (only for categories mono-
component compound and chemical class, see next section
for the description of this software). The pre-annotations
were displayed in brat, and annotators were asked to mod-
ify incorrect pre-annotated entities (wrong boundary or
entity type) and add missing entities according to the guide-
line (see Figure 3).

The 11 snippets were also annotated by two Elsevier
subject-matter experts (SMEs) who defined the guidelines.
The SMEs had PhDs in chemistry and ∼15 years of pro-
fessional experience in the field. Any discrepancies between
the annotations of the two SMEs were resolved in consensus
discussions. The resulting annotations (the training corpus)
were used as a reference and compared to the annotations of
each of the other annotators by inter-annotator agreement
(IAA) scores. We used the F-score (harmonic mean of

https://www.wipo.int/classifications/ipc/en/
https://www.wipo.int/classifications/ipc/en/
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Figure 3. Annotations in a patent snippet with the brat annotation tool.

recall and precision) as a measure of IAA, similar to other
studies (7, 43, 46). Several review sessions were held to
compare annotations and resolve inconsistencies, and the
annotation guideline was updated for clarity if needed. For
each annotator, training continued until the IAA between
the annotator and the SMEs was at least 85%.

After successful completion of the training, the remain-
ing 120 snippets of the corpus were distributed between the
annotators. Each snippet was annotated by three annota-
tors, after which the annotations were harmonized. The har-
monization was done for each entity as follows: if at least
two annotators agreed on the entity boundaries and the
entity type, that annotation was added to the gold-standard
set, otherwise an SME adjudicated the disagreement.

Relevancy annotation process

The same training corpus of 11 snippets was also anno-
tated for relevant compounds by the annotators and the
SMEs. They were provided with the reference annotations
of the chemical entities and had to indicate whether the
annotations were relevant or not. For every snippet, we
also delivered the corresponding full patent text to the
annotators and the SMEs. This allowed them to determine
relevance based on the complete document, which included
title, abstract, description and claims. The relevancy anno-

tations of the annotators and SMEs were compared, and
questions were resolved.

After training, the 120 snippets of the chemical entity
corpus created in the previous step were distributed
between the annotators. Each snippet was annotated by
five annotators. If more than three annotators annotated
the chemical entity as relevant it was considered relevant. If
three annotators annotated the chemical entity as relevant
it was considered equivocal. If less than three annotators
annotated the chemical entity as relevant, it was considered
irrelevant. The equivocal category was introduced since
relevance determination is sometimes complex and judged
differently by different experts (as relevance is decided
based on the full text). To capture this complexity, we
did not try to resolve ambiguity by enforcing a decision
by the SMEs. As per the guidelines, relevance is document
based. As a result, if a compound is considered relevant at
one occurrence in the snippet, it is marked automatically
relevant at any other occurrence. Finally, the annotators
were also asked to annotate any spelling errors. This
annotation can be helpful for improvement of chemical
entity recognition systems. As spelling errors can be hard to
detect, we decided to accept each spelling-error annotation,
irrespective of the number of annotators that made that
annotation. The corpus was divided into a development
and test set consisting of 50 and 70 snippets, respectively.
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Chemical entity recognition

We focused on non-statistical approaches for chem-
ical entity recognition as we wanted to associate a
chemical structure to extracted chemical compounds.
A dictionary-based approach was used in combination
with a morphology-based approach to identify chemical
entities. The structures of these compounds were produced,
validated and standardized using Reaxys Name Service
(42). Since the gold-standard annotations showed that
only a small set of relevant entities are from compound
class categories (see results), we decided to reduce our
chemical entity recognition scope to the identification and
classification of chemical compounds.

Name service

The Reaxys system uses a name-to-structure toolkit [Reaxys
Name Service (42)] and a set of standardization rules (e.g.
eliminate hydrogen bonds when constructing structures)
when new compounds are inserted into the database. In this
study, the Name Service was used to convert names to struc-
tures and standardize those structures as well as the struc-
tures in different dictionaries based on the Reaxys stan-
dardization rules, and to validate the structures assigned to
chemical compounds.

Chemical entity recognizers

An ensemble system was used for chemical entity recog-
nition. First, we used Elsevier’s CER software (40). CER
identifies and tags chemical compounds and their physi-
cal properties (e.g. color, melting point and boiling point)
within a text document and converts extracted compounds
into a chemical structure (using Name Service). In addi-
tion, CER also identifies chemical reactions and chemical
properties within the patent. The software uses a combina-
tion of dictionary-based and morphology-based approaches
to extract chemical compounds from patents. CER was
loaded with a dictionary derived from the manually curated
compounds in the Reaxys database. Similar to previous
studies (27, 28), an exclusion list was used to filter out any
noise (e.g. frequent compounds such as oxygen) from the
extracted compounds. The morphology-based approach in
CER identifies different elements within a compound and
combines them to create the final compound only if it can
validate the compound based on its structural chemistry
(e.g. can two elements bind with each other in this manner).
This validation is done on the structural level and through a
set of pre-defined rules processed by the Name Service. CER
cannot assign the extracted compounds to the different
compound groups that are defined in the guidelines.

Second, we used and improved OCMiner (41) to identify
chemical entities. OCMiner also uses a dictionary-based
approach along with a morphology-based approach to
extract chemical compounds. The dictionary used for
OCMiner was generated from a compound database built
from various publicly available sources such as PubChem
(23), DrugBank (49), ChEMBL (50) and ChEBI (20), among
others (41). To improve the quality of the dictionary,
frequent chemical identifiers that were associated to more
than one structure were manually resolved and the name-
to-structure mappings of the most-frequent identifiers were
manually validated. OCMiner also used other resolution
mechanisms to improve the quality of the dictionary [e.g.
counting the number of stereocenters (41)]. The Name
Service was used to standardize the compounds within
these dictionaries based on the same standardization rules
applied by CER and Reaxys. In comparison to CER,
OCMiner has additional functionality, such as abbreviation
expansion and spelling-error correction (41). The software
also has post-dictionary modules to identify systematic
names. In a separate module built for this study, OCMiner
cleans up the chemical entities identified by both CER and
OCMiner (e.g. overlapping annotations and combination
of simple annotations to complex entities) and assigns
compounds to the different compound groups. Finally,
OCMiner generates a confidence score for all recognized
chemical entities extracted by CER or OCMiner.

Relevancy classification

Relevance of a chemical compound is defined based on the
context of the full patent. To identify the relevance of a
specific entity, the complete patent should be analyzed for
that entity. We therefore gathered statistical information
for each unique entity (recognized in the snippet) from the
whole patent text and used that information to classify the
extracted entity. Relevancy classification was expressed as
a scalar relevance score that after normalization can vary
between zero (irrelevant) and one (relevant). We divided the
corpus into a training set and a test set to experimentally
find the best threshold for relevancy classification. The
training set was used along with the relevance score to
define the best cut-off point for the relevancy classification.
The results were then tested on the test set.

Relevance score

Several features derived from the full text are used to
calculate the relevance score. The relevancy score is a linear
combination of these features, where the coefficients (or
weights) are heuristically determined.

These features include the following:
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A. Compound frequency: Frequency of the compound
within the document. Usually compounds that occur
frequently in a patent document are less relevant (due
to the nature of patents), unless the compound is unique
to the patent.

B. Compound section: Occurrence of the compound
within specific sections of a patent (e.g. title and claim).
A compound in a claim section is more relevant than
a compound in a description section of a patent. If a
compound appears in multiple sections we prioritize
it in the following order: Title, Abstract, Claim and
Description.

C. Compound length: Length of the extracted term. We
have noticed that longer names are more likely to be
International Union of Pure and Applied Chemistry
(IUPAC) names and hence have a higher chance of being
relevant.

D. Surrounding characters: Occurrence of the compound
within special characters (e.g. ‘[’, ‘(’). Examples are
usually mentioned between special characters and they
will be less relevant.

E. Compound section uniqueness: Compound single
occurrence within a section of the patent. If a compound
is mentioned once in the claims and a few times in the
description it has higher probability to be relevant than
the other way around.

F. Compound without solvent: If the compound does not
contain solvents or laboratory chemicals, there is a
higher probability of the compound being relevant.

G. Compound wide usage: Presence of the compound in
one of a number of predefined groups representing
the frequency of compounds in a large set of chem-
istry patents. To create the groups, all chemical enti-
ties from a large set of patent documents (selection
of chemical patents in 2015, excluding patents from
the patent corpus) were extracted using OCMiner and
ranked according to their frequency of occurrence. The
resultant compound list was divided in 16 equally-sized
groups (16 an arbitrary number). Note here that we are
extending our calculation to data derived from a larger
set of patents. If a compound is frequently mentioned
in other patents, then there is a lower probability of it
being relevant.

Performance evaluation

The performance of the system against the gold-standard
annotations was evaluated using recall, precision and F-
score, given the number of true positives (TP), false positives
(FP) and false negatives (FN). For the entity recognition
task, TP represents the total number of correctly identified
chemical entities by the system (based on starting and

ending position of the entity in text), FP represents the
number of entities wrongly identified by the system and
FN represents the number of entities that are missed by the
system. Recall, precision and F-score metrics are calculated
as follows: recall = TP/(TP + FN), precision = TP/(TP + FP)
and F-score = 2∗precision∗recall/(precision + recall).

For the relevancy classification task, TP, FP and FN
are determined at the document level and only take into
account the unique entities identified in each of the docu-
ments. TP represents the number of compounds correctly
classified as relevant, FP represents the number of com-
pounds wrongly classified as relevant by the system and FN
represents the number of relevant compounds missed by the
system. The compounds in the corpus that were annotated
as equivocal were disregarded from relevancy calculation.
This pragmatic choice was made for those compounds
where evidently human annotators could not agree on their
relevance.

Results

Chemical entity annotation

The average IAA between the annotators on the 11 train-
ing documents initially was 72% and reached 92% after
two rounds of training. On the gold-standard set of 120
snippets, the average IAA between the annotators and the
harmonized annotations was 87%. This was higher than the
IAA between pre-annotation and the gold-standard (77%
for mono-component compound and 23% for chemical
class) indicating that annotators considerably changed the
pre-annotations. Table 1 provides the frequency of entities
within the corpus. Overall, 18 789 chemical entities were
annotated, of which 15 199 were chemical compounds and
3 590 were chemical classes. This resulted in an average
of around 150 annotations per snippet. The majority of
the annotations consisted of mono-component compounds
(13 564). In addition, the corpus contains 1848 relation-
ships from chemical compound or classes to 628 suffix or
prefixes annotations (a suffix or prefix can have a relation-
ship with one or more chemical compounds or classes).

Relevancy annotation

All 18 789 chemical entities were annotated for relevance
(Table 1). Of the 15 199 compounds, 1508 (9.9%) were
considered relevant and 362 (2.4%) were equivocal. Of the
3590 chemical classes, 266 (7.4%) were relevant, while 30
(0.8%) were equivocal. Thus, the majority of entities were
considered irrelevant (87.7% of the compounds and 91.8%
of the classes).
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Table 1. Number of annotations in the gold-standard set

Annotation type Annotation subtype Annotation Relevant Equivocal Irrelevant

Compounds Mono Component 13 564 883 362 12 319
Mixture part 1010 0 0 1010
Prophetic 625 625 0 0

Classes Chemical class 1848 249 30 1569
Biomolecule 1039 0 0 1039
Markush 17 17 0 0
Mixture 286 0 0 286
Mixture part 174 0 0 174
Polymer 226 0 0 226

Total chemical entities 18 789 1774 392 16 623
Other Suffix and prefix 628 — — —

Relation 1848 — — —

Table 2. Performance of the ensemble system on compound recognition for

different confidence score thresholds

Confidence score
threshold

Development Test
Precision Recall F-score Precision Recall F-score

0.0 88.5 79.3 83.6 86.5 82.3 84.3
0.1 88.6 79.1 83.6 89.1 82.3 85.6
0.2 89.1 78.9 83.7 90.1 82.3 86.2
0.3 89.1 78.6 83.5 90.1 81.6 85.7
0.4 89.1 78.4 83.4 90.1 81.5 85.6
0.5 89.1 78.4 83.4 90.1 81.5 85.6
0.6 89.1 78.4 83.4 90.1 81.3 85.5
0.7 87.2 60.6 71.5 90.7 69.4 78.6
0.8 82.0 36.2 50.3 96.2 39.8 56.3
0.9 100.0 0.1 0.2 96.4 0.8 1.7
1.0 100.0 0.1 0.2 97.2 0.8 1.7

Chemical entity recognition

The performance of the ensemble system on compound
recognition is shown in Table 2 for different thresholds of
the confidence score. On the development set, a threshold
of 0.2 yielded the best F-score of 83.7% (precision, 89.1%,
and recall, 78.9%). For this threshold, the best result was
also obtained on the test set (F-score, 86.2%; precision,
90.1%; and recall, 82.3%). Error analysis of the results
indicated that the performance of the system may further
be improved by better recognizing prophetic compounds,
reactants and products of synthesis procedures.

Relevancy classification

Figure 4 shows the performance of the relevance system
for different relevance score thresholds on the training set.
The best performance (in terms of F-score) was obtained
for a relevance score threshold of 0.53, with a precision
of 85%, a recall of 87% and an F-score of 86%. For the
same threshold, the performance on the test set was slightly

lower with 81% precision and 82% recall, resulting in an

F-score of 82%. Further investigation into the compounds

that the system classified as relevant showed that 97% of
these compounds were annotated as chemical compounds

in the chemical entity corpus. Therefore, only 3% of the
compounds classified by the system as relevant were not
chemical entities.

The relevancy classification is dependent on the perfor-
mance of the chemical entity recognition system in two
ways. First, only compounds that are found by the CER
can be classified as relevant. Second, the relevance-score
features for a given chemical entity are based on the full
patent text. The recognizer needs to correctly identify all
occurrences of that entity in the full text. To assess the
effect of the first dependency on the performance of the
relevance system, we fed the gold-standard chemical entities
as input to the relevance system (simulating a scenario
where the chemical entity recognition system has a precision
and recall of 100%). Apart from the patent snippet, all
other parts of the full patent document were analyzed with
the original system because gold-standard annotations were
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Figure 4. The performance of the relevance system based on precision, recall and F-score.

not available. When evaluated on our test set, the relevance
classification system obtained 93% precision, 88% recall
and 91% F-score. Further investigation into these scores
indicated that the system could have performed better if we
could also eliminate the second dependency.

We also investigated the contribution of individual rel-
evancy features to the performance of the relevancy clas-
sification system. For this we removed each feature in
turn from the relevance score and adjusted the relevance-
score threshold for optimal performance. Table 3 shows
that the length of the compound is a major indicator
of the relevance of the compound (10 percentage points
added value). Additionally, the patent section in which the
compound was found and compound wide usage in other
publications are also good indicators of the relevance of the
compound (around 5 percentage points added value). The
other features contribute between 1 and 2 percentage points
to the relevancy classification performance.

As can be seen from Table 3, leaving out a feature can
affect the optimal value of the relevance-score threshold.
Figure 5 shows the performance of the relevancy classifi-
cation system as a function of the threshold value when a
feature is left out.

Discussion

Extraction of chemical compounds from chemical-related
patents has recently been studied, focusing on patent titles
and abstracts (28, 31, 52) or full texts (3, 20, 21, 27,
51). The majority of these studies concentrated on identi-
fying chemical compounds in text while disregarding the
structures of the extracted compounds (31, 52). Some have

also looked at associating structures to extracted com-
pounds [e.g. (3, 20, 21)] and have resulted in products and
databases of chemical compounds in patents (3, 20, 21). To
our knowledge, this is the first attempt to narrow down the
focus to relevant compounds and their structures within
a chemical patent. Relevance of a chemical compound is
based on the context of the full patent document. Generally,
a relevant compound is a compound that plays a major role
in the patent (e.g. a product of a reaction that is mentioned
in the Claim section of a patent). We have shown that these
compounds are a small subset (<10%) of all compounds
mentioned in the textual part of a patent.

We have presented a two-step approach to identify
relevant compounds in patent documents: compound
identification (first step) followed by compound clas-
sification (second step). This approach allows the use
of the output of the first step for additional purposes
(such as indexing chemical compounds mentioned in
patents) but at the same time introduces dependencies.
Obtaining high precision and recall values in the first
step is essential for the success of the second step.
Based on the findings of our previous studies (27, 28),
we used an ensemble approach combining dictionary-
based and morphology-based approaches to obtain
high precision and recall. These approaches require a
small annotated corpus (26, 33) and can provide a
structural representation of the extracted compounds.
Associating correct chemical structures to compounds
is essential when extracting chemical compounds. To
reduce the possibility of associating a compound with the
wrong structure (34, 35) we regenerated the structures
of compounds in different databases with our name to



Database, Vol. 2019, Article ID baz001 Page 11 of 14

Table 3. The added value of individual features based on “leave-one-out” methodology

Setting Threshold Precision Recall F-Score Added
value

All features 0.53 84.8 86.8 85.8 -

A—Compound frequency 0.47 82.8 86.2 84.5 1.3

B—Compound section 0.40 95.5 70.0 80.8 5.0

C—Compound length 0.40 75.9 75.5 75.7 10.1

D—Surrounding characters 0.53 85.1 82.9 84.0 1.8

E—Compound section uniqueness 0.53 84.8 82.9 83.9 1.9

F—Compound without solvent 0.53 85.1 82.9 84.0 1.8

G—Compound wide usage 0.53 83.9 76.4 80.0 5.8

Figure 5. Performance of the relevancy classification system as a function of the relevance-score threshold when one of relevancy features A-G is

removed (see Table 3 for feature legend).

structure toolkit (Name Service) and standardized the
structures based on standardization rules used for Reaxys
(15).

The structures of non-systematic identifiers associated
with a compound within Reaxys are manually drawn by
excerpters and are later validated and standardized using
Name Service. Adding such structures to the Name Ser-
vice database allowed us to generate structures for non-
systematic identifiers. We used the same toolkit with the
same standardization functionalities to validate compounds
extracted using the grammar-based approach. This ensures
high quality and consistency of the extracted compounds.

To build the chemical entity recognition and relevancy
classifier system, a patent corpus annotated with chemical
entities and their relevance was needed. To our knowledge,
such a corpus did not exist (7). Currently available patent

corpora either are limited to subsections of the patents,
mostly title and abstract [e.g. the BioCreative corpus (36)],
or had other limitations that prevented their use, such
as different guideline definitions (focus on different entity
types), harmonization approaches (manual using SMEs vs
automation), low or unidentified IAA scores and limited
scope of coverage (only one chemical IPC class or one
section of a document) (7). We developed the corpus in
two steps. First, we constructed a chemical entity corpus
using random stratified sampling for content selection and
manual harmonization to ensure high quality. Later we
extended this corpus with relevancy annotations. We took
into account the inherent difficulty of classifying relevance
of some compounds by introducing ‘equivocal’ as a classi-
fication in the corpus. Chemical compounds identified as
equivocal can be classified as both relevant and irrelevant.
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The system can assign relevant or irrelevant for compounds
extracted in this area. Any compound identified as equivo-
cal was disregarded from our evaluation. Using five annota-
tors for relevancy annotation, we showed that the equivocal
label is only limited to ∼2% of the compounds.

Normalized patent documents were used to develop the
corpus and the system. Any change in the normalization
approach will lead to changes to the corpus and might
result in a need for retraining the system. We reduced
this dependency by finalizing the normalization before
developing the corpus and the software. We also intro-
duced a one-to-one mapping between the original patent
document and the normalized patent document to allow
possible changes to the corpus with limited efforts. The
relevancy classification system has lower dependency to
the normalization step as its performance is calculated
on unique mentions of compounds within a patent. The
dependency to the normalization step relies on the quality
of the patent source file. Digital patents [e.g. from EPO
(11) or USPTO (12)] have a higher quality than OCR
patents [e.g. from WIPO (13)]. Therefore, the system is
more dependable on the normalization when dealing with
OCR patents.

The chemical entity recognition software showed a pre-
cision of 90.1% and a recall of 82.3% for compound
recognition on EPO patents. The state-of-the-art statistical
systems (tested on patent title and abstract) have obtained
higher recall (precision of 87.5% and recall of 91.3%) (31).
These systems do not generate structures for the identified
chemical compounds. Error analysis of our system indicated
that the loss in recall in our system is mainly due to the
fact that reactants and products of synthesis procedures
are not recognized, and prophetic compounds are missed.
Identification of prophetic compounds may be improved by
taking into account trigger phrases (e.g. ‘The compound of
claim is:’, ‘A compound selected from’) or negative triggers
for these compounds (e.g. ‘catalysts’).

Our current process only investigates the identification
of relevant compounds in the textual part of non-OCR
patents. Expanding this approach to chemical classes (such
as Markush) can further improve the software. A large pro-
portion of relevant compound information is only available
through scaffolds, pictures and tables. Successful identifica-
tion of these compounds can result in a higher coverage.
Since 2001, some patent offices including the USPTO (12)
are requesting applicants to submit chemical structures and
reactions [as MDL Molfiles or ChemDraw CDX files (30)]
when submitting their patent applications. Note that in
many cases these are not drawn by authors or chemists and
are presented usually with defects in the connection table
of chemical structure. This can be a good starting point for
future research.

We have successfully managed to identify relevant com-
pounds in chemical-related patents. The resulting relevant
compounds can be used to predict key compounds within
a patent (9, 39, 53, 54). In future research, we want to
extend this work to chemical classes, increase the cov-
erage by dealing with OCR patents (that contain many
spelling errors) and utilize data from tables, scaffolds and
images.

Our system uses proprietary toolkits to extract chemical
compounds. License to the tools can be requested from Else-
vier. A demo of OCMiner is available through [http://www.
ontochem.de/our-products/information-discovery.html]. A
demo of CER can be requested from https://www.reaxys.
com. The same methodology can be applied using non-
proprietary toolkits [e.g. toolkits developed for BioCreative
V, CHEMDNER track (55)]. The training corpus used to
train the annotators is made available through Mendeley
Data (56).
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