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Introduction
Biological systems are subject to intrinsic random genetic 
mutations, epigenetic alterations, and noises arising from 
internal and external stochastic fluctuations.1,2 However, it 
is very important that the potential perturbative effects of 
stochastic noise,3 genetic mutations, and epigenetic altera-
tions are buffered at the systemic phenotypic level. Indeed, 
biological systems are expected to display phenotypes that 
are robust to these genetic and epigenetic variations and 
noise.4–8 However, phenotypic changes in evolutionary fit-
ness pressure require that biological systems are able to adapt 
by producing heritable phenotypic variants. This ability has 
been termed as evolvability. Recently, a paradoxical question 
about the intuitively expected trade-off between robustness 
and evolvability has attracted much attention9–12: how can 
biological systems generate phenotypes that are resistant to 

genetic mutations, epigenetic alterations, and noise, yet also 
retain their ability to evolve as a result of these effects? One 
answer is that the ability of a phenotype to resist mutations 
might enable genetic diversity, which could then be trans-
lated to phenotypic diversity as a result of subsequent genetic 
and epigenetic alterations, or environmental changes in 
selection pressure13 through what has been termed the neu-
tral network.8,14–16

The onset of cancer is characterized by an accumula-
tion of genetic mutations and epigenetic alterations that 
are caused by different stresses, including tobacco, chemical 
agents, radiation, and viruses. These mutations and altera-
tions typically modify the structures of DNA and chromatin, 
and consequently alter the gene products or the regulation of 
gene expression.17 Molecular biologists have long recognized 
carcinogenesis as an evolutionary process that involves natu-
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ral selection. Indeed, cancer is driven by the somatic evolution 
of cell lineages.18–31 In this work, the somatic evolution of cell 
lineages in an organ was modeled as a nonlinear stochastic 
biological network to study natural selection in evolution-
ary carcinogenesis. The evolutionary biological network of an 
organ is driven by intrinsic random fluctuations because of 
genetic and epigenetic variations and external disturbances 
attributed to carcinogens and other stressors. Therefore, we 
modeled the intrinsic random fluctuations because of genetic 
and epigenetic variations as a Poisson counting process, and 
the external disturbances were described by an uncertain sig-
nal. Therefore, an organ with different cell species undergoing 
carcinogenesis was modeled by a nonlinear stochastic system 
with an intrinsic Poisson counting process and external ran-
dom disturbances.32,33

A natural selection scheme develops a robust property 
to efficiently attenuate intrinsic fluctuations and withstand 
external disturbances at the beginning of carcinogenesis. This 
maintains the normal function (ie, phenotype) of an evolu-
tionary biological network under intrinsic random fluctua-
tions because of genetic and epigenetic variations and external 
disturbances attributed to environmental stresses. A robust 
feedback scheme9–11 may exist in natural selection to maintain 
the healthy phenotype of a biological network at the desired 
equilibrium point xe (attractor; Fig. 1). Because the environ-
mental disturbances and the intrinsic random Poisson fluctua-
tions are unpredictable, the minimax evolution game strategy 
was employed. This strategy utilized a robust optimal feedback 
scheme that minimized the worst-case effects of external dis-
turbances and intrinsic fluctuations on the robust stability of the 
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Figure 1. Four equilibrium points in the phenotypic landscape of the nonlinear stochastic biological network of an organ in (10) or (11) in carcinogenesis. 
The dots in the basin of the equilibrium points denote the accumulation of Poisson phenotypic fluctuations (population) of biological networks because 
of genetic and epigenetic changes in carcinogenesis. The vertical states illustrate the relative stability of robust states, healthy state, and tumor 
state of different stages at different equilibrium points, in the multiple dimensional state space. (A) At the beginning, the phenotypic trait of biological 
network is near the equilibrium point xe at healthy state. (B) By suffering the accumulation of neutral phenotypic variations and the influence of 
environmental stresses in carcinogenesis, the robust stability of healthy state cannot be maintained through the evolutionary strategy u(t) with the effect 
of natural selection, and then, the phenotypic trait may be shifted from xe to x1e of tumor state at the early stage to start another evolutionary process 
(carcinogenesis). (C) Similarly, if the accumulated neutral phenotypic variations are large enough and environmental disturbances v(t) are strong 
enough, the evolutionary strategy u(t) cannot confer enough robust network stability to maintain the network local stability at x1e. Then, the phenotypic 
trait of biological network is shifted from cancer stage I at the equilibrium point x1e to cancer stage II at the equilibrium point x2e to begin another stage 
of evolutionary process (carcinogenesis). (D) Finally, if the accumulation of neutral phenotypic variations is large enough to violate the phenotypic 
robustness criterion at x2e, cancer is transited from cancer stage II to cancer stage III. Since the equilibrium points xe in (B) and (C) are still locally stable, 
they are curable (treatable), ie, the curable stages in (B) and (C) may be reversible to (A) by adequate surgical or medical treatment (one kind of enhanced 
negative feedback). If the healthy state xe is incurable (saddle point) as shown in (D), then it is impossible that this process is revertible to (A).
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the aging process under genetic and epigenetic variations and 
environmental disturbances. When the robustness of the tis-
sue network was violated by the accumulated neutral genetic 
and epigenetic variations and environmental disturbances, 
the normal phenotype of the tissue shifted from its original 
equilibrium point to another equilibrium point with a new, 
cancerous phenotype. This new phenotype24,43 took ∼1.5 years 
to progress from stage I to stage II cancer, and about 2.5 years 
to progress from stage II to stage III cancer.

Stochastic Biological Network of Organ in 
Carcinogenesis
First, we considered a simplified analysis by using the linear 
biological network of a tissue or organ in carcinogenesis as the 
following random dynamic process.
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where x(t) = [x1(t) x2(t) x3(t),…,xn(t)]T denotes the masses at 
time t of n cell species in the biological network of a tissue or 
organ (in the liquid tumor case, ie, lymphomas and leukemias, 
the masses of cell species are changed to the densities of can-
cer cells in blood or lymph), v(t) denotes the environmental 
disturbances (signals or mutagens) because of different kinds 
of damages or carcinogens. p(t) is a Poisson point process and 
Ak denotes the effects of random genetic mutations and epige-
netic alterations at t = tk on the phenotype of the tissue. N(t) 
denotes a Poisson counting process of phenotypic variations in 
the tissue level because of random cellular genetic and epige-
netic variations17 in carcinogenesis as follows:
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with mean λt and variance λt,33 and the weighting Poisson 
counting process
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denotes the total phenotype effect of random genetic and epi-
genetic variations on the system matrix A. Poisson point pro-
cesses are useful for modeling a wide range of event-driven 
phenomena involving the occurrence of events at random 
points in time, such as emission of subatomic particles from 
radioactive material, the detection of photons by the receiver 
of a weak optical signal, genetic mutations, neural discharges, 
lightning discharges, seismic events, and the arrival of cus-
tomers always used to model a dynamic system exposed to 
sudden, infrequent, highly localized changes.33,44 Therefore, 
it is suitable to model discontinuous genetic and epigenetic 
variations of biological network in the carcinogenesis process. 
The system matrix A denotes the interactions among these n 

phenotype at an equilibrium point favored by natural selection. 
Therefore, the strategy of natural selection on the evolution-
ary biological network during carcinogenesis was formulated 
as a nonlinear stochastic evolutionary game problem. Based 
on the stochastic Nash game strategy, effective feedback loops 
could be developed by natural selection for a cancer-associated 
biological network. This strategy can significantly improve the 
network’s robustness to genetic and epigenetic variations and 
extrinsic disturbances, as well as maintain the organ’s normal 
phenotype. However, neutral genetic mutations and epigenetic 
alterations gradually accumulated, and eventually overrode 
the network’s robustness developed through natural selection. 
The robust stability of the biological network thereby dete-
riorated, which leads to a shift from the healthy phenotypic 
state at the equilibrium point xe to the cancerous phenotypic 
state at another equilibrium point x1e. Hence, cancer initiated 
another new evolutionary process (Fig. 1). As time increased, 
the abovementioned shift of phenotypic state always occurred 
when the accumulated genetic mutations and epigenetic altera-
tions were large enough. Therefore, cancer can be considered 
an aging disease.

In this study, based on the stochastic Nash game strat-
egy for the robust stabilization of evolutionary nonlinear bio-
logical networks in carcinogenesis,34–39 both natural selection 
and external disturbances affected network evolution. Natural 
selection minimized network evolution (or maximized net-
work fitness), while external disturbances, including genetic 
mutations and epigenetic alterations, maximized network evo-
lution (or minimized network fitness). We solved a Hamilton–
Jacobi inequality (HJI)-constrained optimization problem 
using the stochastic Nash game strategy to obtain a robust 
evolutionary feedback scheme for natural selection during car-
cinogenesis. Furthermore, the phenotype robustness criterion 
was also derived from the stochastic Nash game strategy to 
obtain insights into the evolvability of the cancer biological 
network. In order to simplify the procedure, the global lin-
earization method was employed to interpolate several local 
linear stochastic systems and to approximate the nonlinear 
stochastic system of an organ undergoing carcinogenesis. 
Therefore, the HJI-constrained optimization problem could 
be replaced by a linear matrix inequality (LMI)-constrained 
optimization problem, which was solved easily using the LMI 
Control Toolbox in MATLAB.40–42

Finally, an in silico example of evolutionary oncogenesis 
in lung cancer has been provided to illustrate natural selec-
tion based on the stochastic Nash game strategy. The nonlin-
ear stochastic biological network of lung cancer-related tissue 
contains parenchymal cells, stromal cells, immature vascu-
lar endothelial cells (VECs), and VECs. The network was 
constructed using Poisson genetic and epigenetic variations 
and environmental disturbances. By using a robust feedback 
scheme with the natural selection property based on the pro-
posed nonlinear stochastic Nash game strategy, we found that 
the tissue maintained a normal phenotype for ∼54.5 years in 
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cell species in the tissue or organ, and B denotes the coupling 
matrix between environmental disturbances (signals) and cell 
species in the organ, ie, it denotes the effect of environmental 
signals on the biological network of the organ, where
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aij = 0 if there exists no interaction between cell species i and 
cell species j; akij = 0 if the kth genetic or epigenetic variation 
has no phenotype effect on aij; and bij = 0 if the disturbance 
vj(t) has no effect on the cell species i.

In general, the biological processes in the cancer are time-
varying, ie, A(t) and B(t) in (1). In this study, because of dis
continuous time-varying parameter variations, A(t) is replaced 

by A A p t tk k
k

N t
+ −

=
∑ ( )

( )

1

 in (1). B(t) is replaced by time-invariant 

B but with varying part merged to uncertain disturbance v(t). 
In this study, v(t) is any bounded environmental stress. There-
fore, in this study, we are with time-invariant system models A 
and B, but with random process to represent the time-varying 
process across time.

In order to operate successfully in the organ within the 
context of the organism, all the cells in the organ must be inte-
grated into an architecture as system matrix A in the biological 
network of the organ in (1).

From (1), we get a linear stochastic evolutionary biologi-
cal network in carcinogenesis as
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Since the weighted Poisson counting process 
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 in (1) or (5) is an accumulating process of phe-

notypic changes of biological network in the tissue level because 
of random genetic and epigenetic variations in the cellular 
level, the stochastic biological network in (5) can represent a 
population of biological networks over all possible Poisson 
genetic and epigenetic variations in the cancer evolutionary 
process, ie, one possible Poisson genetic or epigenetic varia-
tion represents one possible biological network in a population 
of the organs in carcinogenesis. The accumulated phenotypic 

variations A x t p t tk k
k

N t
( ) ( )

( )
−

=
∑

1

 in (5) may lead to permanent 

changes in the phenotypic trait of the organ. v(t) denotes the 
environmental stresses because of environmental changes or 
any agent capable of causing cancer. Therefore, the phenotypic 
trait x(t) of biological network will be perturbed away from 
the equilibrium point xe = 0. Recently,45 the lifetime risk of 
cancers of many different types is shown to be strongly cor-
related (0.81) with the total number of divisions of the normal 
self-renewing cells maintaining that tissue’s homeostasis, ie, 
to be strongly related to the accumulated Poisson phenotypic 

changes A x t p t tk k
k

N t
( ) ( )

( )
−

=
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1

 in the aging process.

Under the phenotypic variations and environmental dis-
turbances in (5), in order to maintain its normal function and 
homeostasis, ie, to operate successfully around the equilibrium 
point xe, the natural selection strategy of biological network 
in (5) needs to select some adequate phenotypic variations to 
improve the biological network robustness to resist the effects 
of genetic and epigenetic variations and environmental changes 
in carcinogenesis.

Suppose that the natural selection strategy of evolution-
ary biological network in the organ is to select the following 
phenotypic variations to improve the network robustness in 
carcinogenesis
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and the remaining (or neutral) phenotype variations are
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which have not been selected by natural selection and are accu-
mulated in the biological network. The temporal parameters 
tk′ and tk

* were defined as t tN t1 1( ) , ,′ ≥ ≥ ′  and t tN t2 1( )
* *, , ,≥ ≥  

respectively. It is worth noting that the tk′ is not equal to tk
* . 

From (5)–(7), it is seen that
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where the Poisson counting processes 1 ∼ N1(t) and 1 ∼ N2(t) 
have means λ1t and λ2t, respectively, and λ = λ1 + λ2.

Therefore, the stochastic evolutionary biological network 
of an organ under somatic genetic and epigenetic variations, 
environmental disturbances, and natural selection in (5) can 
be represented as follows:
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where u t A x t p t tk k
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 denotes the evolutionary 

strategy of biological network by natural selection, ie, how to 
select adequate phenotypic variations to improve the network 
robustness to phenotypic variations and environmental distur-
bance v(t) and to finally maintain the normal function of bio-
logical network (or organ) in the network evolutionary process 
(carcinogenesis) was considered.

In the real organ, the stochastic evolutionary biologi-
cal networks for n cell species, x1,…,xn, in carcinogenesis are 
always nonlinear, and the linear stochastic evolution network 
in (5) is thus modified as
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dt
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where f (x) denotes the nonlinear interactive vector among 
n different cell species in the biological network, and fk(x), 
for k  =  1,…,N(t), denotes the nonlinear phenotypic varia-
tions because of Poisson genetic and epigenetic variations in 
carcinogenesis.

Suppose that the phenotypic variations in (10) could 
be separated into the part of evolutionary strategy 
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 which 

are accumulated as random dots in the basin of healthy 
state xe in Figure 1A. The above nonlinear stochastic evolu-
tionary biological network in carcinogenesis was then mod-
ified as
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where
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The nonlinear stochastic biological system in (11) repre-
sents an evolutionary organ under evolutionary strategy 

u t f x p t tk k
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 by natural selection, and the neutral 

phenotypic variations f x p t tk k
k

N t

( ) ( )*
( )

−
=
∑

1

2

 and environmental 

disturbance Bv(t) are accumulated in the basin of the healthy 
state at the equilibrium point xe in Figure  1A during the 
carcinogenesis.

The nonlinear stochastic biological network in (10) 
and (11) has many equilibrium points (phenotypic traits) 

(Fig. 1). Suppose that the phenotypic trait of the biological 
network near the stable equilibrium point xe is the healthy 
state, which is the phenotypic trait with normal function 
of interest by natural selection. For the convenience of 
analysis, the origin of nonlinear stochastic biological net-
work in (11) is shifted to the equilibrium point (phenotypic 
trait) xe. In this case, if the shifted nonlinear stochastic 
network is robustly stable at the origin, the equilibrium 
point (phenotype trait) xe of interest is also robustly stable. 
Let us denote the phenotypic deviation around the pheno-
type at xe as x t x t xe( ) = ( ) −  so that the following shifted 
nonlinear stochastic biological network of an organ is 
obtained as
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where the notations f x x( ) + e  and f x xk( ) + e  are, respec-

tively, simplified by f x( )  and f x u t f x p t tk k k
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denotes the evolutionary strategy of nonlinear stochastic 

biological network by considering natural selection to 
maintain the normal function of evolutionary biological 
network.

In this situation, the origin x t( ) = 0 of the shifted non-
linear stochastic biological network in (13) is the equilibrium 
point xe of the original biological network in (11).

Remark 1
i.	 The linear stochastic biological network of an organ 

in (9) was considered as the linearized system of (13) 
at the equilibrium point x = 0 [or at equilibrium 
point xe in the nonlinear stochastic biological network 

in (11)] with A f x
x x=

∂
∂ =
( )
  0 and A

f x
xk

k
x=

∂
∂ =

( )
  0 since

x t x x t x t x( ) ( ) ( ) ]= = − =e e [ie,  0  is the only equilibrium 
point in the linear biological system in (5) or (9).

ii.	 The nonlinear stochastic system in (13) was consid-
ered as a Darwinian dynamic equation that satisfies 
Darwin’s conditions of variability, heritability, and the 
strategy to survive.37 However, the heritability in this 
study implies the heritability of somatic cell evolution in 
carcinogenesis.

Natural Selection in Carcinogenesis
In carcinogenesis, the evolutionary biological network of an 
organ was modeled as the nonlinear stochastic system in 
(13). Under the effects of random genetic and epigenetic 
variations and environmental disturbance v(t), in order to 
maintain the normal function of evolutionary biological 
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network to be in the healthy state at the equilibrium point xe 

in Figure 1, an evolutionary strategy u t f x p t tk
k

N t

k( ) ( ) ( )
( )

= − ′
=
∑

1

1

  

must be selected by natural selection to improve the robust 
stability of the healthy state or the equilibrium point at 
x t x x t( ) ( ( ) )= =e or  0  of evolutionary biological network. 
According to the robust stochastic stabilization strategy, the 
evolutionary strategy needs to make the system state (phe-
notype) of evolutionary biological network deviate from the 
healthy state as small as possible with a parsimonious effort 
of evolutionary strategy u(t) selected by natural selection in 
response to environmental disturbances, genetic and epige-
netic variations, and initial state. Because the environmen-
tal disturbance v(t) and neutral somatic genetic and 
epigenetic variations are unpredictable, the evolution level e 
of the biological network because of the worst case of all 
possible bounded disturbances, neutral somatic genetic and 
epigenetic variations, and initial conditions was defined 
as,14,16
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∑∫ T
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(14)

where L2[0,tp] denotes the set of all possible bounded environ

mental disturbances, ie, v(t) ∈  L2[0,tp], if 
0

t p
v t v tT( ) ( )∫  

dt E< ∞. {*} denotes the expectation of *. The integration 

E x t Qx t u t u t dt
t p

0
{ ( ) ( ) ( ) ( )} T T+∫  in the numerator denotes the 

performance index of natural selection strategy of biological 
network in carcinogenesis. The positive symmetric weight-
ing matrix Q is a trade-off between the state deviation x t( ) 
and the effort u(t), ie, a large Q will lead to a small state 
deviation in x t( ) but with large effort u(t), and vice versa. If 
Q is selected as the diagonal matrix, Q = diag[q1,…, qi,…, qn], 

in the situation, the selection of a larger qi will make the 
corresponding ith state xi(t) be not easier to deviate from 
the equilibrium point, ie, a less x t( ) in carcinogenesis, and 
vice versa.

The physical meaning of evolution performance in (14) is 
that the worst-case effect of the initial condition, all possible 
environmental disturbance v(t), neutral genetic and epigenetic 
variations on the robust stability performance of x t( ) and con-
trol strategy effort of u(t) were considered as the evolution level 
of the biological network because the environmental distur-
bances and neutral genetic and epigenetic variations are unpre-
dictable in carcinogenesis. The deviation x t( ) and evolutionary 
strategy u(t) are simultaneously considered in the evolution-
ary performance in (14) because natural selection employs a 
parsimonious strategy to achieve the robust stability with a less 
effort.

The phenotypic fitness (or phenotypic robustness) of the 
biologic network around the healthy phenotypic trait at the 
equilibrium point xe is inversed to the evolution level of bio-
logical network,39 ie,

	 f eα 1 	 (15)

In other words, a biological network with a low evolu-
tion level e in carcinogenesis will lead to a high fitness. There-
fore, the maximization of the biological network fitness to 
the phenotypic trait at equilibrium point xe under the effect 
of genetic and epigenetic variations and environmental dis-
turbances is equivalent to the minimization of the evolution 
level as

	 max minf e∼ 	 (16)

Therefore, by combining (14) and (16), the evolutionary 
strategy u(t) for the biological network suffers from the effect 
of natural selection to tolerate neutral phenotypic variations, to 
resist environmental disturbances, and to finally maintain the 
normal phenotype of biological network in carcinogenesis. It 
was to maximize the fitness of the biological network to the 
healthy state xe as the following minimax evolutionary game 
problem
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(17)
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where u(t) was selected as u t f x p t tk k
k

N t

( ) ( ) ( )
( )

= − ′
=
∑ 

1

1

 from the 

total phenotypic variations f x p t tk k
k

N t

( ) ( )
( )

 −
=
∑

1

1

 to maximize the 

fitness (or minimize the evolution level) of biological network in 
carcinogenesis. Since the initial phenotypic deviation x( )0  also 
affects x t( ) and u(t), its effect on the evolution level was also 
considered in the denominator of (17). e0 in (17) was called the 
network evolvability of biological network with the minimax 
(game) strategy u(t) by considering natural selection, ie, the 
Nash stochastic game is performed for biological network of the 
organ by natural selection to resist the unpredictable environ-
mental disturbances and tolerate the neutral phenotypic varia-
tions because of somatic genetic and epigenetic variations in 
carcinogenesis. Therefore, the maximum phenotypic robustness 
(fitness maximization) strategy of biological network by natural 
selection in carcinogenesis was formulated as a stochastic Nash 
game problem in (17) for nonlinear stochastic biological net-

work of (13), ie, how to select u t f x p t tk k
k

N t

( ) ( ) ( )
( )

= ′
=
∑  −

1

1

 from 

the total phenotypic variations f x p t tk k
k

N t
( ) ( )

( )
 −

=
∑

1

 because of the 

genetic and epigenetic variations in carcinogenesis to solve the 
minimum evolution (or maximum fitness) problem of the bio-
logical network at the healthy state xe was considered.

The evolution game in (17) has two players u(t) and v(t). 
The environmental disturbance v(t) and neutral phenotype 

variations f x p t tk k
k

N t

( ) ( )*
( )

 −
=
∑

1

2

 will maximize their effect on the 

deviation of phenotype x t( ) and the evolution strategy effort 
u(t) of the biological network from its equilibrium point xe (ie, 
the worst-case effect of all possible disturbances v(t)∈L2[0,tp] 

and neutral phenotypic variations f x p t tk k
k

N t

( ) ( )*
( )

 −
=
∑

1

2

 were con-

sidered in the evolution game) and the other player u(t) selected 
phenotypic variations to significantly improve the network 
robustness (fitness) of the phenotype xe by minimizing the 
worst effect of all possible neutral phenotypic variations, envi-
ronmental disturbances, and initial conditions on the pheno-
type deviation and evolution strategy effort in carcinogenesis.

In general, it is very difficult to solve the stochastic Nash 
game problem in (17) directly for the evolutionary strategy of 
nonlinear stochastic biological network of organs in carcino-
genesis. In this study, a suboptimal method was introduced to 
solve the stochastic Nash game problem by minimizing the 
upper bound e of e0 indirectly as follows:

The upper bound e will be given beforehand to solve the 
suboptimal Nash game problem in (18) at first and e will be 
decreased as small as possible to approach to the solution e0 of 
the stochastic Nash game problem in (17).

The suboptimal stochastic Nash game problem in (18) is 
equivalent to the following constrained stochastic Nash game 
problem34,35,38
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Let us denote
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Therefore, we developed two steps to solve the con-
strained Nash stochastic game in (18) or (19). The first step 
was to solve the folla
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The second step is to solve the following constraint 
problem

	 J eE x x0 0 0≤ { ( ) ( )} T 	 (22)

Minimax nash game strategy of linear evolutionary 
biological network in carcinogenesis. For the convenience 
of illustration, we first solve the evolutionary game strategy 
of linear biological network in carcinogenesis. By solving the 
constrained stochastic Nash game problem in (21) and (22) [or 
(19)] for the natural selection strategy of the linear evolutionary 
stochastic biological network in (9) with the effect of the natu-
ral selection in carcinogenesis, we get the following result.
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Proposition 1
For the linear stochastic evolutionary biological network (9) in 
carcinogenesis, the constrained stochastic Nash game problem 
in (18) or (19) can be solved by the following evolutionary game 
strategy u*(t) and worst-case environmental disturbance v*(t)

	
u t A x t p t t Px tk k

k

N t
*

( )

( ) ( ) ( ) ( )= − ′ = −
=
∑

1

1

	 (23)

	
v t e B Px t* ( ) ( )= 1 T 	 (24)

where the positive-definite matrix P . 0 is the solution of the 
following Riccati-like inequalities

PA A P PP Q

PA A P A PA eA A e PBB Pk k k k k k
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+ − +

+ + + − + ≤
=
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T T T Tλ2
1

1
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2

( )
p

	
(25)

and

	 P eI≤ 	 (26)

where N N t2p p 2( ), and 1 ∼ N2p represent the total number of 
selected phenotypic variations and neutral phenotypic varia-
tions to the present time tp, respectively.

Proof: see Appendix A. The Proposition 1 is the solution 
of the suboptimal Nash stochastic game in (18) or (19). We need 
to minimize the upper bound e to approach the network evolvabil-
ity e0 in (17) of the linear biological network (9) in carcinogenesis. 
The stochastic Nash game in (17) for network evolvability e0 of the 
biological network in (9) needs to solve the following constrained 
optimization problem.

	

e P0 0
= >

min
e

subject to ( ) and ( )25 26

	 (27)

Remark 2
i.	 The solution of the above network evolvability e0 of linear 

biological network (9) in carcinogenesis can be obtained 
by decreasing e until no positive solution P in (25) within 
0 , P # eI in (27).

ii.	 After solving e0 from (27), the Riccati-like inequality in 
(25) becomes
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which can be considered as the phenotypic robustness cri-
terion of stochastic evolutionary biological network in (9) 
because the inequality in (28) is required for the robust 

stability of the evolutionary biological network under genetic 
and epigenetic variations and environmental disturbances in 
carcinogenesis.

iii.	 The term λ2 0
1

2

( )PA A P A PA e A Ak k k k k k
k

N

+ + −
=
∑ T T T

p

 in the 

phenotypic robustness criterion (28) is the effect of neu-
tral phenotypic variations that are not selected by natural 
selection but are accumulated randomly at the biological 
network in carcinogenesis.

iv.	 After solving e0 and P . 0 from the constrained optimi-
zation problem in (27), the solution of stochastic Nash 
game strategy in (17) for biological network of an organ 
by natural selection in carcinogenesis is obtained by 
modifying (23) and (24) as
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where P . 0 is the solution of (28). The minimax strategy u*(t) 
by considering natural selection is to select an adequate amount 

of phenotypic variations A p t t Ak k
k
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 to approach 

–P to enhance the robust stability of the biological system and 
minimize the evolution level e (or maximize the phenotypic 
fitness of the biological network of an organ via f e0

0

1= ). With 

the negative feedback –Px because of Nash game evolution 
strategy by natural selection, the phenotypic robustness crite-
rion in (28) was rearranged as
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The eigenvalues of ( )A P− 1
2

 are farther to the left-hand 

side of the complex s-domain than those of A, such that the 
network robustness of biological network is improved by nega-
tive feedback loops of the minimax Nash game strategy 

u t A x t p t t Px tk k
k

N t
*

( )

( ) ( ) ( ) ( )= − ′ = −
=
∑

1

1

 in carcinogenesis.

Further, the phenotypic robustness criterion in (31) of 
evolutionary biological network in carcinogenesis was refor-
mulated as
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	 (32)
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The physical meaning of network phenotypic robustness 
criterion in (32) is that if the enhanced network robustness of 
the biological network through negative feedback loops of the 
minimax evolutionary strategy in (17) can confer the environ-
mental robustness to resist the environmental disturbances 
and phenotypic robustness and tolerate the neutral Poisson 
phenotypic variations, the phenotypic trait of biological net-
work of an organ is maintained in carcinogenesis. Otherwise, 
the phenotypic trait of biological network of an organ may not 
be maintained under environmental disturbances and random 
Poisson genetic and epigenetic variations in carcinogenesis.36 
According to the statistical results,45 the lifetime risk of many 
different cancers is strongly correlated (0.81) with the total 
number of divisions of the normal self-renewing cells main-
taining that tissue’s homeostasis. Also, the violation of pheno-
typic robustness criterion in (32) can be explained by the 
number of cell divisions, and a third of cancer risk among tis-
sues is attributable to environmental factors. Namely, the cause 
of the violation of phenotypic robustness criterion in (32) 
during carcinogenesis is attributed 1/3 risk ( )ie, Q e PBB PT+ 1

0
 

to environmental factor and 2/3 risk to intrinsic pheno

typic factor (ie, λ2 0
1

2

( ))PA A P A PA e A Ak k
T

k
T

k k
T

k
k

N p

+ + −
=
∑  

in (32).
v.	 Through the minimax game strategy of biological network 

of an organ in carcinogenesis, the accumulated phenotypic 

variations A p t t A p t t Ak k
k

N t

k p k
k

N t

k
k

Np p
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= = =
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where N N tp p1 1 ( ), are chosen by natural selection to 
the amount of –P to construct negative feedback loops 
–Px(t) in (29). This is why many feedback loops, and the 
epigenetic methylations and miRNA regulations in can-
cer are always found to be with negative feedback (inhibi-
tion). The stochastic biological network of an organ in (9) 
was thus of the following form

	
dx t

dt
A P x t A x t p t t Bv tk k

k
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= − + − +
=
∑
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2

	 (33)

Because the eigenvalues of (A  −  P) of biological net-
work are in the far left-hand side of the complex s-domain, 
the biological network of an organ is more robust by the 
minimax game strategy of natural selection to resist envi-
ronmental disturbances and to tolerate neutral phenotypic 
variations.
vi.	 The minimax game strategy by natural selection can pro-

vide negative feedback loop –Px(t) for a greater network 
stability robustness improvement to buffer more neutral 

phenotypic variations A x t p t tk k
k

N t

( ) ( )*
( )

−
=
∑

1

2

 in carcinogen-

esis. However, when the neutral phenotypic variations 
because of Poisson genetic and epigenetic variations are 

accumulated in carcinogenesis, ie, the term 

λ2
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( )PA A P A PA eA Ak k
T

k
T

k k
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k
k

N p

+ + −
=
∑  is large enough, 

and the network phenotypic robustness criterion of bio-
logical network in (32) is violated eventually, the biologi-
cal network will become unstable at the healthy state, 
x(t) = xe. Finally, the organ will become cancer.

Minimax game strategy of nonlinear biological network 
in carcinogenesis. After solving the minimax game strategy 
of linear biological network of an organ by natural selection in 
carcinogenesis, we will solve the minimax game problem in (17) 
for the evolutionary strategy of nonlinear biological network in 
(13) by natural selection in carcinogenesis. First, we solved the 
suboptimal Nash game problem in (18), or equivalently in (21) 
and (22), for nonlinear stochastic biological network in (17) 
operating near the healthy state xe in Figure 1A.

Proposition 2
For the nonlinear stochastic biological network (13) in carcino-
genesis, the suboptimal stochastic Nash game problem in (18) or 
(21) and (22) can be solved by the following evolutionary game 
strategy u*(t) and worst-case environmental disturbance v*(t)
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where the Lyapunov function V x t( ( )) > 0 is the solution of the 
following constrained HJI
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with

	 E V x t eE x xT{ ( ( ))} { ( ) ( )}  ≤ 0 0 	 (37)

Proof: see Appendix B. After solving the above subop-
timal Nash game problem in (18) or (21) and (22), for the sto-
chastic biological network in (13), the minimax evolutionary 
strategy by natural selection in (17) was solved by minimizing 
the upper bound e as follows:
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If V x( )  and e0 are obtained by solving the HJI-constrained 
optimization in (38), the network robust stability criterion in 
(36) and (37) in carcinogenesis was modified as
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with V x t e x xT( ( )) ( ) ( )  ≤ 0 0 0 . Since the HJI in (39) is necessary 
for the phenotype at x t( ) = 0 or x(t) = xe to be robust, it can 
be considered as the phenotypic trait robustness criterion of 
nonlinear stochastic network in (13) at the phenotypic state xe 
in carcinogenesis.

In this situation, the evolutional game strategy u*(t) in 
(34) and the worst-case environmental disturbance v*(t) in 
(35) were modified, respectively, as follows:
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	 (41)

where the Lyapunov function V x t( ( ))  is the solution of the 
network robust stability criterion in (39). The minimax strat-

egy of u*(t) is to select f x t p t tk k
k

N t

( ( )) ( )
( )

 − ′
=
∑

1

1

 to approach the 

nonlinear negative feedback − ∂
∂

V x t
x

( ( ))


 to minimize the evo-

lution level e, and v* denotes the worst-case disturbance to 
maximize evolution level e.

The robust stability criterion in (39) was rewritten as the 
following phenotypic robustness criterion in carcinogenesis.
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	 (42)

The first two terms are because of neutral phenotypic 
variations from the genetic and epigenetic variations in car-
cinogenesis, the last two terms on the left-hand side of (42) are 

by the worst-case environmental disturbance, and the terms 
on the right-hand side of (42) are because of the negative feed-
back through evolutionary minimax game strategy 

u t V x t
x

* ( ) ( ( ))= − ∂
∂

1
2




. The biological meaning of phenotypic 

robustness criterion in (42) is that if the enhanced network 
robustness by evolutionary minimax strategy u*(t) can confer 
phenotypic robustness to tolerate the neutral phenotypic vari-

ations f x t p t tk k
k

N t

( ( )) ( )*
( )

 −
=
∑

1

2

 and environmental disturbances, 

the healthy state (or phenotypic trait) xe was maintained in 
carcinogenesis. By substituting the minimax game evolution-
ary strategy u*(t) in (40) into the nonlinear stochastic biologi-
cal network in (13), we get

dx t
dt
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Form (43), it is seen that f x t V x t
x
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2

 can 

make the nonlinear stochastic biological network of an organ 
more robustly stable than f x t( ( ))  because of the negative 
feedback loops of minimax game evolutionary strategy by 
considering natural selection in carcinogenesis.

If the network robustness on the right-hand side of (42) is 
improved by the minimax game evolutionary strategy, from the 
landscape of phenotype in Figure 1A, the healthy phenotypic trait 
is with deeper basin and steep cliff at the equilibrium point xe, and 

the nonlinear biological network can harbor much more neutral 

phenotypic variations f x t p t tk k
k

N t

( ( )) ( ),*
( )

 −
=
∑

1

2

 ie, much more dots 

in the basin of xe. However, as time increases, the neutral pheno-
typic variations are accumulated to a sufficiently large amount in 
carcinogenesis that the enhanced network robustness on the right-
hand side of (42) cannot provide enough phenotypic robustness to 
tolerate these accumulated neutral phenotypic variations and resist 
environmental disturbances, and eventually the phenotypic robust-
ness criterion in (42) is violated. This is why cancer is an aging-
associated disease and the accumulating process of network 
phenotypic variations can be considered as an aging process of the 
tissue. In this situation, these accumulated neutral phenotypic 
variations may provide raw materials for biological network evolu-
tion to cause a possible phenotypic transition to the early stage of 
tumor state at the equilibrium point xe1, ie, a phenotypic transition 
may occur from the basin xe to another basin xe1 in Figure 1B to 
start another cancer phenotypic evolutionary process at the equi-
librium point xe1 in carcinogenesis.

Remark 3
For the early stage of tumor at the equilibrium point xe1 of 
stage I in Figure 1B, by a similar analysis as above, we could 
shift the origin of nonlinear stochastic biological network of 
an organ to xe1 as follows:
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where  ′ = −x t x t xe( ) ( ) 1.
As the minimax game evolutionary strategy in (40) is 

chosen for nonlinear stochastic network in (43) by natural 
selection in the healthy stage of carcinogenesis, the biological 
network of an organ with early cancer stage is of the following 
form through the evolutionary game strategy at xe1:
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As the neutral phenotypic variations f x t p t tk k
k

N t
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 ′ −
=

′

∑
1

2

 

are accumulated to a sufficient large amount in the early stage 
of carcinogenesis so that the basin of xe1 could not tolerate 
these neutral phenotypic variations and has not enough ability 
to resist environmental disturbances simultaneously, the bio-
logical network transits from the equilibrium point xe1 to the 
equilibrium point xe2 of another phenotype of cancer to begin 
the second stage of carcinogenesis in Figure 1C. Finally, the 
phenotype of cancer stage II will be transited to the phenotype 
of cancer stage III in Figure 1D when the phenotypic robust-
ness criterion at x2e is violated by Poisson random genetic and 
epigenetic variations in carcinogenesis. In the late stage of car-
cinogenesis, the network evolutionary strategy that maintains 
network robustness can be hijacked by cancer biological net-
work to maintain dysfunction at the other equilibrium point in 
Figure 1, as that occurs in cancer drug resistance.25,26

Remark 4
i.	 The feedback loop − ∂
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natural selection. However, the accumulated neutral pheno-

typic variations f x t p t tk k
k

N t

( ( )) ( )*
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 −
=
∑
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2

 are the source of ran-

dom and complex tissue structures of cancer and provide 
raw materials to increase the heterogeneity of tumor cells 
for a new evolutionary possibility to cause a transition from 
one cancer state to another cancer state in carcinogenesis.

ii.	 In Figure 1B and C, the cancer states at x1e and x2e are 
still curable, ie, the carcinogenesis is still reversible to 
Figure 1A by an adequate surgical or medical treatment 
(one kind of enhanced negative feedback). If the healthy 
state is incurable (saddle point) as shown in Figure 1D, 
then it is impossible that this process is reversible to the 
healthy state in Figure 1A.
The stochastic evolutionary game of nonlinear cancer-

associated network in carcinogenesis. In general, it is very 

difficult to solve the HJI-constrained optimization problem in 
(38) for the evolution game strategy u*(t) of the evolutionary 
biological network in (11) in carcinogenesis. At present, there 
is no efficient method to solve the nonlinear partial differen-
tial HJI in (39) either analytically or numerically. Therefore, 
in order to simplify the stochastic evolutionary game strategy, 
the global linearization technique40 is employed to interpo-
late the nonlinear stochastic biological network in (13) with 
a set of local stochastic linearized biological networks like (9) 
at different operation points. Using the global linearization 
technique,40 we suppose that all the global linearization of the 
nonlinear stochastic biological network in (13) are bounded by 
the following L vertices as40
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where C0 denotes the convex hull of the polytope with L verti-
ces. That is, if the local linearized biological systems at all x t( ) 
are inside the convex hull C0, the trajectory x t( ) of the nonlin-
ear evolutionary biological network in (13) can be represented 
by the convex combination of the stable trajectories of the fol-
lowing L local linearized biological networks at L vertices of 
the polytope in (46)
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Based on the global linearization theory,40 if (46) holds, 
every trajectory of nonlinear stochastic evolutionary biological 
network in (13) can be represented by a convex combination of 
L local linear biological networks in (47), ie,
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where the interpolation functions αi x( )  satisfy the following 

constraints: 0 1≤ ≤αi x( )  and αi
i

L
x( ) =

=
∑ 1

1

. The physical meaning 

of (48) is that the evolutionary trajectory of the nonlinear sto-
chastic biological network in (13) can be represented by the 
evolutionary trajectory of the interpolated biological network  

in (48). In (48), the evolutionary trajectory u t f x p t tk k
k
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in (13) can be represented as u t x A p t t x ti ki k
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by the global linearization technique. For the Nash game 
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evolutionary strategy problem in (17) in the carcinogenesis 
of the nonlinear stochastic network in (48), we get the 
following results for Nash game problem in (19), (21), 
or (22).

Proposition 3
For the interpolated evolutionary biological network (48) in 
carcinogenesis, the stochastic evolutionary Nash game problem 
in (19) is solved by the following evolutionary strategy u*(t) and 
the worst-case environmental disturbance v*(t)

	
u t x A p t t x t Pxi ki k

k

N t

i
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*
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==
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11

1

	 (49)

	
v t e B Px tT* ( ) ( )= 1

 	 (50)

where the positive-definite matrix P is the solution of the fol-
lowing Riccati-like inequalities
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	 (51)

	 0 < <P eI 	 (52)

Proof: see Appendix C.

Remark 5
i.	 In comparison with Proposition 1 of a stochastic lin-

ear biological network in carcinogenesis in (9), the 
Riccati-like inequality in (25) is based on the local 
linearized network at x t( ) ,= 0  while the L Riccati-like 
inequalities in (51) are based on L local linearized bio-
logical networks in (48). Hence, the result of the Nash 
evolutionary game strategy in Proposition 3 is more 
suitable for nonlinear stochastic biological system in 
carcinogenesis.

ii.	 The Riccati-like inequalities in (51) can be considered as 
the local linearization of HJI in (36) at the L vertices of 
polytope in (46).

iii.	 For solving P in (51), the L Riccati-like inequalities 
in (52) can be transformed to the following equiva-
lent LMIs by the Schur complement transformation 
method40

for i = 1,2,…,L.
These LMIs in (53) can be easily solved by using the 

LMI toolbox in MATLAB. However, e in (51) and (52) is 
only the upper bound of the network evolvability e0. The net-
work evolvability e0 of the nonlinear biological network under 
evolutionary game strategy can be obtained by solving the fol-
lowing LMI-constrained optimization problem

	

e P0 0= >
min

( )

e

subject to and ( )52 53

	 (54)

Remark 6
i.	 The e0 in (54) could be solved by decreasing e until (53) 

has no positive solution for 0 , P # eI with the help of 
LMI toolbox in MATLAB.

ii.	 After solving e0 in (54), the Riccati-like inequalities for 
the network robustness criteria of local linearized bio-
logical networks in (51) become
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iii.	 After solving P and e0 from (54), the evolutionary game 
strategy u t Px t* ( ) ( ),= −   and the worst-case disturbance 

v t e B Px tT* ( ) ( )= 1
0

  are solved for the nonlinear stochastic 

network in (13).
iv.	 The Riccati-like inequalities for local network robustness 

criteria in (51) can be rearranged as
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Obviously, every interaction matrix Ai of local linearized 
biological networks is shifted by − 1

2
P  so that the eigenvalues 

of ( )A Pi − 1
2

 are on the farther left-hand side of the s-complex 
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domain, and thus the evolutionary biological network is with 
more network robustness to tolerate local genetic and epige-
netic variations and resist environmental disturbances in 
carcinogenesis.
v.	 The minimax game evolutionary strategy u*(t) is to select 

the total amount of phenotypic variations 

αi ki k
k

N t

i

L
x t A p t t P( ( )) ( )

( )

 − ′ = −
==
∑∑

11

1

. This is so as to select 

adequate genetic and epigenetic variations to form nega-
tive feedback loops −Px t( ) in the nonlinear biological 
network, which can resist environmental disturbances 
and buffer neutral genetic and epigenetic variations in 
carcinogenesis. Therefore, the increase of inhibitive epi-
genetic methylation and miRNA regulation can be 
observed17 in carcinogenesis.46

vi.	 The phenotypic robustness criterion in (56) can be rear-
ranged as
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	 (57)

The biological meaning in (57) is that if the enhanced 
local network robustness of each local linearized biological 
network by using evolutionary game strategy u*(t) under natu-
ral selection can confer both local phenotypic robustness to 
buffer neutral local genetic and epigenetic variations and local 
environmental robustness and to resist the local environmen-
tal disturbances in carcinogenesis, the phenotype of nonlin-
ear stochastic network with Nash game evolutionary strategy 
can be maintained in the basin of the equilibrium point in 
carcinogenesis.
vii.	 From the phenotype robustness criterion in (57) in the 

cancer evolutionary process, it is more appealing to make 
the left-hand side of (57) as small as possible and to 
make the right-hand side of (57) as large as possible. In 
this situation, the coupling matrix B between biological 
network, environmental disturbances, and phenotypic 
effects Aki (because of genetic mutations and epigenetic 
alterations) should be as small as possible. In order to 
maintain network robustness, there always exists some 
membrane or transparent membrane to make B smaller 
to isolate the biological network from environmental dis-
turbance, and some redundant and modular structures 
make the phenotypic effect Aki of genetic mutations and 
epigenetic alterations as small as possible. Further, the 
negative feedback loop −Px t( ) mediated by evolutionary 
strategy u*(t) makes the right-hand side of (57) as large as 
possible. These networks are also hijacked by cancer to 
maintain dysfunction in the late stage of carcinogenesis. 
This always occurs in cancer drug resistance.25,26

viii.	 Because the Nash game evolutionary strategy can improve 
significantly the local network robustness of each local 
linearized biological network, the nonlinear stochastic 
biological network will harbor more neutral genetic and 
epigenetic variations. However, as the harbored neutral 
genetic and epigenetic variations are accumulated to the 
extent that the third term in (57) becomes very large and 
the phenotypic robustness criterion of biological network 
in (57) cannot be guaranteed in carcinogenesis, the phe-
notype of biological network might be shifted to cancer 
state at another equilibrium point in Figure 1 with the 
help of the environmental disturbances and start another 
period of cancer network evolution at the other equilib-
rium point favored by natural selection.

In Silico Example
Considering the dynamic evolutionary game strategy in the 
oncogenesis of lung cancer, some cell lineages related to lung 
cancer are described as follows. The tissue contains paren-
chymal cells and stromal cells. The stroma typically con-
tains VECs, pericytes, and smooth muscle cells in its blood 
vessels.27,28,30,31 Along with fibroblasts and other cell types, 
parenchymal cells tend to exhibit considerable phenotypic 
variations because of genetic and epigenetic variations during 
oncogenesis.24

Let x1(t) and x2(t) be the mass of parenchymal cells with 
phenotypes 1 and 2, respectively. Further, let y(t) be the mass of 
immature VECs within the tumor and z(t) be the mass of VECs, 
which can be represented by the length of existing microvessel 
in 1 g of undiseased tissue (ie, one unit is equal to microvessel 
length in 1 g of undiseased tissue). The dynamic system of cells 
related to lung cancer is thus described as follows24:
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where h1(m)  = 0.28c(m)e–0.06c(m), h2(m)  = 0.4c(m)e–0.06c(m), 
m(t)  = z(t)/[x1(t) + x2(t)], c(m) = 95m(t)/[1.375  + m(t)], and 
H(x1,x2,z) = [x1(t)h1(m) + x2(t)h2(m)]/[x1(t) + x2(t)].

The variable m(t) represents tumor vascularization (per-
fusion) in microvessel units per gram of parenchyma [m(t), to a 
physiologist, is proportional to tumor microvessel length den-
sity]. The functions Φi(m) express per capita growth rate of cell 
type i as a function of blood supply and are represented by the 
following equations, respectively,24,31
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and
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In carcinogenesis, the tissue dynamic system in (58) suf-
fers from phenotypic variations because of genetic and epi-
genetic variations and environmental disturbances as the 
following nonlinear stochastic Poisson system
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and the mean of Poisson process is imposed as λ2 = 0.05.
The equilibrium point x of the nominal lung tissue sys-

tem is at xe = [xe1,xe2,xe3,xe4]T = [6.19  ×  10–11 2.20  ×  10–3 0 
9.88  ×  10–6]T of the nominal system in (58) simulated from 
the initial condition x T( ) [ . . ]0 10 1 20 10 0 1 16 102 2 7 − − −− × × . 
For the simplicity, the state of the lung tissue in (61) is shifted 
to the form x t x t xe( ) ( )= − . Thus, the new equilibrium point of 
the phenotype concerned is at x Oe = ×4 1, through the following 
in silico example.

Based on the above evolutionary game strategy, the phe-

notypic variations f x p t tk
k

N t

k( ) ( )
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
=
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1

1

− ′  are selected by consider-

ing natural selection to construct negative feedback loops to 
modify the lung cancer-associated cell system in (58), in order 
to resist environmental disturbances and to tolerate the effect 

because of the neutral phenotypic variations f x p t tk
k

N t
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
=
∑

1

2

− * . 

According to the global linearization scheme in (46)–(48), the 
nonlinear stochastic Poisson system in (61) can be approxi-
mated by interpolating the following l local linear stochastic 
Poisson systems

where Ai are given in Appendix D, Aki = 0.5Ai and l = 5.
Based on the evolutionary game strategy in Proposi-

tion 3, natural selection is to select the phenotypic variations 
to construct the following negative feedback loops to improve 
the system robustness
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where P is the solution of the constrained optimization prob-
lem in (54) as follows:
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We also find the evolvability e0 = 0.4688 and fitness f0 = 2.1331 
for the lung tissue system with the phenotype at the equi-
librium point xe = [6.19 × 10–11 2.20 × 10–3 0 9.88 × 10–6]T 
in (61). From the computer simulation in Figure 2, it is seen 
that the phenotype of the lung tissue is maintained at equilib-
rium point xe under the Poisson genetic and epigenetic varia-
tions and environmental disturbances in the period of time 
t = 0 ∼ 19,906 (days) ≈ 54.5 (years).

The neutral phenotypic variations f x p t tk k
k

N t

( ) ( )
( )

 − *

=
∑

1

2

 

are accumulated large enough as shown in Figure 3  so that 
the phenotypic robustness criterion in (42) or (57) of non-
linear stochastic biological system in (61) or (62) is even-
tually violated in carcinogenesis. The network robust 
stability is thus broken down and the phenotypic trait 
of the lung tissue is shifted to another equilibrium point 
x x xe e e

T
2 2

4 3 4 47 09 10 1 60 10 1 30 10 3 60 10= + = × × × × [ . . . . ] ,− − − −  
which can be considered as the phenotype at the first stage of 
lung cancer, to start another evolutionary process in carcino-
genesis. The simulation result in Figure 2  indicates that the 
phenotypic shift of the lung cancer-associated cell network 
takes 54.5 years from the normal state to stage I cancer, 1.5 
years from stage I to stage II cancer, and 2.5 years from stage II 
to stage III cancer. For clarity, the evolutionary simulation in 
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the phase plane is given in Figure 4 to illustrate the transition 
of lung cancer from the healthy state at xe  =  [6.19  ×  10–11 
2.20 × 10–3 0 9.88 × 10–6]T to stage cancer at x1e = [1.46 × 10–4 
1.80 × 10–3 1.02 × 10–4 2.75 × 10–4]T, then to stage II cancer 
at x2e =  [7.09 ×  10–4 1.60 ×  10–3 1.30 ×  10–4 3.60 ×  10–4]T, 

and finally to stage III cancer at x3e = [1.01 × 10–3 1.35 × 10–3 
1.80 × 10–4 5.12 × 10–4]T. Based on the results of simulation, 
we found that the average age of lung cancer is more than 50 
years, the transition from stage I cancer to stage II cancer is 
about 1.5 years, and the period from stage II to stage III lung 
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Figure 2. The trajectories of the nonlinear stochastic biological network of lung cancer cells in carcinogenesis with states 
x x x x x y x z xe e e e

T= − − − −[ , , , ]1 1 2 2 3 4 , suffering from Poisson genetic and epigenetic variations with Poisson counting process as shown in 
Figure 3 and environmental disturbance v(t). Even the network robustness is enhanced by evolutionary game strategy; however, it is seen that 
the phenotype will shift to another phenotype when the neutral phenotype variations are accumulated to a sufficiently large amount such that 
the phenotypic robustness criterion in (42) or (57) is violated (ie, the normal phenotype of the lung cancer-associated network is shifted from 
the equilibrium point at xe = [6.19 × 10–11 2.20 × 10–3 0 9.88 × 10–6]T to the phenotype of first stage lung cancer state at the equilibrium point 
x x xe e e

T
1 1

4 3 4 41 46 1 80 10 1 02 10 2 75 10= + = × × × ×− − − − [ . . . . ]10  at 54.5 years of age, and then the second stage lung cancer state at the equilibrium point 
x x xe e e

T
2 2

4 3 4 47 09 1 60 10 1 30 10 3 60 10= + = × × × ×− − − − [ . . . . ]10  at 58.5 years of age and so on). Obviously, the cancer network evolution seems to increase 
its step in the late stages of carcinogenesis. From the literature in Ref. 47, lung cancer occurs mostly in men over 50 years, often at age of 60–75 years. 
Moreover, the units of state x1, x2, and y are grams, and the unit of state z represents the length of existing microvessel in 1 g of undiseased tissue (ie, one 
unit is equal to microvessel length in 1 g of undiseased tissue).
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cancer is about 2.5 years. The literature47 seems to give a sta-
tistical support to these results.

Discussion
For ecologists and evolutionary biologists, natural selection 
and evolution are usually viewed as the domains of peppered 
moths and finches, driven to adapt by predators and com-
petition. A long time ago, few evolutionary biologists could 
conceive that their field of biology would have a pivotal role 
in the understanding and combat of complex diseases such as 
cancer.48 Recently, molecular biologists have acknowledged 
carcinogenesis as an evolutionary process involving natural 
selection that buffers neutral phenotypic variations and with-
stands environmental disturbances in the aging process.49 In 
order to maintain the phenotypic stability of interest by natu-
ral selection, a stochastic Nash game strategy was developed 
using natural selection to improve the stability of a cancer-
associated biological network. This strategy minimized the 
worst-case effects of uncertain neutral genetic and epigenetic 
variations and environmental disturbances on the variations 
from its normal carcinogenic phenotype. With the stochas-
tic Nash game strategy, the robust phenotypic stability crite-
rion for evolutionary biological networks in carcinogenesis is 
found in (42) or (57). This criterion states that the phenotypic 
robustness plus the environmental robustness should be less 
than or equal to the enhanced network robustness. Essentially, 

if the enhanced network robustness by the stochastic Nash 
game strategy can confer both phenotypic robustness to buf-
fer neutral Poisson and epigenetic and genetic variations, and 
environmental robustness to withstand environmental dis-
turbances in carcinogenesis, by considering natural selection, 
the network phenotype of the cancer-associated biological 
network can be robustly stable in the basin around the equi-
librium point xe. In the evolutionary period, the linear net-

work interaction matrix A is modified by ( )A P− 1
2

 in (31) [or 

f x t( ( ))  is modified by f x t V x t
x

( ( )) ( ( ))





− 1
4

∂
∂

 in (42) for a non-

linear network case] through negative feedback loops of the 
stochastic Nash game strategy. This could then decrease the 
evolvability e0 of the biological network in carcinogenesis or 
increase the fitness f0 of the biological network in (15). In this 
situation, the phenotype is more robust because of the larger 
and deeper basin in the phenotypic landscape, as presented 
in Figure 1. However, when large amounts of neutral genetic 
and epigenetic variations are continuously accumulated in a 
larger and deep basin in a period of carcinogenesis, they may 
provide more raw material for new evolutionary heterogenic 
possibilities through random genetic drift.24,25,50 Therefore, 
the stochastic Nash game strategy may improve the network 
robustness in order to maintain the phenotypic trait in an 
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Figure 3. The Poisson counting process of the neutral genetic and epigenetic variations N2(t) that are accumulated in carcinogenesis of lung cancer cell 
lineages in the example. The vertical axis denotes the counting number of phenotypic changes of Poisson counting process N2(t) in carcinogenesis.

http://www.la-press.com
http://www.la-press.com/evolutionary-bioinformatics-journal-j17


Nonlinear stochastic evolutionary game strategy modelling organ carcinogenesis

171Evolutionary Bioinformatics 2015:11

1.9

1.8

1.7

1.6

1.5

1.4

5

4.5

4

3.5

3

2.5

2

0.8 1 1.2 1.4 1.6 1.8

2 3 4 5 6 7
x1 (gram)

y (gram)

x 2 
(g

ra
m

)

Phase plane y×z

Phase plane x1 × x2 

x1e

x1e

x2e

x2e

x3e

x3e

× 10−4

× 10−3

× 10−4

z 
(o

n
e 

fo
r 

m
ea

n
s 

tu
m

o
r 

m
ic

ro
ve

ss
el

 d
en

si
ty

)

× 10−4

8 9 10

Figure 4. The evolutionary simulation in phase plane for the biological network of in silico example in carcinogenesis. This evolutionary simulation 
in phase plane could support the phenotypic transition of lung cancer from the healthy state at the equilibrium point xe = [6.19 × 10–11 2.20 × 10–3 0 
9.88 × 10–6]T, to the cancer stage I state at the equilibrium point x1e = [1.46 × 10–4 1.80 × 10–3 1.02 × 10–4 2.75 × 10–4]T, then to the cancer stage II 
state at the equilibrium point x2e = [7.09 × 10–4 1.60 × 10–3 1.30 × 10–4 3.60 × 10–4]T, and finally to the cancer stage III state at the equilibrium point 
x3e = [1.01 × 10–3 1.35 × 10–3 1.80 × 10–4 5.12 × 10–4]T. Moreover, the units of state x1, x2, and y are grams, and the unit of state z represents the length of 
existing microvessel in 1 g of undiseased tissue (ie, one unit is equal to microvessel length in 1 g of undiseased tissue).

evolutionary period and may eventually improve the evolution 
of the cancer biological network, with a phenotypic shift from 
the normal phenotype at the equilibrium point xe to the can-
cer phenotype at the equilibrium point x1e. This evolutionary 

phenomenon has been illustrated by the in silico example of 
the evolutionary network of lung cancer cells in Figure 2.

From the phenotypic robustness criterion in (42) or 
(57), the results reveal two ways to improve the phenotypic 
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robustness of the evolutionary biological network in car-
cinogenesis. One way is to improve the stability and robust-
ness of the network by making the right-hand side of (42) or 
(57) as large a value as possible so that the phenotypic 
robustness criterion always holds. The other way to improve 
the stability and robustness of the network is to reduce the 
effect of neutral genetic variations Aki and the coupling B of 
environmental disturbances v(t) on the biological network. 
This has the effect of making the left-hand side of (42) or 
(57) as small as possible. The evolutionary game strategy 
involves selecting certain somatic phenotypic variations to 

develop negative feedback loops − 1
2

∂
∂

V x t
x

( ( ))


 in (40) as the 

f irst way to improve the robustness of nonlinear biological 
networks and thus maintain their normal phenotypic func-
tion. This is why many negative feedback loops and inhibi-
tive epigenetic methylations and miRNA regulations in 
biological networks have been found to improve the robust-
ness of the network and prevent a phenotypic shift to the 
cancerous state. Furthermore, there are numerous redun-
dant, membranous, modular, and complex structures in 
cancer biological networks, which are helpful in attenuat-
ing the effect of intrinsic neutral genetic and epigenetic 
variations and environmental disturbances on the left-
hand side of (42) or (57). This is the second way to main-
tain the phenotype of the biological network in 
carcinogenesis. After enduring several evolutionary stages, 
the biological network phenotype is shifted to late-stage 
cancer at certain equilibrium points. These robust network 
strategies are always hijacked by cancer in order to resist 
anticancer drugs. This is why many anticancer treatments 
have limited success and cures remain elusive.25,26 There-
fore, based on the phenotype robustness criterion of the 
evolutionary network in (42) or (57), we could gain deep 
insight into the development of complex negative feed-
back, and redundant, modular, membranous, and scale-
free structures of cancer tissue by natural selection during 
carcinogenesis.

Recently, it has been reported that the phenotype of a 
synthetic gene network always evolves because of genetic 
mutations from one generation to another generation, thus 
making it difficult to properly design a robust synthetic gene 
network.43,50–53 Therefore, the robust phenotypic criterion in 
(42) and (57), based on the proposed stochastic Nash game 
strategy, may be a suitable remedy for the limitations of con-
ventional synthetic design methods.

Conclusion
In this study, evolutionary biological networks with unpredict-
able somatic genetic variations and uncertain environmental 
disturbances in carcinogenesis were modeled as nonlinear 
Poisson dynamic systems. An evolutionary Nash game strategy 
was developed to select certain phenotypic somatic variations 

to construct negative feedback loops. This strategy buffered 
neutral genetic and epigenetic variations and unpredictable 
environmental disturbances to efficiently improve network 
robustness and to avoid shifting to the cancerous state, thus 
maintaining the phenotype favored by natural selection during 
carcinogenesis. The phenotypic robustness criterion for each 
cancer-related state at an equilibrium point of the evolution-
ary biological network during carcinogenesis was also derived 
from this study. We determined that the evolutionary Nash 
game strategy was able to select certain phenotypic variations 
because of somatic Poisson genetic and epigenetic variations. 
Negative feedback loops were constructed to make the basin 
of the phenotype equilibrium point significantly deeper and 
wider in the phenotypic landscape (Fig. 1), so that the bio-
logical network could buffer more neutral genetic and epi-
genetic variations and withstand additional environmental 
disturbances during carcinogenesis. However, as enough ran-
dom neutral genetic and epigenetic variations accumulated 
over a long period of time, they provided the raw heterogenic 
material for new adaptation and evolutionary innovation. This 
enabled the shift to a new phenotype at a neighboring equilib-
rium point to commence another period of network evolution 
during carcinogenesis. Taken together, our results demonstrate 
why cancer is a disease associated with aging.

The global linearization technique was also employed 
to simplify the solution procedure for the nonlinear biologi-
cal network in carcinogenesis. In this manner, a difficult HJI-
constrained optimization problem for the evolutionary Nash 
game strategy could be simplified to an equivalent LMI-
constrained optimization problem. Therefore, the trade-off 
between evolvability, genetic and epigenetic robustness, and 
network phenotypic robustness can be easily discussed in 
terms of the local stability robustness and local environmental 
disturbance-filtering ability of a set of local linear evolutionary 
biological networks. In the example of a dynamic system of 
cells related to lung cancer, the results of the simulation sup-
port the proposed game strategy of an evolutionary biological 
network during carcinogenesis.
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Appendix
Appendix A: Proof of Proposition 1. For the linear stochastic biological network in (9), since xe = 0, x t x t x x te( ) ( ) ( )= =− . 

From (20), we get
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Then, the stochastic Nash game in (21) becomes
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By the Riccati-like inequality in (25), we get J0 has the upper bound as follows
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By the second step of stochastic Nash game in (22), we get
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which is the inequality in (26).
Q.E.D.

Appendix B: Proof of Proposition 2. For the nonlinear stochastic biological network in (13), we get
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By the Itô’s formula of Poisson process in (13), we get
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Substituting (B.3) into (B.2), we get
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By the fact that
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By the HJI in (36) and the fact E V x t p{ ( ( ))} , ≥ 0  we get
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which is the inequality (37)
Q.E.D.

Appendix C: Proof of Proposition 3. Since we replace the nonlinear stochastic network in (13) by the interpolated local 
linear biological network in (48), the HJI in Proposition 2 can be replaced by
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The above inequality hold if the Riccati-like inequalities in (51) hold. Further,

	
u t V x t

x
Px t v t

e
B Px tT* *( ) ( ( )) ( ), ( ) ( )= ∂

∂
= =− −1

2
1


 � (C.3)

which are the solutions of Nash game evolutionary strategy
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Q.E.D.
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Appendix D: Parameters Ai of global linearization scheme in silico example.

A1

0 0534782 0 0254467 0 0520144 0 0003126

0 0005168 0 00389
=

− −

−

. . . .

. . 116 0 0135070 0 0001828

0 0000006 0 0000004 0 0237363 4 9803

− −

− −

. .

. . . . 9948 10

0 0000367 0 0000331 0 0000629 0 0237372

9×














−

− − − −. . . .









A2

0 0596919 0 0036681 0 0000219 0 5821825

0 0001722 0 04179
=

−

− −

. . . .

. . 119 0 0003613 0 2061930

0 0003118 0 0006342 0 0395600 0 611

− −

− − −

. .

. . . . 88400

1 2427067 10 2 6932285 10 3 0000000 0 00000299 9. . . .× ×









− −− −
















A3

0 0599859 0 0000641 0 0001830 0 3217975

0 0000170 0 03958
=

−

− −

. . . .

. . 779 0 0000082 0 0324759

0 0000328 0 0001248 0 0398643 0 1280

− −

− −

. .

. . . . 9925

2 0485833 10 2 7951458 10 3 0000000 0 000000810 10. . . .× ×








− −− −

















A4

0 0599820 0 0004016 0 0000326 0 2173435

0 0000171 0 0400
=

− −

− −

. . . .

. . 0054 0 0000678 0 0178187

0 0000197 0 0000895 0 0398498 0 0719

. .

. . . .

−

− − 1197

1 1501642 10 10. × ×









− −− −1.9750672 10 3.0000000 0.00000059
















A5

0 0600004 0 0005292 0 0002048 0 1781146

0 0000175 0 04010
=

−

− −

. . . .

. . 222 0 0000980 0 0078165

0 0000255 0 0000218 0 0397513 0 07227

. .

. . . .

−

− − 556

101.7267656 10 1.3279752 10 3.0000000 0.00000059× ×










− −− −













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