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Abstract: Intelligence has been considered as the major challenge in promoting economic potential
and production efficiency of precision agriculture. In order to apply advanced deep-learning
technology to complete various agricultural tasks in online and offline ways, a large number of crop
vision datasets with domain-specific annotation are urgently needed. To encourage further progress
in challenging realistic agricultural conditions, we present the CropDeep species classification
and detection dataset, consisting of 31,147 images with over 49,000 annotated instances from
31 different classes. In contrast to existing vision datasets, images were collected with different
cameras and equipment in greenhouses, captured in a wide variety of situations. It features visually
similar species and periodic changes with more representative annotations, which have supported
a stronger benchmark for deep-learning-based classification and detection. To further verify the
application prospect, we provide extensive baseline experiments using state-of-the-art deep-learning
classification and detection models. Results show that current deep-learning-based methods
achieve well performance in classification accuracy over 99%. While current deep-learning methods
achieve only 92% detection accuracy, illustrating the difficulty of the dataset and improvement
room of state-of-the-art deep-learning models when applied to crops production and management.
Specifically, we suggest that the YOLOv3 network has good potential application in agricultural
detection tasks.

Keywords: Internet of Things; agricultural autonomous robots; deep convolutional neural networks;
real-time online processing; greenhouse

1. Introduction

Modern agriculture seeks to manage crops in controlled environments such as greenhouses, that
are able to improve the production of plants or duplicate the environmental conditions of specific
geographical areas to obtain imported products locally. Moreover, severe weather and diseases
variations that impact on crop production and quality can be avoided with a comprehensive application
of new monitoring and information technologies including Internet of Things (IoT), autonomous
robots and smartphones [1]. Now it is possible to obtain highly accurate status of crops and form
reasonable decisions to manage irrigation, change climate factors, or enrich the soil nutrition in
agricultural scenes, which optimize automation of precise management and improve production of
crops while potentially reducing environmental impacts [2]. Farmers and agronomists have already
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begun employing technologies in order to improve the efficiency of their work in greenhouses [3].
With the sensor data obtained and transmitted by IoT, they use smartphones to remotely monitor their
crops and equipment, understand the whole management status accurately with statistical analysis,
and instruct the robots to carry out agricultural tasks. Although the greenhouses are taking advantage
the integration of different technologies with efficient human intervention, the current level of artificial
intelligence (AI) in agricultural machines and systems is far from achieving automated operations and
management requiring minimum supervision to optimize production by accounting for variability
and uncertainties within precision agriculture (PA) [4].

Intelligence has been considered as the further enabler and the important technological challenge
in promoting economic potential and ecological value of the whole PA. To this end, the development of
deep learning technology has provided an effective approach to facilitating intelligent management and
decision-making in many aspects of PA, such as visual crop categorization [5], real-time plant disease
and pest recognition [6], picking and harvesting automatic robots [7], healthy and quality monitoring
of crop growing [8]. Moreover, there is increasing agricultural success present in the near future
because deep-learning systems can easily take advantage of data increases in the number of available
sensors, cameras, and smartphones. Inspired by the multi-level visual perception process of human
brain, deep-learning allows computational models that are composed of multiple processing layers
to learn representations of data with multiple levels of abstraction, obtained by non-linear modules
(such as convolutional layers or memory units) that each transform the representation at one level
(starting with the raw input) into a representation at a higher, slightly more abstract level [9]. With the
composition of enough such transformations, very complex functions can be learned and tough
structures in high-dimensional data can be discovered automatically to complete agricultural tasks.

However, deep-learning networks achieving state-of-the-art performance in other research fields
are not suitable for agricultural tasks of crops management such as irrigation [10], picking [11],
pesticide spraying [12], and fertilization [13]. The dominating cause is that there are no public
benchmark datasets specifically designed for various agricultural missions, which limits the further
application of deep-learning technology and the wider development of intelligence in greenhouses.
These situations demonstrate the need to construct appropriate crop datasets by taking full advantage
of various collection devices for deeper and wider networks to generate better results.

To assist the identification and detection of different crops that characterize the agricultural
missions, we introduce a novel domain-specific dataset named CropDeep, which consists of vegetables
and fruits that are closely associated with PA. Currently, the dataset covers common vegetables
and fruits of 30 categories, which are collected by visual cameras of IoT, autonomous robots,
and smartphones in greenhouses. It contains more than 31,000 images in total and at least 1500 samples
for each class with well annotation, which are suitable for the subsequent categorization and detection
of agricultural tasks. Furthermore, CropDeep not only has different parts and different growth
periods of a certain vegetables or fruits, but also similar parts of different species, such as leaves and
flowers, are classified into separate classes, which present the domain-specific complexity in realistic
PA compared to other public datasets sourced from social media or the Internet. To characterize the
classification and detection difficulty of CropDeep, we also ran experiments with several state-of-the-art
deep-learning frameworks with utilizing the different species in real scenarios. By comparing the
performance of different classification and detection models, confirming the classification and detection
architectures with faster speed and high accuracy is the main purpose of this study, which verifies that
the effective application of CropDeep is well-suited for the sensors and equipment in PA, providing
accurate scientific data for agricultural production and management of crops.

The rest of the paper is organized as follows. Section 2 describes the related dataset to this study;
Section 3 presents a specific description of CropDeep datasets in aspects of data collection, construction,
annotation, and division. Section 4 introduces the deep-learning classification and detection network
selected. Section 5 presents experimental results and discussion of the dataset to verify the application
performance. Finally, we present our conclusion with further research aims in Section 6.
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2. Related Datasets

In this section, we will review the image classification test datasets of existing plants or crops
commonly used in computer vision. We focus on large-scale, annotated crop object detection, rather
than datasets with common everyday objects. In Table 1, we summarize the statistics of some of the
most common datasets for plants or crops.

Table 1. Summary of popular general and fine-grained vision datasets with plants.

Dataset Classes Image Number Annotation Samples Number

Flowers 102 102 1020 0
CUB 200-2011 200 5994 0
Urban Trees 18 14,572 0

LeafSnap 185 30,866 0
ImageNet 1000 14,197,122 1,034,908
MS-COCO 80 300,000 More than 2,000,000

AI Challenge 61 47,393 0
PlantVillage 38 19,298 0

iNat2017 5089 858,184 561,767
VegFru 70 160,731 0

CropDeep 31 31,147 49,765

We analyzed the datasets in Table 1. These datasets are broadly divided into two categories,
one related to agricultural production. These datasets contain all the plants, but the amount of data is
relatively small. Most of the datasets are only used for classification tasks, and there is no annotation
for the detection tasks. Data sources are basically collected by laboratory cameras, such as the Flowers
102 [14], LeafSnap [15], PlantVillage, and Urban Trees datasets [16].

Flowers 102 consists of 102 flower categories. The flowers chosen are flowers commonly occurring
in the United Kingdom. Each class consists of between 40 and 258 images. The images have large scale,
pose, and light variations. In addition, there are categories that have large variations within the category
and several very similar categories. The dataset is visualized using isomap with shape and color features.

The Plant Village Dataset contains only images of leaves that are previously cropped in the field
and captured by a camera in the laboratory. This is unlike the images in our Tomato Diseases and Pest
Dataset, which are directly taken in-place by different cameras with various resolutions, including not
only leaves infected by specific pathogens at different infection stages but also other infected parts of
the plant, such as fruits and stems. Furthermore, the challenging part of our dataset is to deal with
background variations mainly caused by the surrounding areas or the place itself (greenhouse).

The other type of dataset is mainly a general-purpose database with a large amount of data,
mainly used for competitions. These datasets have many categories, and each category contains a large
number of category samples, which is the main object of the current deep learning model. Although
these datasets are all public, their image sources are mainly web crawling, which is not suitable
for agricultural production, such as ILSVRC2012 [17], Microsoft coco [18], CUB 200-2011 [19], and
iNat2017 datasets [20]. Although these databases have classification and detection tasks, high-quality
images with large data volumes, and high-quality annotations, the proportion of plants, especially
crops, in these databases is particularly small.

The ImageNet dataset is currently the world’s largest collection of image classification data,
containing 14 million images, 22,000 types, and an average of 1000 images per type. In addition,
ImageNet has built a dataset containing 1000 objects, with 1.2 million images, and used this dataset as
a data platform for image recognition competitions.

The MS coco dataset contains more than 300,000 images, more than 2 million annotation objects,
and 80 object types. Although there are fewer types than ImageNet and SUN, there are many images for
each type of object, which is the current dataset with the largest number of targets per image. MS COCO
can be used not only for target detection research, but also for studying contextual relationships
between objects in an image.
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Unlike web scraped datasets [21], the annotations in iNat2017 represent the consensus of
informed enthusiasts. Images of natural species tend to be challenging as individuals from the same
species can differ in appearance due to sex and age, and may also appear in different environments.
Depending on the particular species, they can also be very challenging to photograph in the wild. In
contrast, mass-produced, man-made object categories are typically identical up to nuisance factors, i.e.,
they only differ in terms of pose, lighting, color, but not necessarily in their underlying object shape
or appearance.

In recent years, there have been continuous developments in agriculture, such as AI Challenge
and VegFru [22]. The task of these competitions is to classify plants without the task of detection.
Therefore, the dataset of the game does not have an annotation about the detection, so the dataset
cannot be used for the detection task. VegFru is a new domain-specific dataset for fine-grained visual
classification (FGVC) [23]. VegFru is a larger dataset consisting of vegetables and fruits which are
closely associated with the daily life of everyone. Aiming at domestic cooking and food management,
VegFru categorizes vegetables and fruits according to their eating characteristics, and each image
contains at least one edible part of vegetables or fruits with the same cooking usage. Particularly, all the
images are labelled hierarchically. The current version covers vegetables and fruits of 25 upper-level
categories and 292 subordinate classes. It contains more than 160,000 images in total and at least
200 images for each subordinate class.

This paper presents the CropDeep Agricultural Dataset due to the lack of a crop database for
testing tasks. All images of CropDeep are collected by various equipment including cameras of
IoT, autonomous spray robot, autonomous pinking robot, mobile cameras, and smartphones in an
intelligent agricultural monitoring and management platform. Using these sensors to collect images
can be better applied to the agricultural environment, making detection and classification tasks more
realistic. CropDeep marks a large number of crop images for collection, and each category contains a
large number of samples, which is suitable for precision agriculture. The most distinctive feature of
CropDeep dataset images is the different growth seasons that contain certain vegetables or fruits that
are not included in many other datasets. The small gaps between categories of some classes make it
difficult to classify and detect fruits and vegetables in the greenhouse. Therefore, the CropDeep dataset
with fine-grained features [24] is challenging for accurate detection of training deep learning models.

The comparison will be based on the number of images included in the dataset, the number of
types, and the number of samples per category. An intuitive comparison is shown in Figure 1. The circle
represents the plant dataset, the square represents the non-plant dataset, the gray represents the dataset
containing only the classification, and the blue represents the dataset containing the classification
and detection.
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3. CropDeep Overview

In this section, we describe the details of the CropDeep dataset, including how we collected the
image data in greenhouses (Section 3.1), how we constructed the species of crops (Section 3.2), and how
we annotated bounding boxes and defined train, validation, and test splits (Section 3.3). The overall
experience of the dataset is introduced to future researchers for constructing their own datasets.

3.1. Dataset Collection

Unlike other web scraped datasets, all images of CropDeep are collected by various equipment
including cameras of IoT, autonomous spray robot, autonomous pinking robot, mobile cameras and
smartphones in an intelligent agricultural monitoring and management platform, which aims at
providing deep-learning analysis and management services for better crops production as presented
in Figure 2.
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Figure 2. The dataset collecting process of agricultural monitoring and management platform.

Each device takes pictures of crops and uploads them to the cloud server in CAN or wireless
fidelity way for different purposes. For example, cameras of IoT and mobile cameras are used to
collect information about the entire farmland area in order to monitoring the detailed growing status
of specific crops. The IoT cameras collect photos of the growth process of each crop in the greenhouse,
where it captures the growth of crops at different times. Pictures taken by IoT cameras generally contain
only one type of crop, which are set as a training set. The photos taken by the mobile camera contain
the growth status of a variety of crops, and we make the pictures taken as a test set. The images taken
by IoT cameras and mobile cameras are not the same size. We cut the images to 1000 × 1000 px size.
Additional data from other measurements can also flow into this data, such as biomass distribution
and weather data. Those collected data are submitted to computers in the platform and combined
with plant cultivation rules and regulations in order to determine management measures. The offline
decision processes based on static data permit an appropriate time delay on transferring resulting
instructions. In contrast, agricultural machines and robots independently collect images of crops and
immediately convert them into management measures, allowing for a high level of spatial and seasonal
dynamic. Those field maintenance tasks are severely dependent on the real-time performance of online
decision-making algorithms and stored in the platform. Subsequently, the smartphones collected the
crops images in order to meet more complex tasks of farmers and agronomists, which do not only
allow to continuously monitor the health and growth of the cows, but also to determine the operation
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measures for autonomous robots. Moreover, the images of smartphones play a significant role in social
contact and sharing. Therefore, it is very challenging to classify and detect crop species from massive
images with different angles, focal lengths, and resolutions offered by various devices in the platform.

To meet the precision and efficiency of various aspects, the CropDeep datasets are specially
designed to carry out agricultural tasks of PA management in greenhouses. Depending on
data integration of the devices, CropDeep offer the abundant attributes of particular crops and
environmental factors underlying object shape or appearance in the greenhouses, where the tables
of crops are arranged in rows. In contrast, other web-collected datasets are typically identical up to
nuisance factor and only differ in terms of pose, lighting, color. In the long run, the effective and useful
implementation of CropDeep will promote the nationwide development of PA in the future, especially
in rural areas.

3.2. Dataset Construction

On the basis of various devices and equipment, the CropDeep dataset has collected 31,147 images
including vegetables, fruits, and people in laboratorial greenhouses. The sizes of all images were
cropped and resized to less than the maximum 1000 × 1000 px, which are limited by the standard
input of existing deep-learning detection network. Currently, the dataset covers vegetables and fruits
of 19 upper-level categories and 30 subordinate classes, which are the most reasonable for the PA
purpose and arranges crops into root vegetable, cabbage, leafy vegetable, melon fruits, etc. Therefore,
the dataset is divided into the following 31 categories according to the agricultural biological taxonomy:
four growth stages of tomato (Lycopersicon esculentum Mill.) including ripe, unripe, early-blossom and
full-blossom; three growth stages of cucumber (Cucumis Linn.) including ripe, unripe, and blossom;
four species of lettuce (Lactuca sativa Linn.) including head lettuce, butter lettuce, luosheng lettuce,
and iceberg lettuce; two species of cabbages (brassica oleracea linn.) including purple cabbage and
Chinese cabbage; and two species of turnips (raphanus sativus linn.) including ternip and green
turnip. In addition, the dataset contains five leafy vegetables including endive (Picris divaricata
Vaniot.), rutabaga (Brassica napobrassica Mill.), celery (Apium graveliens Linn.), spinach (Spinacia oleracea
Linn.), scallion (Allium fistulosum Linn.); and four frugivorous vegetables including fingered citron
(Sechium edule Jacq.), winter squash (Cucurbita maxima Duch.), pumpkin (Cucurbita moschata Duch.), chili
pepper (Capsicum annuum Linn.). The other species are various fruits including lemon (Citrus limon
Burm.), persimmon (Diospyros kaki Thunb.), pawpaw (Chaenomeles Lindl.), watermelon (Citrullus lanatus
Matsum.), and muskmelon (Cucumis melo Linn.). Moreover, a unique medicinal fruit wolfberry (Lycium
barbarum Linn.) and persons working in greenhouses are listed in CropDeep dataset. The construction
principles guide the process of image collection, as well as the detail quantity of images and annotated
samples listed in Table 2, which is a really challenging project.

Table 2. Images and annotated samples number of each category in CropDeep dataset.

No. Categories Images
Number

Annotated
Samples Number

Annotated
Percentage (%)

1 Tomato (Lycopersicon esculentum Mill.) 1021 1543 3.10
2 Unripe tomato (Lycopersicon esculentum Mill.) 898 1367 2.75
3 Tomato early-blossom (Lycopersicon esculentum Mill.) 985 1914 3.85
4 Tomato full-blossom (Lycopersicon esculentum Mill.) 1083 1820 3.66
5 Cucumber (Cucumis Linn.) 972 1287 2.59
6 Cucumber blossom (Cucumis Linn.) 1112 1646 3.31
7 Unripe cucumber (Cucumis Linn.) 898 1382 2.78
8 Winter squash (Cucurbita maxima Duch.) 971 1429 2.87
9 Fingered citron (Sechium edule Jacq.) 1083 1588 3.19

10 Pawpaw (Chaenomeles Lindl.) 930 1704 3.42
11 Head lettuce (Lactuca sativa Linn.) 916 1373 2.76
12 Endive (Picris divaricata Vaniot.) 951 1785 3.59
13 Butter lettuce (Lactuca sativa Linn.) 908 1527 3.07
14 Rutabaga (Brassica napobrassica Mill.) 1116 1764 3.54
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Table 2. Cont.

No. Categories Images
Number

Annotated
Samples Number

Annotated
Percentage (%)

15 Purple cabbage (Brassica oleracea Linn.) 977 1379 2.77
16 Luosheng lettuce (Lactuca sativa Linn.) 1294 1840 3.70
17 Celery (Apium graveliens Linn.) 1047 1739 3.49
18 Wolfberry (Lycium barbarum Linn.) 952 1421 2.86
19 Lemon (Citrus limon Burm.) 1113 1545 3.10
20 Persimmon (Diospyros kaki Thunb.) 1099 1893 3.80
21 Iceberg lettuce (Lactuca sativa Linn.) 923 1802 3.62
22 Chinese cabbage (Brassica oleracea Linn.) 1094 1594 3.20
23 Turnip (Raphanus sativus Linn.) 1029 1629 3.27
24 Green turnip (Raphanus sativus Linn.) 951 1903 3.82
25 Spinach (Spinacia oleracea Linn.) 1057 1557 3.13
26 Scallion (Allium fistulosum Linn.) 1033 1647 3.31
27 Watermelon (Citrullus lanatus Matsum.) 960 1573 3.16
28 Muskmelon (Cucumis melo Linn.) 1190 1896 3.81
29 Chili pepper (Capsicum annuum Linn.) 1026 1821 3.66
30 Pumpkin (Cucurbita moschata Duch.) 983 1652 3.32
31 Person 575 745 1.50

Total 31147 49765 100

The most special characteristic of images in CropDeep contain different growth periods for a
certain vegetable or fruit, which is not included in lots of other datasets, as shown in Figure 3. Besides,
some crops categories are firstly covered in detecting application based on deep-learning methods such
as wolfberry and luosheng lettuce. This means that CropDeep datasets and subsequent deep-learning
models can monitor the growth and healthy status of fruits and vegetables and make better decisions
to improve the PA management in greenhouses.
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(c) unripe, and (d) ripe.

Compared to these existing datasets, the domain of CropDeep datasets is novel and more
associated with agricultural tasks and people’s daily life, which contributes to its broad application
prospects. CropDeep is larger in scale, which has up to 1100 annotated samples available in each class
at least for deep-learning model training. Particularly, some species are hierarchically assigned with
fine-grained labels, which is well-suited for the hybrid granularity research of different devices in PA
management. However, the subtle gaps among some inter-class categories make it difficult to classify
and detect fruits and vegetables in greenhouses as shown in Figure 4. Therefore, CropDeep datasets
with the fine-grained characteristics are challenging to train deep-learning models for precise detection,
which is worth investing future research.
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3.3. Data Annotation and Division

The next step was annotation process, which labels locates a bounding box on a crop in the
image and export the corresponding class and location information. At this point, it is necessary to
illustrate the differences between the notions of image classification and object detection. Classification
estimates if an image contains any instances of an object class, while detection approach deals with
the class and location instances of any particular object in the image. Detection is more complicated
than classification, as well as the number of samples for detection is also more than images number
for classification. In practical agricultural missions, a single image usually contains multiple objects
of various categories, which should be estimated with the class probability of crop and its location.
In this study, the annotating process of CropDeep is labor-intensive and similar to PASCAL Visual
Object Classes dataset [25]. The labeling principle of datasets has the following guidelines:

(1) When a picture contains multiple objects, each instance should be marked out (e.g., Figure 5a).
(2) When there are two overlapped instances in the picture, the occluded parts should be draw

with the box around the visible parts. The instances should be completely enclosed and marked
(e.g., Figure 5b).

(3) When there are other blurred instances in the background, if it is extremely small and difficult for
people to distinguish, ignore it. If it is easy to distinguish from the requested class—regardless of
size, blurriness, or occlusion—put a box around the instance (e.g., Figure 5c).

(4) If images with multiple instances of the super-class, all of them are boxed, up to a limit of 5,
even bounding boxes may overlap. If the instances are physically connected, then only one box is
placed around them (e.g., Figure 5d).
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Under the above guidelines, 49,765 bounding boxes were obtained from 31,147 images in the
datasets. The annotated percentage of all crops centralized distribution in the interval of 2.5% and 3.9%
except for person, which illustrate that the dataset has a good balance in avoids learning differences of
detecting models to various crop species.

On the basis of fine annotation, it is time to partition the images into the train, validation, and test
splits according to the deep-learning methods. For each of selected species, we divide the datasets
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into training sets, validation sets, and test sets. Allowing for the samples number of each class will
be different, we take 80% of each species as a training set, 10% for the validation set, and 10% for the
test set. These empirical proportions make up the imbalance problem in the dataset. Even if there are
some classes with a larger number of training samples, their corresponding test sets also contain more
samples, suffering more rigorous assessment. At this point, we have the final image splits, with a total
of 24,917 training images, 3120 validation images, and 3110 test images. The bounding box of majority
instances are relatively medium sized within a certain balance. The CropDeep dataset is available
from the corresponding author by email.

4. Deep-Learning Classification and Detection Models

With the development of deep learning and high-computational hardware technology,
deep-learning-based model—especially convolutional neural networks (CNN)—for classification
and detection have been increasingly proposed, showing good performance on different crops [26].
However, those models offered management services on the basis of crops images captured in the
laboratory or crawled from Internet, which is far from seeing agricultural application in PA. This is
unlike the images in our CropDeep dataset, which are directly taken in-place by different devices and
equipment in greenhouses. Although the state-of-the-art deep-learning frameworks show outstanding
performance on crops recognition, the challenges dealing with agricultural tasks are still difficult to
overcome. Therefore, to characterize the classification and detection difficulty of CropDeep, we ran
experiments with several state-of-the-art deep-learning classifiers and detectors. Our task is to consider
a technique that not only recognizes the crop species in the image but also to identify its location for
the posterior development of real-time agricultural management. An overview of the experimental
frameworks of deep-learning classification and detection is shown in Figure 6.
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4.1. Deep-Learning Classification Models

As mentioned in the previous section, deep convolutional neural networks have become the
dominating approach for image classification. Year after year, various new architectures have
been proposed. When choosing a deep architecture to solve a realistic problem, some aspects
should be taken into consideration such as the type or number of layers, as a higher number of
parameters increases the complexity of the system and directly influences the memory computation,
speed, and results of the system. Although designed with specific characteristics according to
realistic applications, the current deep-learning network has the same goal to increase accuracy
while reducing operation time and computational complexity. Therefore, this study selected
some state-of-the-art deep-learning architectures—including VGG [27], ResNet [28], DenseNet [29],
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Inception [30], and SqueezeNet [31]—to assess the performance on the CropDeep dataset and the
outstanding applicability for our management platform.

VGG-16 was proposed by the famous VGG (Visual Geometry Group) of Oxford University. Due
to its good generalization performance, VGG-16 can improve the classification accuracy by using its
pre-trained model on the ImageNet dataset. Small convolution kernels (3 × 3) are commonly used in
VGG-16 to increase network depth for better capacity. Another typical extension model is VGG-19
with adding fully-connected layers and pooling layers. Both of VGG-16 and VGG-19 required input
data with unified dimensions of 224 × 224 × 3, and were selected to identify various crops.

Since deeper neural networks are more difficult to train, a residual learning framework is proposed
to mitigate network training with deeper structure, which was defined as ResNet. This model explicitly
reformulated the layers as learning residual functions with reference to the layer inputs instead of
learning unreferenced functions. Partial data of the input goes directly to the output without passing
through the neural network. This was proven to preserve some original information and prevent
effectively the gradient dispersion problem in back propagation. Similarly, the basic idea of DenseNet
was derived from ResNet, but it established the dense connection between all the previous layers
and the latter layers. Another dominating characteristic of DenseNet was reusing feature maps of
each layers through the connection of the channel. DenseNet was to alleviate the vanishing gradient
problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number
of parameters.

As the increasing of depth promotes the classifying ability of the deep-learning network, the width
also has similar performance. Inception is to increase in breadth by using different convolution kernel
sizes, 3× 3, 5× 5, and 1× 1. These different convolution kernels extract different features and increase
the diversity of features. However, this caused a problem that the parameter quantity increases too
much. In order to solve this problem, a 1 × 1 convolution kernel dimension reduction is introduced
to make a balance between computational efficiency and parameter quantities. With equivalent
accuracy, smaller CNN architectures offer at least three advantages: (1) Smaller CNNs require less
communication across servers during distributed training. (2) Smaller CNNs require less bandwidth
to export a new model from the cloud to an autonomous car. (3) Smaller CNNs are more feasible
to deploy on FPGAs and other hardware with limited memory. Therefore, the SqueezeNet model
was released with fewer parameters and high accuracy while broadly exploring the design space of
CNN architectures.

In this study, we hope that those deep-learning classification models will explore the broad range
of possibilities in the application of CropDeep dataset and to perform that exploration in a more
compiled systematic manner.

4.2. Deep-Learning Detection Models

Convolutional neural networks are presently considered the leading method for object detection.
Currently, the deep-learning detection models were mainly divided into two-stage object detectors
and single-stage object detectors. For two-stage detection network, a sparse set of candidate object
boxes is first generated, and then they are further classified and regressed. The basic region-based
convolutional neural network (R-CNN) [32] is the earliest application of CNN features to construct
the detection system with well performance. Then a fast region-based convolutional neural network
(Fast R-CNN) [33] is proposed to combine the target classification with bounding box regression to
solve multi-task detection. Furthermore, the regional proposal network (RPN) is proposed by the
faster region-based network (Faster R-CNN) [34] to generate amounts of anchors in two stages, which
are richer proposals to improve accuracy slightly. In the first stage, a RPN takes an image as input
and processes it by a feature extractor based on intersection-over-union (IoU) [35] between the object
proposals and the ground-truth. In the second stage, the box proposals previously were generated to
crop features from the same feature map to predict the class probability and bounding box of each
region proposal. While Faster R-CNN has been a milestone of the two-stage detectors, these algorithms
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have some disadvantages in dealing with resources and time consumption for large datasets, which is
not suitable for subsequent realistic application of object detection.

Therefore, single-stage object detection networks with faster speed are trained by regular and
dense sampling over locations, scales, and aspect ratios in an end-to-end flow. The main advantage of
single-stage method is its high improvement in computational efficiency greatly, which is suitable for
realistic tasks. The representative methods such as ‘You only look once’ v2 (YOLOv2) [36] simplify
object detection as a regression problem, which directly predicts the bounding box and associate class
probabilities without proposals generation. However, the single-stage detection accuracy is lower than
that of the two-stage, as long as it is caused by a class imbalance problem. Some recent methods in
the one-stage approach aim to address this dilemma, to improve the detection accuracy. Single shot
multibox detector (SSD) [37] improves accuracy performance by producing different scale predictions
and fusing feature maps of different layers. Similarly, receptive field block network (RFB Net) [38],
inspired by the receptive fields of human vision, proposes a novel RFB block module to significantly
reduce the search space of objects. Combining the characteristics of the above models, YOLOv3 [39]
design a feature extractor with 53 convolutional layers (Darknet-53) to improve YOLOv2 in several
aspects. Then feature pyramid networks and binary cross entropy loss were merged for class prediction
in training. Furthermore, RetNet [40] applied focus loss and bounding box regressor to reduce false
positives resulting from class imbalance, which has been one of the best detectors with excellent
performance in accuracy, speed, and complexity trade-offs.

In our opinion, the current two-stage and single-stage methods build the framework tone
of the target detection together. The essential difference between two detectors is the tradeoff
between the recall and localization, which fundamentally determine the accuracy and detection
time. The single-stage detector has a higher recall at cost of low localization. Instead, the two-stage
detector has a higher positioning capability, but the recall is lower, since the refine of the box’s precision
could kill some positive samples by mistake. Both of above methods have achieved top performances
on several challenging benchmark. However, the detection effect is still unclear in face of special
inspection tasks on our dataset. Therefore, we ran some state-of-the-art models including Faster
R-CNN, SSD, RFB Net, YOLOv2, YOLOv3, and RetNet to test the performance of crop detection
in our CropDeep dataset. The detail results of each classification and detection model in compared
experiments are presented in following section.

5. Experiments

In this section, we compare the performance of state-of-the-art deep-learning models on CropDeep
datasets. The results are presented in classification and detection separately.

5.1. Classification Results

To avoid over-fitting of the network, some augmented preprocessing was applied to enhance a
larger amount of images in the dataset before training. These augmentations consist of geometrical
transformations (resizing, random crop, rotation and horizontal flipping, aspect ratio) and intensity
transformations (contrast and brightness enhancement, color, noise). Resizing is the adjustment of the
size of the image input to the network. When training the network, the input picture size is diversified,
so that the network has better generalization. Random crop is a random sample of the original image.
We resize the randomly cropped portion to the size of the original image and enter it into the network.
Rotation rotates the image randomly by 0–360 degrees, increasing the generalization of the network.
Horizontal flipping is to flip the image 180 degrees horizontally in order to increase the diversity of
the image. Contrast is in the HSV color space of the image, changing the saturation S and V luminance
components, keeping the hue H constant, exponentially calculating the S and V components of each
pixel (exponential factor between 0.25–4), increasing the illumination variation. Color is to add random
perturbations on the image channel. Noise is a random perturbation of each pixel of the image, and
the commonly used noise modes are salt and pepper noise and Gaussian noise. Moreover, we consider
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another augmentation method called mixup [41]. In the mixup training, each time a new example was
formed by a weighted linear interpolation of two random examples. Then, the mix parameter was set
to 0.2 and increase the number of epochs from 120 to 200 because the mixed examples ask for a longer
training progress to converge better.

As the datasets are divided into 80% training sets, 10% verification sets, and 10% testing sets,
the experiments with seven deep-learning classification architectures—including VGG16, VGG19,
Squeezenet, InceptionV4, Densenet121, Resnet18, and Resnet50—were carried out. All models were
trained and tested on an Intel Core i7 3.6 GHz processor with four NVIDIA Tesla p40 GPUs and 256
G RAM. The training is proceeded on the training set, after that the evaluation is performed on the
validation set for minimizing overfitting. When the training process and parameter selection were
achieved, the final evaluation is done on the unknown testing set for evaluating the performance.
Training batches of size 64 were created by uniformly sampling from all available training images as
opposed to sampling uniformly from the classes. We fine-tuned all networks from ImageNet pretrained
weights with a learning rate of 0.0001, decayed exponentially by 0.94 every four epochs, and RMSProp
optimization with momentum and decay both set to 0.9. Training and testing were performed with an
image not exceeding 300 px in size, with a single centered crop at test time.

5.1.1. Performance Comparison

Table 3 summarizes the accuracy performance of the models. ‘Average accuracy’ indicates
the average number of training images per class for each class. We observe a large difference
in performance across the different crops. From the ResNet family, the higher capacity ResNet50
outperforms the ResNet18 network. As a comparison, Densenet121 is comparable to ResNet18. VGG16
and VGG19 performed worse on CropDeep datasets compared to the above architectures, likely due to
over-fitting on categories with small number of training images. Similarly, the addition of the Inception
reduced the performance for both fruits and vegetables comparing to the VGG architectures due to the
small amount of crop species. SqueezeNet, designed to efficiently run on embedded devices, had the
lowest performance.

As illustrated in Table 3, the ResNet50 was the best performing model with achieving an average
accuracy of 99.81% on the CropDeep datasets. With the accuracy of DenseNet121 and ResNet18 over
99%, an application rule of our dataset is obtained that the deeper network framework, the higher
classification accuracy, but the performance will reduce as layers of framework over 50. In contrast,
the accuracy of Inceptionv4 only reached 96.89%, which is 2.9% lower than ResNet50. SqueezeNet
is a lightweight network with an accuracy of only 94.08%. However, it produces fewer parameters
with a higher operating speed. Two VGG networks are relatively stable achieving over 98.5% without
too many parameters. Overall, the CropDeep dataset is finely suitable for various deep-learning
classification model, which provides an effective data foundation for various agricultural tasks.

Table 3. Averaging accuracy across all species computed by seven classification models.

Categories VGG16 VGG19 SqueezeNet InceptionV4 DenseNet121 ResNet18 ResNet50

Tomato 100 100 97.9 81.63 100 100 100
Unripe tomato 97.9 100 97.9 100 100 100 100

Tomato early-blossom 96.5 96.3 90.9 85.1 98.4 98.1 98.8
Tomato full-blossom 97.5 97.2 92.3 90.2 100 100 100

Cucumber 96.2 98.1 90.4 88.5 98.08 96.2 98.1
Cucumber blossom 96.9 97.1 88 86.3 98.5 96.7 98.7
Unripe cucumber 100 100 93.5 100 100 100 100

Winter squash 95.2 100 87.3 100 100 100 100
Fingered citron 100 100 98.1 100 100 100 100

Pawpaw 100 100 100 100 100 100 100
Head lettuce 97.3 98.3 96.5 100 98.8 100 100

Endive 100 100 95.9 100 100 100 100
Butter lettuce 100 100 100 94.8 100 100 100

Rutabaga 100 98.2 89.6 100 100 100 100
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Table 3. Cont.

Categories VGG16 VGG19 SqueezeNet InceptionV4 DenseNet121 ResNet18 ResNet50

Purple cabbage 100 100 89.5 100 100 100 100
Luosheng lettuce 98.2 100 92.6 100 100 100 100

Celery 100 98.5 92.5 100 100 100 100
Wolfberry 100 97.7 97.7 90.7 97.6 100 100

Lemon 100 100 95.5 100 100 100 100
Persimmon 98.77 100 98.8 98.7 100 100 100

Iceberg lettuce 100 100 100 100 100 100 100
Chinese cabbage 100 100 100 100 100 100 100

Turnip 100 100 89.7 100 100 100 100
Green turnip 100 98.8 91.6 100 98.8 100 100

Spinach 100 100 94 100 100 100 100
Scallion 100 100 95.7 96.7 100 100 100

Watermelon 100 100 90.3 100 100 100 100
Muskmelon 97.7 97.8 84.2 100 100 100 100
Chili pepper 98.2 97.5 87.1 97.9 100 100 100

Pumpkin 96.3 96.3 85.1 97.2 100 100 100
Person 88.8 92.3 81.6 96.1 96.3 97.3 98.6

Average accuracy 98.56 98.84 93.03 96.89 99.56 99.62 99.81

5.1.2. Loss Function

The loss function is used to estimate the degree of inconsistency between the predicted value
of models and the true value. It is a non-negative real-valued function, usually represented by L1
or L2 regularization term. The loss function used by our network is the cross-entropy loss function.
The formula for the loss function is

J = −
M

∑
c=1

yc log(pc) (1)

where M indicates the number of categories. y indicates the indicator variable (0 or 1) if the category
and sample have the same category, otherwise 0. p denotes the predicted probability that the observed
sample belongs to category c. The loss function is used to estimate the degree of inconsistency between
the predicted value f(x) of your model and the true value Y. It is a non-negative real-valued function,
usually expressed by L (Y, f(x)). The smaller the loss function, the better the robustness of the model.
The loss function is the core part of the empirical risk function. Figure 7 shows the loss function
diagram for the seven models.
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The comparison of the loss function shows that the trend of the loss function values of the seven
classification networks is decreasing in our dataset. It is stable for about 90 generations and the
predicted value is closer to the true value. Between them, the loss function of VGG16, ResNet18,
and ResNet50 drops the fastest, and the final loss function drops to about 0.0084. The loss functions of
VGG19, Inceptionv4 and DenseNet are slower, and the loss function drops to around 0.0186. However,
Squeezenet is a lightweight classification network with low accuracy, of which the parameters are
small and the speed is fast. The relative loss function drops the slowest and eventually approaches
0.1956, which is much larger than the series of ResNet.

5.2. Detection Results

Along with reporting the classification accuracy, we also analyze the detection performance on
each crop. Here, state-of-the art deep-learning-based detectors—including Faster-RCNN, SSD, RFB,
YOLOv2, YOLOv3, and RetNet—are taken to illustrate the proof and evaluated on CropDeep dataset.
On the basis of data augmentation, each model is trained with asynchronously optimized to expedite
experiments on 4 GPUs. In this experiment, we train our network on the union of training set and
verification set. We set the batch size at 64 and the initial learning rate of 10−3 as in the original model,
but it makes the training process not so stable as the loss drastically fluctuates. Instead, we use a
‘warmup’ strategy that gradually ramps up the learning rate from 10−6 to 4 × 10−3 at the first five
epochs. After the ‘warmup’ phase, it goes back to the original learning rate schedule divided by
10 at 150 and 200 epochs. The total number of training epochs is 500. We utilize a weight decay of
0.0005 and a momentum of 0.9. The training objective is to reduce the losses between the ground-truth
and estimated results, as well as to reduce the presence of false positives in the final results, by
non-maximum suppression (NMS) of each meta-architecture, which selects only candidates only with
an IoU > 0.5 compared to their initial annotated ground-truth. Additionally, we evaluate the models
by integrating images with a single instance and images with various species’ presence and multiple
instances for promote the robustness of each model.

5.2.1. Performance Comparison

To assess the performance of all models, the average precision (AP) based on intersection-over-
union (IoU) are introduced according to Pascal VOC Challenge. If a instance is predicted to the correct
class, it is called true positive TP; if a instance is predicted as the other class, it is called false negative
FN; if a instance is wrongly predicted to a class, with the mode considering the right classification, it is
called false positive FP. Calculate the precision rate Per and recall rate Rec to achieve the AP evaluation

Per =
TP

TP + FN
, Rec =

TP
TP + FP

(2)

The Average Precision is the area under the precision–recall curve of the detection task by
averaging the precision over a set of spaced recall levels [0, 0.1, . . . , 1], and the mAP is the AP
computed over all classes in our task.

AP =
1

11 rec∈{0,0.1,...,1}
pinterp(Rec) (3)

pinterp(Rec) = max max
r̃ec:r̃ec≥rec

Per(R̃ec) (4)

where Per(R̃ec) is the measure precision at recall R̃ec. Next, we compute the mAP averaged for an
IoU = 0.5 (due to the complexity of the scenarios). The detection results are shown as follows Table 4.

The comparison shows that, in our dataset, one-stage approach detection networks perform better
than one-stage approach detection networks, such as the case of Faster R-CNN with VGG-16 with a
mean AP of 83.53%, compared to the SSD with the same feature extractor VGG-16 that achieves 86.19%



Sensors 2019, 19, 1058 15 of 21

or RFB with the similar feature extractor VGG-19 with a mean AP of 85.23%. Another conclusion is
that deep networks perform better than shallow networks. It is provided that a mean AP of YOLOv3
with deeper Darknet-53 achieving 91.44%, which are better than the mean AP 90.78% of YOLOv2 with
lighter Darknet-19. In contrast, RetNet with ResNet50 performs at a mean AP of 92.79%, which is
slightly better than other shallow models overall in the CropDeep datasets.

Table 4. Detection results offered by different models.

Detection Architectures Faster R-CNN SSD RFB YOLOv2 YOLOv3 RetNet

Feature Extractor VGG-16 VGG-16 VGG-19 Darknet-19 Darknet-53 ResNet50

Tomato 90.82 90.91 90.45 97.28 97.51 98.82
Unripe tomato 88.76 89.18 90.18 93.3 92.34 97.62

Tomato early-blossom 84.16 79.82 85.17 83.02 88.42 91.09
Tomato full-blossom 90.13 87.11 89.79 91.28 88.41 85.1

Cucumber 79.87 80.34 80.37 88.41 86.85 83.21
Cucumber blossom 76.12 75.74 84.29 81.85 81.07 84.09
Unripe cucumber 75.47 82.05 86.17 88.01 80.5 85.21

Winter squash 91.48 90.91 90.8 96.18 96.06 92.73
Fingered citron 94.6 99.18 95.19 99.38 98.29 100

Pawpaw 67.17 78.89 81.38 97.52 97.36 98.61
Head lettuce 95.76 97.02 95.47 98.79 96.21 99.38

Endive 89.02 87.92 89.12 91.81 88.78 87.54
Butter lettuce 88.43 90.46 90.57 96.03 96.79 99.15

Rutabaga 87.71 88.08 88.18 97.42 98.56 100
Purple cabbage 88.79 89.15 87.99 95.3 94.47 97.61

Luosheng lettuce 95.29 100 100 100 97.71 99.3
Celery 75.74 88.24 81.15 76.62 82.67 87.61

Wolfberry 90.33 98.42 99.86 96.81 99.35 98.11
Lemon 55.44 60.54 52.96 63.94 70.39 74.28

Persimmon 90.46 80.22 89.09 82.54 85.65 89.63
Iceberg lettuce 95.65 90.91 90.91 98.61 99.14 100

Chinese cabbage 100 100 100 100 100 100
Turnip 43.53 80.37 21.76 100 100 100

Green turnip 91.31 96.97 90.7 98.91 99.97 100
Spinach 63.64 63.64 63.64 62.12 63.6 66.25
Scallion 73.02 72.73 81.06 76.42 82.54 85.62

Watermelon 80.01 79.81 84.5 90.41 89.12 91.33
Muskmelon 90.17 86.58 90.62 86.78 88.93 87.36
Chili pepper 88.73 87.62 88.41 94.92 100 100

Pumpkin 83.26 88.27 89.71 92.9 96.15 97.54
Person 84.71 90.91 92.62 97.63 97.88 99.3

Average mAP 83.53 86.19 85.23 90.78 91.44 92.79

While Faster R-CNN has been a milestone of the two-stage detectors, these algorithms have
some disadvantages in dealing with resources and time consumption for large datasets, which is not
suitable to subsequent realistic application of object detection. SSD improves accuracy performance by
producing different scale predictions and fusing feature maps of different layers. Similarly, RFB Net
inspired by the receptive fields of human vision, proposes a novel RFB block module to significantly
reduce the search space of objects. Combining the characteristics of the above models, YOLOv3 design
a feature extractor with 53 convolutional layers (Darknet-53) to improve YOLOv2 in several aspects.
Then feature pyramid networks and binary cross entropy loss were merged for class prediction in
training. Furthermore, RetNet applied focus loss and bounding box regressor to reduce false positives
resulting from class imbalance, which has been one of the best detectors with excellent performance in
accuracy, speed, and complexity trade-offs.

Although the mean AP for the whole experiment shows a performance of more than 83% for
the worst cases, some classes—such as lemon, spinach, scallion, and watermelon—show variable
performance. Especially, the test results show that the accuracy of the all detection networks for lemon
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is relatively low. The reason is that the lemon has less training samples, and the lemon itself is a
small target, which are difficult to current deep-learning detectors. After analysis, most of the lemons
were misclassified into winter squash and unripe tomato, which have a similar color and shape. This
illustrates that some classes with inter-class similarities in CropDeep are still challenging to recognition
allowing for the complexity of the scenarios. In contrast, the accuracy of turnip is particularly low
on the Faster R-CNN and RFB models. After analysis, Faster R-CNN and RFB do not extract the
characteristics of turnip with relatively low classification confidence, which reduces the low accuracy
of turnip detection. Furthermore, the number of samples is another fact that influences the generation
of better results, since the implementation of deep learning systems requires a large number of data
that can certainly influence the final performance. Using the deep-learning classification and detection
network, the study shows several advantages of our CropDeep datasets when dealing with different
crop species with various sizes, shapes, colors, etc., compared to previous works.

5.2.2. Speed Evaluation

Next, we explored the speed effect of the dataset on detection performance. Since the original
intention of database collection is to construct the intelligent platform, which needs to be operated on
various autonomous robots and equipment requiring not only accuracy, but also real-time performance,
for further improving the overall timeliness and efficiency of precision agriculture management. Thus,
the frames per second (FPS) was selected as the evaluation indicator to evaluate the speed performance
of each detection networks on a same machine. The evaluation result of the detection time is shown in
Figure 8.
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The result shows that Faster R-CNN is too slow to achieve the effect of real-time detection and
It can only reach 7FPS. SSD and YOLOv3 have the similar detection speed with approximate 40FPS,
which can meet the basic needs for agricultural applications. YOLOv2 and RFB Net have the fastest
detection model with detection speed over 67 FPS, especially RFB Net, with highest real-time detection
speed up to 80 FPS, which is the best model for crop detection in terms of speed. However, RetNet
with the best performance of detection accuracy just achieves a low speed performance with 13 FPS,
which is unsuitable for real-time detection tasks in the CropDeep dataset.

5.2.3. Loss Function

To estimate the prediction degree of each detection models, the loss function diagrams are drawn
as follows in Figure 9.
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The comparative results of loss function show that the trend of the loss function of all detection
meta-architectures is reduced. It stabilizes at about 50,000 Iterations, which the predicted value of the
network was closer to the true value. Among them, the loss function of Faster R-CNN, SSD, and RFB
has large fluctuations in the process of descent, while the loss function of YOLOv2 and YOLOv3 is
relatively smooth. In comparison, the loss function of RetNet decreases faster and smoother, which
indicates the learning ability of the network is stronger. Finally, with comprehensive consideration
of speed, accuracy and robustness, we suggest that the YOLOv3 network has plenty of room for
improvements on end-to-end fine-grained detection tasks in greenhouse. It is still vital and necessary
to develop more advanced models for crop detection in our CropDeep dataset. While the RetNet
obtained the highest overall performance on our CropDeep dataset, which has the potential for further
improvement by reducing detection time and the GPU memory consumption. The sampled detection
results of each class offered by RetNet are present in Figure 10. From left to right and top to bottom,
the crop classes are respectively tomato, unripe tomato, tomato early-blossom, tomato full-blossom,
cucumber, cucumber blossom, unripe cucumber, winter squash, fingered citron, pawpaw, head
lettuce, endive, butter lettuce, rutabaga, purple cabbage, Luosheng lettuce, celery, wolfberry, lemon,
persimmon, iceberg lettuce, Chinese cabbage, turnip, green turnip, spinach, scallion, watermelon,
muskmelon, chili pepper, and pumpkin.
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The CropDeep allows us to study online and offline agricultural applications in a real-world
environment. IOT cameras and mobile cameras can accurately take photos of crops in greenhouses
to capture accurate photos of crop growth. The captured images provide input to the system and
train the network model. The deep learning model can improve the accuracy of crop detection and
classification and can achieve real-time detection speed. The results of the model analysis effectively
evaluate the growth status of the crop. Crop managers manage greenhouse greenhouses through the
results of tests on smartphones to achieve precise agricultural management. The test results of our
system are shown in Figure 11.
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6. Conclusions

In this work, we present a domain-specific vision dataset of crops, namely CropDeep, in the
field of precision agriculture. The novelty of CropDeep is that it aims at providing the data
benchmark to constructing deep-learning-based classification and detection models according to
realistic characteristics of agricultural tasks in greenhouses. In contrast to many existing vision datasets,
the advantages of CropDeep include: (1) the datasets are collected by various cameras and equipment
in greenhouses, which are more useful in offering management services for precision agriculture
than previous datasets. (2) The annotation samples of each crop class are more representative and
abundant than previous works, which support a stronger benchmark for technological applications
of deep-learning-based models in agricultural tasks. (3) The images of the datasets contain periodic
changes and similarity characteristics, which represent a long-tail real-world challenge in classification
and detection problems.

Agricultural picking robots need to identify and classify crops. In order to improve the accuracy
of crop detection, we need to use a large number of crop pictures for training. CropDeep, in contrast to
many existing computer datasets: (1) is unbiased because it was collected by non-computer vision
researchers for a clear purpose; (2) includes 31 crops in common greenhouses, (3) has high similarity
among some categories in the dataset; and (4) contains the state of the entire growth cycle of some crops.

The introduction of CropDeep enables us to study online and offline agricultural applications
in a realistic world setting. To verify that the effective application of CropDeep on classification
and detection, we ran experiments with several deep-learning-based frameworks utilizing different
species. While our baseline classification and detection results are encouraging, state-of-the-art
deep-learning models have room to improve when applied to crops production and management.
Finally, with comprehensive consideration of speed, accuracy, and robustness, we suggest that the
YOLOv3 network has plenty of room for improvements on end-to-end fine grained detection tasks
in greenhouse.

In the future, we plan to add more images and annotations of new crop species for fine-gained
classes that were challenging to annotate. We also plan to explore to improve the performance of
deep-learning classification and detection frameworks for more agricultural applications. Finally,
we expect this dataset to be useful in studying how to teach fine-grained visual categories to humans.
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