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Abstract: Compared with the fixed fusion structure, the flexible fusion structure with mixed fusion
methods has better adjustment performance for the complex air task network systems, and it
can effectively help the system to achieve the goal under the given constraints. Because of the
time-varying situation of the task network system induced by moving nodes and non-cooperative
target, and limitations such as communication bandwidth and measurement distance, it is necessary
to dynamically adjust the system fusion structure including sensors and fusion methods in a given
adjustment period. Aiming at this, this paper studies the design of a flexible fusion algorithm by
using an optimization learning technology. The purpose is to dynamically determine the sensors’
numbers and the associated sensors to take part in the centralized and distributed fusion processes,
respectively, herein termed sensor subsets selection. Firstly, two system performance indexes are
introduced. Especially, the survivability index is presented and defined. Secondly, based on the
two indexes and considering other conditions such as communication bandwidth and measurement
distance, optimization models for both single target tracking and multi-target tracking are established.
Correspondingly, solution steps are given for the two optimization models in detail. Simulation
examples are demonstrated to validate the proposed algorithms.

Keywords: flexible fusion structure; mixed fusion method; combinatorial optimization; sensor
subsets selection; tracking accuracy; system survivability

1. Introduction

The rapid development of some key technologies—for example, communication technology,
sensor technology, data processing, and so on—have promoted the research into applications of
wireless sensor network systems. According to different demands, there are mainly two types including
passive and active networks. Due to their different working principles, the data processing methods
are clearly different. Therefore, we should have different views when designing data fusion algorithms
for sensor networks. Actually, it is necessary that fusion algorithms should have adaptive function
because of the complex application background. Namely, the fusion structure of the task network
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system should be flexible. This means that the task network system can dynamically determine and
choose the sensors taking part in the fusion processes. Namely, the flexible fusion also indicates that
sensor numbers are time-varying for centralized and distributed fusion methods. Then, most of the
traditional fusion methods cannot be directly used to deal with dynamical sensor selection. To some
extent, the sensor selection belongs to the sensor management domain. It is important and significative
to study flexible fusion methods for wireless task network systems.

Multisensor fusion is a fundamental technique for networked information systems (NIS), which
can fuse different kinds of measurement data from multiple sensors. It has the advantage of reducing
the uncertainty of target perception and improving the performance of the NIS [1–6]. For instance,
designing multi-sensor data fusion algorithms in order to improve target tracking learning system
performance has recently been one of the popular topics in the NIS area. The traditional fusion
tecnologies mainly include centralized and distributed fusion methods. The two approaches have
different performance and application background. Accordingly, it is a good way to combine the two
fusion approaches—the mixed fusion structure with the centralized and distributed fusions is more
effective for task network systems. Thereby, the issue of how to ensure that the sensors to respectively
take part in the centralized fusion and distributed fusion is important and challenging. In addition, the
adopted basic nonlinear filter also affects the fusion performance for nonlinear systems. An improved
self-adaptive unscented Kalman algorithm was presented in [7] to ameliorate the stability of target
tracking. A particle filter algorithm is proposed based on optimizing the dynamic neighborhood
self-adaptive particle in order to raise target tracking accuracy in [8]. Compared with the traditional
Kalman filter, a fixed gain Kalman filter which was studied in [9] had better performance from the
perspective of computational cost. Further, based on the self-adaptive neuro-fuzzy inference system,
In [10], Ma et al. presented an improved Kalman filtering algorithm to reduce the tracking error.
Sun et al. [11] presented an improved extended Kalman filter-based target tracking learning algorithm.
However, overall research on the sensor fusion structure is still lacking; until recently, most works were
mainly based on single and fixed fusion methods. They have not considered the case that an initial
sensor fusion structure would not be adaptive to the whole tracking process because of the richness
of the target tracking system, while simultaneously lacking a sensor fusion structure recombination
design. The focus of this paper is mainly to design and solve an optimization model on sensor subsets
selection, so only the traditional unscented Kalman filter (UKF) is used. In fact, the nonlinear filters
mentioned above can be used in our optimization solution to improve associated fusion estimation
and tracking performance.

In this paper, the flexible fusion structure concept is introduced to improve the universality of
the learning system. Based on our early work in [12], we will explain the concept, formation, and
application scenes of the flexible fusion structure in detail, and further analyze the advantages of
flexible fusion structure relative to the fixed fusion structure. Here, a fixed fusion structure means
that once the fusion method (e.g., centralized fusion or distributed fusion) is determined, neither the
fusion method nor the sensors taking part in the fusion process are changed during the whole working
time. Clearly, this approach does not satisfy the practical requirements of engineering applications.
However, because the flexible fusion structure has a dynamical adjustment function, it has better
self-adaptive adjustment ability than the fixed structure. Additionally, it can quickly and flexibly
regulate the system resources allocation to respond to the change of the tracking situation. Aiming
at the above conditions and based on the earlier work [12], we focus on this popular research topic
(i.e., flexible fusion structure for target tracking or state estimation). In order to achieve self-adaptive
adjustment ability, some available models and algorithms are analyzed in this manuscript, and the
main contributions are as follows:

• Two indexes (tracking accuracy and survivability) are introduced to integrally describe system
performance in Section 2.
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The current work gives substantial attention to the tracking accuracy. However, the survivability
index is seldom discussed. In this work, a definition of survivability is presented and a detailed
computation method is also given.

• The optimization models are established for sensor subsets selection for single target and
multi-target tracking in Section 3.1. Based on the two performance indexes, two optimization
models with multiple constraints are creatively designed. Clearly, the optimization model based
on single target tracking is the foundation of multi-target tracking.

• The solutions of the optimization models are also given and the detailed solution steps are clearly
given in Section 3.2.

The rest of the paper is organized as follows. The problem formulation—including the
introduction of the task network system, system description, and fusion methods—is given in
Section 1. Section 2 introduces the two performance indexes: the tracking accuracy and the survivability.
In Section 3, the dynamic sensor subsets optimization selection problem—including optimization
models and solutions—is studied under the flexible fusion structure. Simulation examples are
demonstrated in Section 4. Finally, we conclude the paper in Section 5.

2. Problem Formulation

2.1. Task Network System

A networked information system (NIS) connects all the information units within a given domain
in order to construct a real-time and high-speed information system. Information fusion is one of
the important techniques used to establish this kind of NIS, and the basic networked information
fusion structure is shown in Figure 1. The information fusion center communicates with the local
sensor nodes by data link, and then the system fusion center sends commands to each sensor node and
receives the measurement data or the local fusion estimation data from sensor nodes. Further global
data fusion will be constructed. There are two limitations to this structure:

• Each sensor node can only track a limited number of targets;
• The fusion center can only process a limited amount of sensor measurement data with respect to

the limited communication bandwidth and the computing capacity.
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Figure 1. The basic information fusion structure.

The target tracking process is not stable, while the tacking situation is complex, so the system
performance indexes are affected by the internal and external unknown factors. In order to achieve an
optimal or suboptimal affected system state, we need to regulate the configuration of system surplus
resources and change the fusion method of sensor nodes. In the following, we will analyze the target
tracking fusion system in detail and design a new system optimization formulation.

2.2. System Description and Fusion Methods

The target tracking system includes M warplanes (M dynamic sensor nodes), and each warplane is
equipped with L same groups of sensors. B(kbps) denotes the total system communication bandwidth
resource. In order to reduce signal caused risk, the system adopts the passive tracking method, with
the data receiving period being T.
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First, we briefly give the nonlinear target tracking system state model as follows:

xk+1 = f (xk) + wk, (1)

zk,i = hi (xk) + vk,i, i = 1, 2, · · · , ML, (2)

where (1) and (2) are tracking state equation and measurement equation; xk is state vector and zk,i
is measurement vector; f (xk) and hi (xk) are state transition function matrix and state measurement
function matrix, respectively; process noise wk and measurement noise vk,i are zero mean white
Gaussian noise with the covariance Qk and Rk,i, respectively, while the measurement noises between
each sensor are uncorrelated.

In this work, the UKF is taken as the basic data filtering method, and the details refer to [13–15].
Suppose in time period t that there are mc,t and md,t number of centralized fusion nodes and

distributed fusion nodes, respectively, and mc,t + md,t ≤ M (note: subscript notation “c” denotes the
part of centralized fusion and “d” denotes the part of distributed fusion). The active sensor numbers
are nic ,t, (ic = 1, 2, · · · , mc,t) and nid ,t, (id = 1, 2, · · · , md,t), and

nc,t =
mc,t

∑
ic=1

nic ,t

nd,t =
md,t

∑
id=1

nid ,t

, and nc,t + nd,t ≤ M · L. (3)

The adopted dimension expansion fusion method and local estimate weighted fusion method for
system centralized fusion nodes and distributed fusion nodes are as follows [16]:

• Dimension Expansion Fusion Method

Integrate Nc measurement equations into a large measurement equation

Zk = H (xk) + Vk, (4)

and
E {Vk} = 0, E

{
VkVT

k

}
= R∗k ,

where
Zk =

[
zT

k,1 zT
k,2 · · · zT

k,nc,t

]T
,

Hk =
[

hT
1 (xk) hT

2 (xk) · · · hT
nc,t (xk)

]T
,

Vk =
[

vT
k,1 vT

k,2 · · · vT
k,nc,t

]T
,

R∗k =


Rk,1 0 · · · 0

0 Rk,2 · · · 0
...

...
...

0 0 · · · Rk,nc,t

 .

Based on the state equation and the measurement equation, applying the basic UKF algorithm,
the multi-sensor centralized dimension expansion fusion estimator is

{
x̂k|k = x̂k|k−1 + Kk

(
Zk − Ẑk|k−1

)
,

Pk|k = Pk|k−1 −KkPzz,k|k−1KT
k

(5)
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where 

Pxz,k|k−1 =
2n
∑

j=0
ωcov,j

(
Øk|k−1,j − x̂k|k−1

)
×
(

Yk|k−1,j − Ẑk|k−1

)T
,

Pzz.k|k−1 =
2n
∑

j=0
ωcov,j

(
Yk|k−1,j − Ẑk|k−1

)
×
(

Yk|k−1,j − Ẑk|k−1

)T
+ R∗k ,

Kk = Pxz,k|k−1P−1
zz,k|k−1.

(6)

• Local Estimate Weighted Fusion Method

The local estimate weighted fusion estimator is
x̂k|k =

md,t

∑
id=1

P−1
k|k,id
P−1

k|k
x̂k|k,id ,

P−1
k|k =

md,t

∑
id=1

P−1
k|k,id

.
(7)

From (3) to (6), we can get the state estimate x̂k|k,c and the estimate error covariance Pk|k,c of
the centralized fusion part; from (7), we can get the state estimate x̂k|k,d and the estimate error
covariance Pk|k,d of the distributed fusion part, so the global fusion results of the system are

x̂k|k,sys =
P−1

k|k,c

P−1
k|k,sys

x̂k|k,c +
P−1

k|k,d

P−1
k|k,sys

x̂k|k,d, (8)

P−1
k|k,sys = P−1

k|k,c + P−1
k|k,d. (9)

As we know, there are several ways to exchange data in task network systems. Because this paper
considers a kind of special air task network system which is strictly limited to communication among
nodes, it only considers a simple approach. Namely, all available sensors send local information to the
fusion center; for example, the nodes under the centralized fusion mode send the measurements, and
the nodes under the distributed fusion mode send the local estimates. There is no commutation among
local available sensors. All fusion operations are done in the fusion center, regardless of the centralized
fusion and the distributed fusion. Thereby, the centralized fusion and the distributed fusion are carried
out in parallel with the data communication; for example, the group method with multiple CPUs
can be used. However, for the fusion process with the centralized and the distributed information in
the fusion center, there are several ways to integrate the information. Strictly speaking, the fusion
process is not in parallel with the fusion center for the centralized fusion and the distributed fusion.
Commonly, the fusion is performed under a given sequential rule, and it is highly effective because
the CPU in the fusion center has strong computation ability.

3. Analysis of System Performance Indexes

The purpose of this paper is to improve the self-adjustment ability of the target tracking system,
and the system optimization goal is to maximize the system performance within certain resources
to solve the optimal configuration problem of system resources. Target tracking accuracy and
system survivability are the two most important performance judgements of the target tacking fusion
system [17]. The system performances have a close relationship with system resources allocation,
and the above two indexes will be analyzed qualitatively and quantitatively in detail as follows.
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3.1. Tracking Accuracy

Accurate target location is the primary task of a target tracking system, which reflects on
the tracking accuracy index that to a certain extent determines the system’s overall performance.
The tracking accuracy is related to sensor performance, measurement data volume and quality, fusion
algorithm and fusion structure, and other external uncontrollable factors. External factors cannot
be artificially controlled, so, in order to guarantee the system performance under changing external
conditions, we should regulate the deployment and allocation of internal system resources and modify
the data fusion method of each sensor node self-adaptively.

Multi-sensor technology improves the system performance to a large degree, but the system
becomes more complex. In target tracking, it is necessary to solve the problem of optimal sensor
subsets selection. More uncertain sensors lead to better results, and the best way is to choose the
optimal combinations of sensors and the optimal combination of fusion methods for each target in
order to obtain optimal tracking performance [18–20]. Therefore, dynamic sensor management is one
of the important links for a sensor network system, while controlling the sensors at optimal working
status can greatly improve the system performance.

Compared with distributed fusion, centralized fusion has better fusion accuracy, and in this
paper we use the hybrid fusion method to process data based on the UKF. The hybrid fusion method
combines the advantages of the centralized and distributed fusion methods, and it is a supplement of
those two fusion methods. The system data fusion method is based on the UKF, so the convergence
expectation of fusion estimate error covariance can be obtained as the measure standard of target
tacking accuracy [21–23]. When M sensors all adopt the centralized fusion method, the system has the
best tracking accuracy; meanwhile, when the system has only one sensor node working, the tacking
accuracy is worst.

Suppose the system fusion estimation error covariance is Pe,t as calculated by (9). The upper and
lower limits of tr(Pe,t) are tra and trb, respectively; i.e.,

tra < tr(Pe,t) < trb,

where {
tra ≥ tr(Pmin),
trb ≤ tr(Pmax),

where tr(P) denotes the trace of matrix P; tr(Pmin) is the convergence expectation of fusion estimation
error covariance, while all the sensor nodes adopt the centralized fusion method; tr(Pmax) is the
convergence expectation of fusion estimation error covariance, while the system has only one sensor
node working.

3.2. System Survivability

The “survivability” index is used to express the possibility that the task system cannot be
discovered by the non-cooperative target. The survivability can be used for the nodes and the system.
In this paper, it is used for the task network system. This is because the whole network system should
be discovered with a large probability once one of the nodes has been found by the non-cooperative
target [24]. The factors influencing survivability index include data communication between the
network nodes/platforms and the fusion center, radar radiation, etc. For simplicity and considering
the passive tracking, we only consider the influence of data communication traffic on the survivability
index. For this, the “survivability” is in relation with fusion architecture design. The communication
between the fusion center and the nodes with only a passive tracking function is a main event leading
to being found for the task network. Thereby, we use the communication time to formulate the
survivability of the air task network. Intuitively, longer communication time between the center and
the nodes or among nodes means worse survivability for the task network system—namely, they have
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an inverse relation. In other words, because there is more communication between the fusion center
and the local nodes, the fusion center can obtain more available information on the non-cooperative
target. Obviously, the fusion accuracy can be improved due to more information. Likewise, more
information communication will lead to a greater probability of being detected by non-cooperative
targets, namely the risk of being discovered by non-cooperative targets should be increased and the
survivability of the tracking system should be reduced. In contrast, less communication means that
the information taken by the fusion center is less and the fusion accuracy should be decreased. At the
same time, the survivability should be increased because of less communication and the probability of
it being detected and discovered should be reduced.

For a given fusion period, the local sensors have several possible samples/measurements. For the
centralized fusion nodes, there are many data transmission operations from local sensors to the fusion
center in a given fusion period. For the distributed fusion nodes, there is only one transmission
operation in a period because many samples can be processed by a local processor to form a unified
local estimate, which can be transmitted to the fusion center. If the centralized fusion node is allocated
too much in the system structure design, it will bring out too much data transmission traffic, which
will have a great influence on system survivability, and our planes will be easily exposed to the
nonoperative targets; therefore, we should reduce the number of centralized fusion nodes. In order to
guarantee the requirement of tracking accuracy, we have to increase the number of centralized fusion
nodes, which leads to a mutual restriction relation between the system survivability index and the
tracking accuracy index. Consequently, we should adjust the allocation of the node fusion method
under the given conditions in the context of the actual conditions.

In this paper, we consider the survivability index to be mainly determined by the data
communication traffic, which can measured by the data communication times ct between local sensor
nodes and the fusion center. Here, we do not consider the fully decentralized fusion structure and
there is no communication among local sensors. Based on the experience, the survivability index
changes little within the limited extent of data transmission times, and with the rapid increase of data
transmission times, the survivability index declines quickly. Due to the inverse relation mentioned
above, we considered several kinds of decreasing functions. Through graphical simulation analysis, the
amplitude–frequency characteristics function of the first order inertia link is comparatively appropriate
if it could be properly improved. Accordingly, in terms of background knowledge and experience,
two modifications have been done to obtain an available survivability index. The first is to modify the
quadratic as a cube, keeping the root sign the same, and the second is to adopt a logarithmic operation
to realize dimensionless and standardization effects. The logarithmic form could be considered to be
derived from the logarithmic amplitude–frequency characteristics function.

Then, according to the explanation mentioned above, we can get the time computation formula of
one communication operation from transmission to reception, which can be expressed by a third-order
inertia logarithmic function

st = lg
10

3
√

1 + λ3c3
t

, 0 < st ≤ 1, (10)

where 0 < λ ≤ 1 is the function attenuation coefficient that determines the function attenuation
trend—it is a positive decimal and the λ value is different in different systems. Certainly, other
methods for the design of the survivability index may exist, and a comparison study is very important
and significant in future work.

In order to realize the sensor management function or flexible fusion structure (namely,
to determine the sensor subsets under the centralized and distributed fusion frames), it is important to
construct an index to describe the communication time of the whole task network system in a fusion
period. This index is taken as the base to optimally solve the sensor subsets. From a normal viewpoint,
greater communication time means a greater probability of being discovered by the noncooperative
target. Actually, there are many possible ways to construct the system commutation time. Here,
we simply take the summation of commination times of all used nodes in a fusion period as the system
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commutation time. In other words, the system commutation time is composed of two parts, which are:
the system centralized fusion part cc,t = nc,t and the system distributed fusion part cd,t = md,t. Then,
the system communication time is expressed by

csys,t = cc,t + cd,t = nc,t + md,t.

According to different values of λ, we plot the change curve of st as Figure 2. As shown in the
figure, the change curve of st basically conforms to the qualitative analysis change requirements of
the survivability index, which indicates that the design function of st is feasible. It should be noted
that although there are many ways to design the system communication time index, it is not naturally
influenced to establish and solve the optimization model.

0 50 100 150 200 250 300 350 400
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

λ=0.02

λ=0.03

λ=0.04λ=0.05

c
t

s
t

Figure 2. The change curve of s.

It is necessary to consider the security risk factor condition for a single tracking plane, which is an
important part of the system survivability index. When the threat of one enemy plane to one of our
planes being greater than the safe threshold value, our tracking plane can adopt the action of switching
to standby work mode to stop all the sensor activities, and use the avoiding protection method to stay
at the tracking formation. Until the enemy threat becomes relatively small, the dormant tracking plane
can restart work on the tracking task.

A single-platform security risk coefficient can be treated as the threat value of enemy planes to
our planes; a greater threat value means greater mission risk. The method of evaluating threat value
was drawn from [25]. Suppose the requirement of system initial risk coefficient safe threshold value is
sr0, and the real-time evaluation of security risk coefficient is sri,t, (i = 1, 2, · · · , M), and

sri,t < sr0, i = 1, 2, · · · , M.

4. Dynamic Sensor Subsets Selection Under Flexible Fusion Structure

4.1. Establishment of Optimization Model for Sensor Subsets Selection

Because of the time-varying situation of the task network system induced by moving nodes and
non-cooperative target, and limitations such as communication bandwidth and measurement distance,
it is necessary to dynamically adjust the system fusion structure, including sensors and fusion methods
taking part in the fusion for a given adjustment period. The target tracking accuracy is measured by
the estimated error covariance, so the tracking accuracy of this paper is a low-quality index, and it
can be standardized by the index quantitative method of cost, defined by the standardized function
Pp (tr(Pe,t)) as the target tracking accuracy performance value function, and

Pp (tr(Pe,t)) =


1, tr(Pe,t) ≤ tr(Pmin),
tr(Pmax)−tr(Pe,t)

tr(Pmax)−tr(Pmin)
, tr(Pmin) < tr(Pe,t) < tr(Pmax),

0, tr(Pe,t) ≥ tr(Pmax).

(11)
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The above formula is a piecewise function which expresses three cases on Pe,t, Pmin, and Pmax.
A larger value of Pp (tr(Pe,t)) means the system has better tracking accuracy. The goal of the target
tracking system dynamic sensor nodes management is to choose the best combination of the sensor
nodes fusion method within the performance index requirement extent, and it has to meet the necessary
constraints, which brings the maximum performance into the target tacking system. In summary,
we can design a kind of objective optimization model of sensor nodes’ dynamic management:

f (mc,t, md,t) = arg max
f

(
Pp (trPe,t)

)
, (12)

s.t.


0 < mc,t + md,t ≤ M,
tra < trPe,t < trb, smin < st ≤ 1,
sri,t < sr0, ri,t < Di,
rbw,t ≤ 1,

where ri,t < Di is the constraint of sensor measurement distance, Di is the maximum measurement
distance of each sensor node; rbw,t ≤ 1 is the constraint of data communication bandwidth, rbw,t is the
consumption proportion of bandwidth resource,

rbw,t=
nc,t × b + md,t × b

B
,

where b is the occupied communication bandwidth size of one sensor to transmit the measurement
data in one time period. The network adjustment principle is shown by optimization formulation
Equation (12). The solution of optimization Equation (12) is the numbers and the associated sensors
that take part in the centralized and distributed fusion processes.

4.2. Multi-Step Solution of Multi-Constraint Optimization Model

The multi-airborne sensor nodes allocation is a problem of multi-target NP combination
optimization. For the massive case, with the increase of targets and sensor nodes, it is difficult
to solve the model directly, which will cause the problem of “combination explosion”, and it needs a
large amount of computation time and storage space, and, given this, it is even possible that the model
will remain unsolved. So we adopt the step-by-step solution strategy to gradually reduce the solution
space based on the model constraints, and the optimal solution can be obtained.

For the single target system, the solution steps are as follows:

(1) Based on the constraint of sensor node measurement distance, mark off the distant available
sensor node subset S1;

(2) Check whether the subset S1 is consistent with the constraint of single plane security risk to get
the security risk available subset S2;

(3) Solve all the possible groups of mc,t and md,t under the constraints of tr(P), s, and rbw.
If mc,t + md,t > size(S2), there is no optimization solution, and if the situation is allowable, we can
turn back to step (1) or step (2) to widen the constraint extent and proceed to solve the next step;
when the mc,t + md,t ≤ size(S2), the model has solutions, and to get the optimal solution of mc,t

and md,t through the objective function f (mc,t, md,t);
(4) Allocation of mc,t and md,t in subset S2: firstly to allocate the mc,t, the principle of which is to

select the sensor nodes that are closer to the fusion center; if there are two sensor nodes whose
distances are equidistant, choose the node that has the litter security risk coefficient; then, it is
the turn of md,t. Its principle is the same as with mc,t, but the allocation range is the remaining
sensor nodes of subset S2.

For a multi-target system, before the above steps, we need to allocate the optimal sensor node
subsets for every target. The allocated sensor nodes of each target should not be more than the
average of the total number of nodes for all targets, and every node should be allocated to a target.
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The allocation principle is to maximize the threat values of airborne planes relative to targets, and the
objective optimization model is

δ∗ (t) = arg min
δ

N

∑
j=1

M

∑
i=1

δij,trij,t, (13)

s.t.


δij,t ∈ {0, 1} ,

N
∑

j=1
δij,t = 1,[

M
N

]
≤

M
∑

i=1
δij,t ≤

[
M
N

]
+ 1,

where N is the number of targets and δij,t is the allocation matrix of sensor node i to target j. δij,t = 1
denotes that the sensor node i is tracking to the target j, otherwise the sensor node i is not allocated.
rij,t is the relative distance of the sensor node i to the target j. So, for the multi-target situation, the
objective optimization model of sensor nodes dynamic management is updated as

f ∗
(

mj
c,t, mj

d,t

)
= arg max

f
Pp

tr

(
N

∑
j=1

(
Pj

e,t

)−1
)−1

 , (14)

s.t.


0 < mj

c,t + mj
d,t ≤

[
M
N

]
+ 1,

trj
a < trPj

e,t < trj
b, smin < st ≤ 1,

srij,t < sr0, rij,t < Di,
rbw,t ≤ 1.

The δij,t in the multi-target model that can be obtained by using the ant colony optimization
algorithm (ACOA) [26,27]. The ACOA is a metaheuristics bionic optimization algorithm that has
strong applicability in terms of solving discrete combinatorial problems. In the solution problem

of δij,t in this paper, the max
δ

N
∑

j=1

M
∑

i=1
δij,trij,t can be treated as the elicitation function φij, based on the

N
∑

j=1
δij,t = 1 to setting the tabu table Tyes,j of ants’ search targets. The ants firstly randomly generate the

target searching sequence, then quickly obtain the sensor node allocation subsets of every target, and
finally determine the optimal search path through multi-iteration, and the near-optimal solution of the
objective function is obtained.

5. Simulation

In order to verify the feasibility of the designed system optimization model, in this section,
we demonstrate the simulation in two different situations: one is the single target tracking situation,
the other is the multi-target tracking situation. It analyzes the simulation calculation results in these
two situations. This paper considers two indexes (tracking accuracy and survivability) to express the
system tracking performance. Commonly, this kind of study only uses the tracking accuracy index.
Thereby, our scene covers most of the current studies. However, it does not compare the case with
only the tracking accuracy index or the case with two indexes in the simulation section.

5.1. Single Target Tracking Situation

In time period t, our command center sends M = 6 reconnaissance planes to track an enemy
plane T1 that is in our airspace. Assuming the non-cooperative plane has an approximately uniform
motion on the X-axis and it has an approximately uniform motion on the Y-axis as well, Figure 3 is the
radar map of the enemy’s and our initial states.
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Figure 3. Radar map of enemy and friend initial states.

The target state is x = [x, y, ẋ, ẏ]T, its initial state is x0 = [50, 000, 2000, 380, 120]T, and
P0 = diag(64, 10, 4, 4); the state transfer matrix is

F =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 .

The coordinate data of our planes is shown in Figure 3, and the 2th tracking plane is the fusion
center. Each plane has been allocated L = 3 groups of the same measurement sensors to measure
the distance rk and angle ϕk of the target. In the actual sensor measurement, there will be additive
measurement noise vk, so in the two-dimensional radar model, the target measurement equation is

zk,i = hi(xk) + vk =

[
rk,i + vr,k,i
ϕk,i + vϕ,k,i

]

=


√
(xk − xs,i)

2 + (yk − ys,i)
2 + vr,k,i

tan−1 |yk−ys,i|
|xk−xs,i| + vϕ,k,i

 , i ∈ M

where (xk, yk) is target coordinate and (xs,i, ys,i) is the i-th plane node coordinate.
Assume the system noise Qk = diag(1, 1, 0.12, 0.12), the measurement noise rk,i = diag(102, 0.12),

and the measurement period T = 0.5. The target data fusion is done with the entirely centralized
method and the single node fusion method, respectively, to get the estimated error covariance trace
curve of the target state, as shown in Figure 4. So, we can estimate that the upper and lower limits of
system fusion tracking accuracy are E [tr(Pmin)] ≈ 2.0211 and E [tr(Pmax)] ≈ 16.2603.
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250
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1

whole centralized fusion for target T
1

Figure 4. Trace of fusion error covariance of target T1.
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In time period t, the performance index requirements and constraint conditions of the system
target tracking task are given as follows

2.5000 < trPe,t < 5.000,
0.95 < st ≤ 1,
sri,t < 0.50, ri,t < 42000,

By calculating, we can know that all the airborne sensor nodes satisfy the measurement distance
constraint and the security risk constraint; however, because of a mechanical failure, plane 3th is out of
service. So, S2 = {si} (i 6= 3) where si is the i-th sensor node.

Based on solution step (3), to circularly verify all the satisfied combinations of mc,t and md,t,
and according to the f (mc,t, md,t), we can select the optimal result (mc,t = 2, md,t = 3). Based on the
step (4), we can determine that the optimal allocation options are that the first and second airborne
sensor nodes choose the centralized fusion method, and the fourth, fifth, and sixth nodes choose the
distributed fusion method. In this allocation option, the trace of the state estimate error covariance of
target T1 is shown in Figure 5, and we can estimate E [tr(Pe,t)] ≈ 2.6026, the system survivability index
st = 0.9541 (λ = 0.08, ct = 9), and the value of optimization objective function

foptimal max (mc,t = 2, md,t = 3) = 0.9592.
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Figure 5. Optimal allocation trace of fusion error covariance of target T1.

5.2. Multi-Target Tracking Situation

In time period t, our command center sends M = 9 reconnaissance planes to track the two enemy
planes T2 and T3 in our airspace. Figure 6 is the radar map of the enemy’s and our instantaneous
states. Assume that the non-cooperative planes have approximately uniform accelerated motion on
the X-axis and and have approximately uniform accelerated motion on Y-axis as well. The target state
vector is x = [x, y, ẋ, ẏ, ẍ, ÿ]T, and assuming the target states are x2

0 = [79000, 2500, 100, 25, 2,−2]T and
x3

0 = [80000, 2000, 100, 25, 2,−2]T, and P2,3
0 = diag(100, 10, 1, 1, 0.1, 0.1), the state transfer matrix is

F =



1 0 T 0 T2

2 0
0 1 0 T 0 T2

2
0 0 1 0 T 0
0 0 0 1 0 T
0 0 0 0 1 0
0 0 0 0 0 1


.
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Figure 6. Radar map of enemy and friend instantaneous states.

The coordinate data of our planes is shown in Figure 6, and plane 9 is the fusion center.
Each tracking plane has been allocated L = 3 groups of the same measurement sensors to measure
the distance rj

k and angle ϕ
j
k of targets. In the actual sensor measurement, there will be additive

measurement noise vj
k; so, in the two-dimensional radar model, the target measurement formula is

zj
k,i = hi(x

j
k) + vk,i =

[
rj

k,i + vj
r,k,i

ϕ
j
k,i + vj

ϕ,k,i

]

=


√(

xj
k − xs,i

)2
+
(

yj
k − ys,i

)2
+ vj

r,k,i

tan−1

∣∣∣yj
k−ys,i

∣∣∣∣∣∣xj
k−xs,i

∣∣∣ + vj
ϕ,k,i


,

i ∈ M,
j ∈ N,

where
(

xj
k, yj

k

)
is jth target coordinate, (xs,i, ys,i) is the ith plane node coordinate. Assume the system

noise Qk = diag(1, 1, 0.12, 0.12, 0.012, 0.012), the measurement noise rk,i = diag(52, 0.12), and the
measurement period T = 0.5. Undertaking the target data fusion with an entirely centralized method
and single node fusion method for target T2 and T3, respectively, we get the estimated error covariance
trace curve of the target state as shown in Figure 7. So, we can estimate that the upper and lower limits
of system fusion tracking accuracy are E [tr(Pmin)] ≈ 2.0207 and E [tr(Pmax)] ≈ 40.0919.
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Figure 7. Trace of fusion error covariance of target T2 and T3.

Based on the above simulation scene, we first allocate δij for T2 and T3 by using ant
colony optimization algorithms, and obtain the optimal security coefficient allocation results
(δ32, δ42, δ62, δ82, δ92) and (δ13, δ23, δ53, δ73). Assume that the performance index requirements and
constraint conditions of system target tracking task in time period t are{

5.0000 < trP2
e,t < 7.0000, 6.0000 < trP3

e,t < 10.0000,
0.85 < st ≤ 1, srij,t < 0.50, rij,t < 43000.
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Based on solution step (1), we can get{
S2

1 = {δ32, δ42, δ62, δ82} ,
S3

1 = {δ13, δ23, δ53, δ73} .

Because sr16,t = 0.546 > 0.50, the sixth node does not satisfy the security risk constraint, so the
available security risk subset is {

S2
2 = {δ32, δ42, δ82} ,

S3
2 = {δ13, δ23, δ53, δ73} .

Based on solution step (3), to circularly verify all the satisfied combinations of mj
c,t and mj

d,t, and

according to the four designed objective optimization function f ∗
(

mj
c,t, mj

d,t

)
, we can determine that

the optimal combinations are
(

m2
c,t = 2, m2

d,t = 1
)

and
(

m3
c,t = 1, m3

d,t = 3
)

.
Lastly, according to the above results and solution step (4), we can obtain the optimal airborne

sensor nodes allocation results{
δ32,c, δ42,d, δ82,c

}
,
{

δ13,d, δ23,d, δ53,c, δ73,d
}

.

The estimated error covariance traces of target T2 and T3 are shown in Figure 8 in the condition
of the above allocation options, the estimated values E

[
trP2

e,t
]
≈ 5.6625 and E

[
trP3

e,t

]
≈ 7.1698,

the system survivability index st = 0.8909 (λ = 0.08, ct = 13), and the value of optimization objective
function f ∗optimal max

(
m2,3

c,t , m2,3
d,t

)
= 0.9769.
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Figure 8. Optimal allocation trace of fusion error covariance of target T2 and T3.

5.3. Analysis of Simulation Results

For the above two different simulation situations, we achieved the optimal allocation of the
multi-sensor target tracking fusion system with the optimization model designed in this paper. In time
period t, based on the real-time system performance requirements, the optimal number of sensor and
optimal fusion method combinations are determined to maximize the system tracking accuracy, and it
satisfies the system survivability constraint and other necessary constraints, which can achieve the
system self-adaptive performance optimization adjustment function and improve the self-adaptive
adjustment ability of the distributed tracking fusion system.

The optimization model in this paper is designed for the problem of system performance instability
caused by the changing situations and emergencies in the tracking process. In simulation 1, the system
encountered the node failure problem, and in simulation 2, the system encountered the problem
of node measurement distance and the security risk of a single airborne plane. From the results
of simulation 1 and simulation 2, we can see that the systems have self-adjusting abilities; when
the system encounters the above problems and other issues, the system can reject the troublesome
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nodes and recombine the remaining system resources to optimally allocate, which leads to the stable
performance and great anti-interference ability of the target tracking fusion system.

6. Conclusions

For the problems of a complex motion model in target tracking process and the changeable
motion situations which lead to the instability of tracking systems, this paper studies the flexible fusion
structure algorithms and designs a kind of flexible fusion optimization model. The multi-step solution
strategy and ant colony optimization algorithm are used to solve the designed model, which can obtain
the optimal sensor subsets selection dynamically. By the simulation verification, the designed system
optimization model was proven to be feasible and effective, and could improve the self-adjustment
ability of a target tracking fusion system and guarantee that the multi-plane cooperative tracking task
is accomplished successfully.
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