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ABSTRACT: Cardiovascular magnetic resonance has been utilized in the management and care of pediatric patients for 
nearly 40 years. It has evolved to become an invaluable tool in the assessment of the littlest of hearts for diagnosis, pre-
interventional management and follow-up care. Although mentioned in a number of consensus and guidelines documents, 
an up-to-date, large, stand-alone guidance work for the use of cardiovascular magnetic resonance in pediatric congenital 
36 and acquired 35 heart disease endorsed by numerous Societies involved in the care of these children is lacking. This 
guidelines document outlines the use of cardiovascular magnetic resonance in this patient population for a significant 
number of heart lesions in this age group and although admittedly, is not an exhaustive treatment, it does deal with an 
expansive list of many common clinical issues encountered in daily practice.
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INTRODUCTION
Background
The role of imaging and the modalities utilized in pediatric 
and congenital heart disease (CHD) is continually evolv-
ing. Cardiovascular magnetic resonance (CMR) is now 
a standard modality in imaging CHD and is considered 

a “one-stop-shop” with the capability of visualizing anat-
omy and assessing ventricular function, blood flow and 
tissue characterization. It is utilized in conjunction with 
other imaging modalities in almost all instances includ-
ing echocardiography, invasive angiography, cardiac 
computed tomography (CT) and nuclear medicine. The 
spectacular improvements in diagnosis, treatment and 
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Nonstandard Abbreviations and Acronyms

3D three dimensional
4D four dimensional
AAOCA  anomalous aortic origin of a coronary 

artery
ACAOS-IM  anomalous coronary artery origin from 

the opposite sinus with an intramural 
segment

ACC American College of Cardiology
AHA American Heart Association
AR aortic regurgitation
ASD atrial sepal defect
ASE American Society of Echocardiography
ASI aortic size index
ASO arterial switch operation
AUC appropriate use criteria
BAV bicuspid aortic valve
BDG Bidirectional Glenn
BMD Becker muscular dystrophy
bSSFP balanced steady state free precession
Cath cardiac catheterization
ccTGA  congenitally corrected transposition of 

the great arteries
CHD congenital heart disease
CMD coronary microvascular dysfunction
CMR cardiovascular magnetic resonance
COR class of recommendation
CT computed tomography
DCM dilated cardiomyopathy
DF diffuse fibrosis
DMD Duchenne’s muscular dystrophy
EACVI  European Association of Cardiovascular 

Imaging
ECG Electrocardiography
ECMO extracorpeal membrane oxygenation
ECV extracellular volume fraction
EDS Ehler’s Danlos syndrome
EGE early gadolinium enhancement
EMB endomyocardial biopsy
ESC European Society of Cardiology
EST exercise stress test
FTAAD  familial thoracic aortic aneurysms and 

dissections
GBCA gadolinium based contrast agents
GCS global circumferential strain
GLS global longitudinal strain
HCM hypertrophic cardiomyopathy
HLHS hypoplastic left heart syndrome
ICD implanted cardioverter defibrillator

IVC inferior vena cava
KD Kawasaki’s disease
LDS Loey’s Deitz syndrome
LGE late gadolinium enhancement
LOE level of evidence
LV left ventricle/left ventricular
LVOT left ventricular outflow tract
LVWT left ventricular wall thickness
MAPK mitogen activated protein kinase
MFS Marfan syndrome
MRA magnetic resonance angiography
MVP mitral valve prolapse
NASCI  North American Society of Cardiovascu-

lar Imaging
NSVT non-sustained ventricular tachycardia
NYHA New York Heart Association
PA pulmonary artery(ies)
PAPVC  partial anomalous pulmonary venous 

connection
PC-CMR  phase contrast cardiovascular magnetic 

resonance
PR pulmonary regurgitation
PV pulmonary vein
PVR pulmonary valve replacement
Qp pulmonary blood flow
Qs systemic blood flow
RAS renin angiotensin system
RV right ventricle/right ventricular
RVEDV right ventricular end-diastolic volume
RVEDVI  right ventricular end-diastolic volume 

index
RVEF right ventricular ejection fraction
RVOT right ventricular outflow tract
SAM systolic anterior motion
SCD sudden cardiac death
SCMR  Society for Cardiovascular Magnetic 

Resonance
SPR Society for Pediatric Radiology
SV single ventricle
SVC superior vena cava
TAPVC  total anomalous pulmonary venous 

connection
TGA transposition of the great arteries
TOF tetralogy of Fallot
TR tricuspid regurgitation
TTE transthoracic echocardiography
TSZ Turner’s Z score
VSD ventricular septal defect
VTI vertebral tortuosity index
V

d distribution volume
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follow-up in this patient population is in part due to the 
use of this multimodality imaging approach.

There is significant literature supporting the use 
of CMR in pediatric CHD and acquired heart disease, 
however, there is wide practice variation among centers 
for which patients undergo CMR. Availability, diagnostic 
accuracy, economics and patient burden all play a role 
in which imaging modality is utilized for various diagnos-
tic categories in the different centers. Echocardiography 
has been and remains the front line imaging modality 
for most CHD patients, however, the objectives and fre-
quency of use of echocardiography have changed with 
the increased utilization, established and evolving capa-
bilities of CMR and cardiac CT.

Although there are current guidelines in adult CHD 
which involve CMR,1 pediatric CHD and acquired pedi-
atric heart disease are unique and distinct entities which 
has different requirements and needs such as smaller 
structures, higher heart rates, complex unknown anatomy 
and the more pressing concern of avoiding ionizing radia-
tion. Currently, there is only a consensus document that 
is available on CMR which is dedicated to pediatric CHD 
and pediatric acquired heart disease,2 an old CMR con-
sensus documents with only small sections on pediatrics 
and CHD3,4 and an old appropriate use criteria (AUC) 
document with again, only small sections on pediatrics 
and CHD.5 A document describing technical protocols 
has been published but does not set forth guidelines or 
indications.6 Finally, CMR is included in the most recent 
AUC for multimodality imaging in the follow-up care of 
patients with CHD with given scenarios which is differ-
ent than guidelines document for the use of CMR at all 
stages of care.7

Purpose of this Guidelines Manuscript
The primary objective of this document is to present 
guidelines based on the existing literature supporting 
CMR for commonly encountered pediatric CHD and 
acquired pediatric heart disease. It is beyond the scope of 
this paper to delineate CMR physics, technical details and 
protocols focused on imaging children, as there are excel-
lent guidelines for this published elsewhere.6,8 Where lit-
erature is sparse or non-existent, consensus opinion of 
the writing group is presented. The document includes 
both disease specific (e.g., single ventricle) and technique 
specific (e.g, ventricular function) sections focused on 
pediatric CHD and acquired heart disease. Each section 
includes a brief introduction followed by a review of the 
literature supporting use of CMR with formal recommen-
dations for indications at the end of the section.

These guidelines are intended to assist providers in 
the decision to utilize CMR. They represent an exten-
sive review of the available current scientific evidence. 
Many clinical scenarios are complex and some may not 

be covered exactly by the document; final judgement as 
to whether CMR is appropriate for a particular patient 
requires individualized decision making. In those situa-
tions, clinical decision making should consider the quality 
and availability of data in the area where care is pro-
vided. When these CMR guidelines are used as a basis 
for either regulatory or payer decisions, the goal should 
be improvement in quality of care. The writing group 
acknowledges that there may be some institutions that 
do not have access to or have expertise in CMR perfor-
mance and as such, other imaging modalities such as 
cardiac CT may be considered.

This document is not a multimodality or cross-sectional 
imaging guideline for all the diseases mentioned or an in 
depth analysis of a comparison between imaging modali-
ties. It is primarily a work on CMR indications. Where 
appropriate, a few comments are made regarding other 
imaging modalities. As a general rule, in emergency situa-
tions (e.g., pulmonary thromboembolism, shunt occlusion, 
and other unstable conditions) and in relative or absolute 
contraindications of CMR (e.g., presence of a pacemaker, 
a defibrillator, metals causing severe artifact or in claus-
trophobic patients who do not wish to be sedated) car-
diac CT or cardiac catheterization may be considered.

Selection of Writing Committee Members
A panel of acknowledged CMR experts was selected 
and rigorously reviewed by the Society for Cardiovascular 
Magnetic Resonance (SCMR) to develop these guide-
lines, to grade the level of clinical evidence and to write 
recommendations based on current knowledge of CMR 
and other imaging modalities. The writing group was com-
posed of pediatric cardiologists and radiologists from both 
North America and Europe, representing different geo-
graphical regions, gender, ethnicities, races, perspectives 
and scopes of clinical practice. Representatives from the 
American Heart Association (AHA), the American Acad-
emy of Pediatrics and the Society for Pediatric Radiol-
ogy were included in the writing group. Representation 
by an outside organization does not necessarily imply 
endorsement.

Document Development Process

Relationships with Industry 
Each member of the writing committee reported all rela-
tionships with industry and other entities relevant to pedi-
atric CMR. Every effort was made by members to avoid 
actual, potential or perceived conflicts of interest.

Committee Meetings, Evidence and Literature 
Review 
After numerous planning meetings, various sec-
tions of this document were written and developed 
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by multiple committee members. Each section was 
distributed to the entire committee, reviewed, exten-
sively discussed and edited at monthly meetings. All 
committee members had the opportunity to question 
and respond which allowed for rigorous debate. Final 
guideline recommendations were made by consensus 
agreement of the writing committee; the vast major-
ity of recommendations were unanimous. When all 
sections were drafted, they were merged and sent 
out for review to the committee for final approval. 
Following peer review, the writing committee chair 
engaged authors to address reviewer comments and 
finalize the document for approval by participating 
organizations.

The recommendations listed in this document are 
evidence-based whenever possible. An extensive evi-
dence review was conducted through March 2021. The 
literature searches were limited to studies conducted in 
human subjects and published in English. The references 
selected for this document are representative and not 
all-inclusive.

Document Approval
The final version of the document was submitted to the 
SCMR publications committee and the SCMR Board of 
Trustees for review and approval. After their comments 
were incorporated and the document approved, the docu-
ment was circulated to those organizations who con-
tributed representatives to the writing committee (AHA, 
the American Academy of Pediatrics and the Society 
for Pediatric Radiology) along with the North American 
Society for Cardiac Imaging, the European Association 
of Cardiovascular Imaging and the American Society of 
Echocardiography to review this document and to give 
their approval.

Class of Recommendation and Level of 
Evidence
These guidelines are classified using a standard evidence-
based methodology developed by the AHA/ American 
College of Cardiology (ACC) Task Force.9 The class of 

Table 1. Class of Recommendation and Level of Evidence

Class (strength) of recommendation (COR) Level of evidence (LOE)

Class I (strong) Benefit >  >  > Risk
The procedure should be performed
Suggested phrases for recommendations:
• Is recommended
• Is indicated/useful/effective/beneficial
• Should be performed

Level A
•  High quality evidence from multiple randomized clinical trials or meta-analyses
•  One or more randomized clinical trials corroborated by high quality registry 

studies

Class IIa (moderate) Benefit >  > Risk
It is reasonable to perform the procedure. Additional studies with focused 
objectives needed
Suggested phrases for recommendations:
• Is resonable
• Can be useful/effective/beneficial
• Is probably recommended or indicated

Level B
•  Moderate quality evidence from multiple randomized clinical trials or meta-

analyses
•  Moderate quality evidence from 1 or more well-designed, well-executed non-

randomized studies, observational studied or registry studies or meta-analysis 
of such studies

Class IIb (weak) Benefit > Risk
The procedure may be considered. Additional studies with broad objectives 
needed. Additional registry data would be helpful
Suggested phrases for recommendations:
• May/might be considered
• May/might be reasonable
• Useful/effectiveness is unknown/unclear/uncertain or not well established

Level C
•  Randomized or nonrandomized observational or registry studies with limita-

tions of design or execution or meta-analysis of such studies
• Physiologic or mechanistic studies in humans
• Consensus of expert opinion based on clinical experience

Class III No Benefit
The procedure is not helpful and of no proven benefit
Suggested phrases for recommendations:
• Is not recommended
• Is not indicated
• Should not be performed/administered
• Is not useful/beneficial/effective

Notes
COR and LOE are determined independently (any COR may be paired with 
any LOE).

Class III Harm
The procedure incurs excess cost without benefit or is harmful to patients
Suggested phrases for recommendations:
• Is potentially harmful
• Causes harm
• Associated with excess morbidity/mortality
• Should not be performed/administered

A recommendation with LOE B or C does not imply the recommendation is 
weak. May important clinical questions addressed in guidelines do not lend 
themselves to clinical trials. Although randomized clinical trials are unavailable, 
there may be very clear clinical consensus that a particular test is useful or ef-
fective.

COR indicates class of recommendation; and LOE, level of evidence.
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recommendation (COR) is indicative of the strength of 
the recommendation which takes into account the esti-
mated magnitude and certainty of benefit, in this case, 
medically relevant diagnostic information relative to the 
risk of CMR. The level of evidence (LOE) rates the qual-
ity of scientific evidence that supports the COR based 
on type, quantity and consistency of data from imaging 
studies. COR and LOE are determined independently. 
See Table 1.

The driving force for the development of these 
guidelines is based on an appreciation of the increas-
ing use of CMR and a realization that the indications 
for pediatric CMR lack global consensus. Given the 
historical predominance of catheter based angiograms 
which chronologically was followed by echocardiog-
raphy and the emergence of cardiac CT and CMR, it 
is clear there is a need for guidelines to optimize use 
of CMR. Although the guideline committee was aware 
of the lack of high levels of evidence with supporting 
randomized trials regarding pediatric CMR for many 
indications which is common for imaging modalities, a 
guideline document based on expert consensus with 
supporting literature nonetheless was deemed to be 
clinically useful.

DISEASES
Single Ventricle
Background
The patient born with single ventricle (SV), where only one 
pumping chamber effectively exists, is one of the most 
complex of all CHD. Nearly all patients require recon-
structive surgery or heart transplantation. During recon-
structive surgery, which ultimately leads to the Fontan 
procedure,10 varying loads and physiology are imposed 
on the ventricle. To further complicate matters, SVs are 
not one lesion but rather a collection of many different 
types which fall under the same diagnostic category.

As an umbrella category for a vast array of lesions and 
with different terminology, it is difficult to state the exact 
incidence precisely. In one of the most comprehensive col-
lections of studies on incidence, per million live births, a 
mean of 266 for hypoplastic left heart complexes, 222 for 
hypoplastic right heart complexes, 132 for pulmonary atre-
sia, 79 for tricuspid atresia and 120 for “single ventricle” 
whose details were not delineated in studies was found.11 
Hypoplastic left heart syndrome (HLHS) has been noted 
to occur in 0.016–0.36% of all live births and in pathologic 
series, represents 1.4–3.8% of CHD12–14 Tricuspid atresia 
prevalence ranges from 0.3 to 0.7% of all patients with 
CHD and occurs in ~ 1 in 15,000 live births.15

One of the major problems with a unified imaging 
strategy of SVs as a group is the variable anatomy; for 
example: (A) D-loop vs L-loop, (B) right (RV) vs left ven-
tricle (LV), or (C) anatomic true SV versus a “functional” 

SV. As can clearly be seen, there can be a seemingly 
hopeless number of complex combinations, however, 
the underlying theme is that only one usable ventricle 
is present or both ventricles are connected in such a 
way that separating them into 2 pumping chambers is 
impossible.

Another issue with a unified imaging strategy of SVs 
as a group is that during the various stages of surgical 
reconstruction, as noted above, the physiology of the car-
diovascular system changes dramatically. The ultimate 
goal of surgery is to completely separate the systemic 
and pulmonary circulations and place them in a “series 
circuit.” In the native state, some patients, such as those 
with HLHS will always require surgical intervention—the 
Norwood Stage I procedure,16 which includes a systemic 
to pulmonary artery or ventricular to pulmonary artery 
(Sano)17–21 shunt (Figure 1), an atrial septectomy, and 
an aortic to pulmonary anastomosis. The SV pumps to 
both the systemic and pulmonary circulation in parallel, 
imposing a volume overload. Once pulmonary vascular 
resistance has dropped adequately (~ 3–6 months of 
age), a bidirectional superior cavopulmonary connec-
tion is performed. Since blood needs to go to the head/
arms first before entering the pulmonary circulation, the 
ventricle does not pump directly to the pulmonary circu-
lation and is therefore not technically volume loaded; it 
has been demonstrated, however, that systemic to pul-
monary collaterals are present22 which can be quantified 
by CMR and puts a volume load on the ventricle.23 At 
approximately 2–5 years of age, directing inferior vena 
cava (IVC) blood into the lungs is performed to complete 
the Fontan operation.

Figure 1. Hypoplastic left heart syndrome after Sano (right ventricle 
[RV] to pulmonary artery conduit). Left panel is a dark blood sagittal 
view and the right panels are 3D reconstructions demonstrating the 
entire length of the Sano shunt. Ao indicates aorta.
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Finally, a third issue with a unified imaging strategy 
is that surgical reconstruction can vary greatly. To per-
form an aortic to pulmonary anastomosis, a Norwood 
or Damus-Kaye-Stansel procedure can be used. For a 
bidirectional superior cavopulmonary connection, a hemi-
Fontan or bidirectional Glenn (BDG) can be performed. 
For a Fontan, a myriad of ways have been employed as 
modifications such as a lateral wall tunnel, an extracar-
diac conduit, or an atrio-pulmonary connection (not per-
formed anymore), all with or without a fenestration.

Indication of CMR in SV
Prior to any surgery, CMR is not used frequently in the 
native state; generally, echocardiography is sufficient to 
allow for anatomic and hemodynamic characterization. 
Occasionally, if certain aspects of the anatomy are not 
delineated by echocardiography, such as pulmonary 
artery (PA) or pulmonary venous anatomy, CMR will be 
employed at this juncture (cardiac CT may be consid-
ered as an alternative if ventricle function, flow or tissue 
characterization information is not needed [ie anatomy 
alone], keeping in mind the radiation risk). In addition, 
if a “borderline” ventricle is present, CMR may be used 
to aid in the decision of a 1- versus 2-ventricle repair 
(Figure 2).

At all surgical stages, echocardiography is universally 
employed and at younger ages, this may be adequate. 
However, in older individuals, echocardiography many not 
be sufficient because of poor acoustic windows. In addi-
tion, cardiac catheterization may be used at all stages for 

diagnosis, however, it is invasive, incurs radiation and is 
not feasible to be utilized for routine follow-up.

Anatomy
CMR has been used for many years to evaluate the 
anatomy of the SV patient and has been validated against 
catheterization and surgical observation.24–28 This is per-
formed in both 2D, 3D and now 4D formats with or with-
out contrast media (Figure 1). For all stages of surgical 
reconstruction, CMR should be utilized to assess patients 
whose echocardiogram has not definitively demonstrated 
the anatomy listed in Table 2 for surgical planning. CMR 
should be utilized in place of invasive angiography for this 
anatomy unless an intervention is planned. CMR has been 
utilized for many years, dating back to the late 1980’s 
and early 1990’s, to delineate native viscero-atrial situs, 
intracardiac anatomy29 and ventriculoarterial connections 
and is now considered standard of care. Generally, when 
performing each stage of surgery, however, echocardiog-
raphy for anatomy is almost always supplemented by 
another imaging modality such as CMR27 or in some insti-
tutions, catheterization or cardiac CT (Figures 1 and 2).

At each stage of surgical reconstruction, in addition, 
certain aspects are focused on. Prior to the BDG/hemi-
Fontan stage, CMR is directed towards evaluation of the 
aortic arch to assess for coarctation and the aortic to 
pulmonary anastomosis (if present). Further, pulmonary 
blood flow is delineated by visualization of the systemic 
to pulmonary or Sano shunt (if present), pulmonary ste-
nosis, the pulmonary arteries and aortic to pulmonary 
collaterals. At the BDG/hemiFontan stage, besides 
reassessment of the aortic arch, the superior cava con-
nections (e.g., right or left superior venae cavae (SVC) 
or Kawashima connections to the PAs) are visualized 
along with the pulmonary arteries, aortic to pulmonary 
and veno-venous collaterals (Figure 3). Finally, after the 

Figure 2. Three month old with double outlet right ventricle (DORV) 
being considered for a 1 versus 2 ventricular repair.Upper panels are 
2 orthogonal views of the left ventricle (LV) to aortic (Ao) pathway 
through the ventricular septal defect (VSD). Lower left panel is a 3D 
model demonstrating a “4-chamber” view and DORV while lower 
right panel shows the anterior Ao. PA indicates pulmonary artery.

Table 2. Anatomy and Ventricular Function Assessment in 
Single Ventricles

Anatomy Ventricular function

Viscero-atrial situs, ventricular morphology and 
cardiac segments

Ventricular EDV

Aortic arch, aimed mostly at patients with an 
aortic to pulmonary anastomosis, to assess for 
aortic arch obstruction

Ventricular ESV

Pulmonary artery, to assess for pulmonary ar-
tery stenosis, hypoplasia, discontinuity

Ventricular stroke volume

Atrial septal defect Ventricular EF

Ventricular outflow tract obstruction (especially 
in patients with a bulboventricular foramen)

Cardiac index

Systemic-pulmonary and veno-veno collaterals Regional wall motion

Anomalous venous structures

Pulmonary or systemic venous obstruction
Systemic venous return such as interrupted 
inferior vena cava with azygous continuation or 
the presence of a left superior vena cava

EDV indicates end-diastolic value; EF, ejection fraction; and ESV, end-systolic 
volume.
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Fontan, the entire systemic venous pathway, especially 
the IVC to PA connection is focused on, including the 
branch pulmonary arteries.

Ventricular and Valve Function 
CMR should be utilized to quantify 3D function which 
can be followed on a routine basis throughout all 

Figure 3. Massive systemic-to-pulmonary and venovenous collaterals in a 4 year old with pulmonary atresia and intact ventricular septum. 
Upper panels are maximum projection (right) and 3D reconstruction (left) of these collaterals viewed anteriorly while the lower panel is a 3D 
reconstruction of the collaterals as viewed from posterior.

Figure 4. Ventricular function of an 18 month old with hypoplastic left heart syndrome. Upper panel is a short axis stack in diastole. Lower 
panels is a “3-chamber” view at end-diastole (left) and end-systole (right). ASD indicates atrial septal defect; LV, left ventricle; and RV, right 
ventricle.
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stages of surgical reconstruction and beyond. This 
includes regional wall motion abnormalities, ventricular 
volumes and mass, ejection fraction and cardiac index as 
delineated in Table 2. CMR has been the gold standard 
for biventricular volumes and function for many years 
and has been applied many times to the SV patient 
throughout staged surgical reconstruction (Figure 4).30–35  
Ventricular performance parameters have been 
demonstrated to correlate with exercise performance34 
and has been shown to correlate with transplant free 
survival after Fontan.36

Valve function, including atrioventricular and semilu-
nar valve regurgitant volume and fractions, using phase 
contrast CMR (PC-CMR) or a combination of PC-CMR 
with ventricular volumes, should be assessed. PC-CMR 
has been used in the past to quantify valve function 
in CHD.37–39 Valve function is a significant issue in SV 
patients. For example, Mahle et al. has demonstrated 
that 6% of patients have moderate to severe atrioven-
tricular valve regurgitation.40 Cohen et al. has shown that 
neoaortic regurgitation was present in 61% of patients 
up to 21 years of followup with progression in 49%.41

Physiology and Hemodynamics
PC-CMR has been used extensively in SV patients42,43 to 
assess physiology and hemodynamics. Important indices 
in the care of the SV patient are cardiac index as this is 
generally decreased, pulmonic flow (Qp)/systemic flow 
(Qs) which generally is close to one, flows to both lungs 
and systemic to pulmonary collateral flow23,44–48 which 
has been linked to short term outcomes such as hos-
pital stay and presence of pleural effusions (see Qp/Qs 

and collateral flow section).49 In the BDG stage, cardiac 
catheterization cannot assess Qp because of systemic to 
pulmonary collaterals.43 Flows to both lungs are impor-
tant parameters to determining the need for branch PA 
dilation, especially in SV patients where a patulous aortic 
reconstruction can compress the central PA. As men-
tioned in the forgoing paragraphs, PC-CMR is also used 
in the measurement of valve function.

Tissue Characterization For Myocardial Scarring
CMR has been utilized to evaluate both discrete myo-
cardial scarring50 as well as diffuse fibrosis.51 Myocardial 
scarring may be an etiology for regional wall dysfunc-
tion as well as a nidus for arrhythmia. For example, dif-
fuse fibrosis has negatively correlated with strain51 while 
discrete fibrosis has been linked to adverse ventricular 
mechanics and ventricular tachycardia.50 Myocardial 
scarring is commonly found around the os of the Sano 
shunt with accompanying regional wall motion abnor-
malities (Figure 5).

In part, because of the comprehensive assessment of 
anatomy, ventricular function, hemodynamics and tissue 
characterization that can be performed by CMR, a recent 
scientific statement from the AHA has recommended 
CMR be performed every 2–3 years after reaching the 
Fontan stage for evaluation.52

CMR Prior to BDG and Fontan Reconstructions
In the past, a pre-operative echocardiography and car-
diac catheterization prior to BDG and Fontan was the 
standard of care. In the past 15 years, however, it has 
been demonstrated that a select groups of patients can 
undergo CMR and echocardiography alone to safely 
undergo surgery.

In a retrospective study prior to BDG,53 Brown et al. 
studied the utility of cardiac catheterization in 114 SV 
patients, 51 of which were without suspected issues 
requiring catheterization after non-invasive imaging but 
nevertheless underwent the procedure. Only two had 
unsuspected findings, both of which were branch PA ste-
nosis that could’ve been diagnosed by CMR. Twenty-five 
percent had complications from catheterizations, most 
of which were transient with 24% requiring transfusions 
and 14% needing an intensive care unit stay.

In a follow-up prospective trial, Brown et al.54 random-
ized 81 routine SV patients prior to BDG to CMR or 
cardiac catheterization and assessed the outcome after 
surgery. The cardiac catheterization group had more 
minor adverse events (75% vs 5%, P < 0.001), higher 
cost ($34,447 vs $14,921) and longer preoperative stay 
(2 vs 1 day) relative to the CMR group. There was one 
major adverse event in the CMR group in a patient with 
a Blalock-Taussig shunt who developed shunt thrombosis 
and required cardiopulmonary resuscitation and extracor-
peal membrane oxygenation (ECMO); 4 days later the 
patient underwent routine BDG and was in good clinical 
status at 3-month follow-up. The operative course, the 

Figure 5. Myocardial scarring and regional wall motion abnormality 
in a 5 month old after a Sano shunt. Left panel is a phase sensitive 
viability image demonstrating the scar which is signal intense in the 
myocardium which should be signal poor (blue arrows). Right upper 
(diastole) and lower panels (systole) is the corresponding short axis 
view demonstrating the regional wall akinesia in the region of scar.
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number of successful BDG and the frequency of postop-
erative complications were similar. At 3-month follow-up, 
there was no differences in clinical status, oxygen satura-
tion or frequency of reintervention.

Prior to Fontan, Ro et al.55 studied 99 SV patients ret-
rospectively and listed a set of criteria to determine who 
might benefit from cardiac catheterization and who may 
be able to safely proceed to surgery without it. These 
criteria were clinical as well as echocardiographic based 
and 46 fell into the category of those who could forgo 
catheterization. The criteria identified all patients who 
died or did not proceed to Fontan as well as 9 of 11 who 
required intervention; it had a negative predictive value of 
93% (those who can forgo catheterization) with a sensi-
tivity of 81%. However, the positive predictive value was 
only 25% and the specificity only 52% and the authors 
thought that this may be partly due to the inability of 
echocardiography to adequately assess the branch PAs. 
They suggested the addition of CMR would substantially 
increase pre-operative predictive values.

Another study assessed 3 groups prior to Fontan27 
(119 patients in total); all patients underwent echocar-
diography, however, 41 patients underwent CMR only, 
41 patients underwent catheterization only and 37 
patients underwent both catheterization and CMR. No 
clinically significant differences were noted in patient 
characteristics, hemodynamics or clinical status prior to 
or after surgery between the CMR only and the catheter-
ization only groups with CMR adding information in 82% 
of patients. Parameters such as cardiopulmonary bypass 
time, circulatory arrest time, days in the intensive care 
unit, other surgical procedures, surgical complications, 
interventions after Fontan, the incidence of pleural effu-
sions, length of stay in the hospital and oxygen satura-
tion at discharge were similar in all 3 groups. Diagnostic 
success at surgery relative to all imaging modalities was 
≥ 95%. In the group that had both CMR and catheter-
ization, measurements of blood vessels were similar and 
there were no discrepant findings. Echocardiography 
could not delineate completely the pulmonary arterial 
anatomy in 46–53% of patients.

Summary of Recommendations

• Preoperatively or prior to commitment to either a 
univentricular or biventricular circulation, CMR is 
reasonable to determine anatomy, physiology and 
ventricular function not elucidated by echocardiog-
raphy or to aid in determining one vs. two ventricle 
repair (Class IIa, Level of evidence B).

• Prior to BDG, if there is no primary indication for an 
intervention or there is no indication of increased 
pressures or pulmonary vascular resistance by 
echocardiography, CMR is indicated to determine 
anatomy, physiology, hemodynamics and ventricular 
function for use in surgical planning in routine cases 
(Class I, Level of evidence B). See Table 2

• Prior to Fontan, if there is no primary indication for 
an intervention or there is no indication of increased 
pressures (e.g., end-diastolic or Fontan pressures) 
or pulmonary vascular resistance by echocardiogra-
phy, CMR is indicated for use in surgical planning 
in routine cases (Class I, Level of evidence B) (See 
Table 2).

• After Fontan, CMR is beneficial to follow asymp-
tomatic patients routinely (Class I, Level of evidence 
B) every 2–3 years, especially when they reach the 
teenage years and is indicated in the symptom-
atic patient if there is no primary indication for an 
intervention or there is no indication of increased 
pressures (eg end-diastolic or Fontan pressures) or 
pulmonary vascular resistance by echocardiography

• Prior to surgery or at any stage of surgical recon-
struction, CMR can be useful to evaluate anatomy 
and ventricular function including volumes and 
mass and valve function (Class I, Level of evidence 
B). Tissue characterization such as late gadolinium 
enhancement (LGE) may be useful in prognostica-
tion (Class I, Level of Evidence B)

• Prior to surgery or at any stage of surgical recon-
struction, CMR can be useful to evaluate hemo-
dynamics such as flows, cardiac index, Qp/Qs, 
flows to both lungs, fenestration flow (if Fontan) 
and systemic to pulmonary collateral flow (Class I, 
Level of evidence B).

Tetralogy of Fallot
Background
Tetralogy of Fallot (TOF)56 is the most common cyanotic 
CHD and has a prevalence of ~ 6% of all CHDs57 and 
an average incidence of 32.6 per 100,000 live births11 
(~ 1660 babies born each year with TOF in the United 
States58). The main pathologic basis is antero-cephalad 
deviation of the developing conal septum which causes 
a malalignement type ventricular septal defect (VSD), 
resulting in an “overriding aorta’’ and right ventricular 
(RV) outflow tract (RVOT) obstruction, ultimately leading 
to RV hypertrophy. Repair typically consists of VSD clo-
sure and relief of RVOT obstruction, typically by place-
ment of a transannular patch, which in most instances 
results in severe pulmonary regurgitation (PR) from dis-
ruption of pulmonary valve integrity; RV volume overload 
typically ensues.59 Another commonly used approach is 
placement of an RV to pulmonary artery conduit instead 
of a transannular patch which may also result in PR 
and RV volume overload. Definitive repair is generally 
performed in infancy with survival rates of > 98% in 
multiple series.60–65 Because of the high success rate 
in childhood, the number of repaired TOF patients has 
been increasing over the years with adult survivors of 
TOF repair now outnumbering children in a number of 
regions.66 The 30 year survival rate is > 90%67,68
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Despite these successes, complications related to 
residual anatomic and hemodynamic abnormalities are 
nearly universal. In the vast majority of patients, as men-
tioned, relief of the RVOT obstruction leads to PR and 
RV volume overload with resultant reduced RV and LV 
performance and are at risk for poor clinical outcomes. 
Multiple studies that have investigated resting RV and LV 
function after TOF repair69–74 consistently found dimin-
ished RV and LV performance with decreased RV ejec-
tion fraction (RVEF) and LV ejection fraction (LVEF), 
mostly in patients with PR. Patients with RV volume over-
load are at risk for sudden death, ventricular arrhythmias, 
increased New York Heart Association (NYHA) class 
and decreased exercise performance.

Exercise capacity is significantly decreased in TOF sur-
vivors and deserves special attention.75–77 This exercise 
incompetence may result from either primary LV dysfunc-
tion or by “ventricular-ventricular” interaction, where the 
dilated RV impinges on LV geometry causing poor perfor-
mance.78–88 When TOF patients were studied at rest and 
during exercise testing, the incremental exercise response 
of LVEF in TOF patients was depressed relative to controls 
and LVEF during exercise correlated with both RV end 
diastolic volume index (RVEDVI) and the severity of PR.77 
When comparing exercise performance in TOF patients 

and controls, significant differences exist in peak work-
load, maximal heart rate and systolic blood pressure.76 A 
review of 22 exercise studies89 found that 14 showed a 
significant relationship between PR with abnormal RV 
function and decreased exercise capacity. Further impli-
cating RV volume overload are studies that demonstrate 
once the RV volume overload is abolished by pulmonary 
valve replacement (PVR), exercise tolerance improved.87,88

Numerous other residua can be present. Residual or 
recurrent RVOT obstruction or pulmonary stenosis may be 
present at any age and commonly occur in the first sev-
eral years after the initial repair; RV to PA conduits com-
monly need to be upsized as the patient grows and later 
on may become calcified and stenotic. Scar tissue from 
surgical relief of the infundibulotomy as well as the use 
of a patch to enlarge the RVOT results in non-contractile 
myocardium which may progress to aneurysm formation. 
Residual atrial septal defects (ASD) or VSD, branch PA 
stenosis, tricuspid regurgitation as well as aortic dilation 
and aortic valve regurgitation may all occur. Arrhythmia 
and conduction disturbances are commonly encoun-
tered.90 A recent study suggests that TOF survivors have 
a higher degree of RV and LV diffuse fibrosis compared 
to normal, raising the possibility of an etiology for conduc-
tion disturbances or decreased exercise performance91,92; 

Table 3. Complications of Repaired Tetralogy of Fallot

Reproduced with permission from Geva et al.145 LV indicates left ventricular; RV, right ventricular; TOF, tetrolology of Fallot; and VSD, ventricular septal defect.
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the degree and time course of this fibrosis has yet to be 
defined. Table 3 lists complications commonly seen in 
TOF.

Indication and the Role of CMR in TOF
CMR has been utilized for years to assess anatomy  
(Figure 6), ventricular function including ventricular vol-
umes (Figure 7), blood flow (Figure 8) and myocardial tis-
sue characterization (Figure 9) in TOF survivors91,92,95,96,98 
Multiple CMR techniques have been utilized for anatomi-
cal assessment of the RVOT, branch pulmonary arteries 
(PAs) (Figure 6) and aorta including electrocardiographi-
cally (ECG) gated balanced steady state free precession 
(bSSFP), unbalanced gradient echo imaging, dark blood 
imaging (which is much less susceptible to metal arti-
fact) and contrast enhanced imaging to create 3D image 
sets. CMR is the gold standard for reliably and accurately 
measuring 3D ventricular volumes and performance 
generally utilizing bSSFP cine imaging and is the imag-
ing modality of choice (Figure 7). PC-CMR93 is employed 
to measure flow and velocity, focused on PR (Figure 8), 
flow to both lungs, cardiac index, Qp/Qs, tricuspid regur-
gitation (alone or in combination with cine imaging) and 
aortic to pulmonary collateral flow. Parametric native T1 
mapping94 can determine diffuse fibrosis and recent 
studies in children with repaired TOF have demonstrated 
extracellular volume (ECV) expansion91,92; in adult, TOF 
survivors showed a higher rate of adverse clinical events 
in TOF patients with ECV ≥ 30% than those with < 30% 
(Figure 9).95 Finally, myocardial strain by CMR using fea-
ture and tissue tracking allows for strain measurements 
with standard cine96 and has recently demonstrated to 
be prognostic in adult TOF survivors.96 Normal values for 
pediatric strain has recently been published.97

Prior to surgery in young children, echocardiography 
is primarily utilized for the management and care of the 
patient with TOF and CMR is generally not routinely indi-
cated. There are a few exceptions such as:

• Lack of visualization of various structures such as 
the branch PAs by echocardiography

• aortic arch anomalies
• discontinuous branch PAs
• aorto-pulmonary collaterals (Figure 3)
• complex TOF or situs anomalies
• inconsistent clinical data that may indicate the need 

for an intervention other than routine repair.

After surgical repair, numerous sequelae can be pres-
ent and CMR is indicated to assess nearly all of them:

PR (Figure 8)
PR is a major issue and CMR is the only technique that 
allows for accurate quantification of not only of regurgi-
tant volumes but regurgitant fraction as well (using PC-
CMR)98,99 with echocardiography only having a modest 

Figure 6. Severe right pulmonary artery (RPA) aneurysm in a 14 year old patient with tetralogy of Fallot and pulmonic stenosis. Left panel is 
an unbalanced gradient echo cine image and the right panel is a 3D reconstruction; note the turbulence in the main pulmonary artery from the 
stenotic pulmonary valve (PV). LPA indicates left pulmonary artery; RA, right atrium; and RV, right ventricle.

Figure 7. Ventricular function and volumes in tetralogy of Fallot. 
The 4-chamber (upper left), right ventricle (RV) two chamber (upper 
right) and short axis (lower panel) views of the patient in Figure 6 with 
volume overload of the RV. LV indicates left ventricle.
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correlation with CMR.37 It has been utilized since the 
early to mid 90 s for this evaluation98,100 and has been 
demonstrated to positively correlate with RV end-dia-
stolic volume (RVEDV).101,102 In the absence of residual 
intracardiac shunts and other valve insufficiency, the dif-
ference in ventricular stroke volumes would equal the PR 
volume by PC-CMR.

RV (Figure 7)
Cine CMR is the gold standard in determining quanti-
tative biventricular size and mass and has been so for 
many decades.32,103–106 PR results in RV dilation with 
decreased function, risking morbidity and mortality,107 
and the effects of RV dilation on LV function108 are 
important to follow by CMR. In a large cohort of patients 
spanning the gamut of ages, RV hypertrophy relative 
to RV volume was predictive of death and ventricular 
tachycardia.109 RVEF has been associated with impaired 
exercise performance.110 Typical values for RV dilation 
and hypertrophy in TOF have been published by many 
groups.102,111–113

It has been known for a number of years that intrin-
sic regional RV wall function is decreased in TOF sur-
vivors using CMR.114 Relatively recently, both RV and 
LV strain from routine cine CMR has been performed 
using either CMR feature tracking or tissue tracking of 
the myocardium. Both RV global longitudinal strain (GLS) 
and LV global circumferential strain (GCS) by CMR have 
emerged as predictors of poor outcome across a wide 
gamut of age ranges including pediatric and adolescents 
and may be useful in prognostication.96

Fibrosis has been noted by CMR in TOF survivors and 
has clinical implications. LGE or discrete fibrosis, has 
been utilized to assess viability of the myocardium for 
many years115 and in the TOF population, has been found 
to be present in both the RV and the LV. This increased 
signal intensity also occurs at the site of patch material 
such as the VSD and the transannular patch (Figure 9).116 
Patients with poor ventricular performance, exercise intol-
erance and arrhythmias have demonstrated increased 
amounts of LGE throughout all age ranges117,118 and LGE 
in children positively correlates with increasing RVEDV 
and PR.119 RV diffuse fibrosis using T1 mapping has also 
been shown to be increased in TOF survivors in children,91 
however, the significance is unknown at this time.

A published recommendation from the American Soci-
ety of Echocardiography, developed in collaboration with 
SCMR and the Society for Pediatric Radiology recommends 
yearly CMRs based on RV performance parameters (eg 
RVEDVI ≥ 150 cc/m2, RVEF ≤ 48%) and every 3 years if 
the RV does not fall into these ranges for anyone 10 years 
of age or older; for those younger, it is ordered to address 
specific questions not addressed by echocardiography.120

Left Ventricle
As mentioned above, numerous studies have docu-
mented LV dysfunction in repaired TOF patients for a 
few reasons and therefore, CMR evaluation of the LV 
takes on a key position in evaluation. CMR has demon-
strated that this dysfunction is directly related to adverse 
outcomes such as ventricular tachycardia and death 
across all age ranges.121 LVEF has been associated with 

Figure 8. Color coded through plane PC-CMR of the main 
pulmonary artery (MPA) in systole (upper left, orange) and diastole 
(upper right, blue) demonstrating antegrade (orange) and retrograde 
flow (blue) signifying severe pulmonary regurgitation (PR).Lower 
panel is a flow (Y-axis) time (X-axis) curve demonstrating PR and 
antegrade end diastolic flow (after 900 mseconds). Ao indicates 
aorta; LV, left ventricle; ml/s,  milliliters/second; and ms, milliseconds.

Figure 9. Discrete (upper panels, arrows) and diffuse fibrosis (lower 
panels) in a patient with tetralogy of Fallot. Two separate patients 
are demonstrated in the upper panels showing the areas of the 
transannular patch. Utilizing T1 mapping before (lower left) and after 
(lower right) gadolinium administration, extracellular volume can be 
quantified.
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impaired exercise performance110 and as mentioned 
above, LV GCS has correlated with poor outcome.96 In 
addition, a small study has shown that LV diffuse fibro-
sis in children is associated not only with biventricular 
enlargement but is also associated with poor exercise 
performance122 and impaired LV mechanics123; long term 
clinical outcomes have yet to be elucidated.

Anatomy
Important elements to image by CMR are residual lesions 
of the RVOT (e.g., RVOT aneurysm, the presence of an 
RV muscle bundle and RVOT and annular obstruction 
(Figure 7)), the branch PAs and surgical reconstructions 
such as RV to PA conduits.124 CMR in many instances is 
able to visualize these structures with higher fidelity than 
echocardiography, especially in the older child and ado-
lescent. Although echocardiography is generally utilized 
to estimate the RV systolic pressure by measuring the 
peak tricuspid regurgitation (TR) velocity and the pres-
sure drop across the RVOT and annulus by assessing 
the peak velocity by Doppler, in-plane PC-CMR may be 
utilized for this, although uncommon.

Since the mid to late 90’s CMR has been known to be 
a highly sensitive technique to assess the branch PAs in 
TOF.125 It has been validated against X-ray angiography126 
and is superior to echocardiography.127 Branch PA ste-
nosis or dilation (such as in TOF with absent pulmonary 
valve leaflets) should be noted. Physiologically, using PC-
CMR, differential PA blood flow is obtained by CMR and 
has shown to be accurate128–130 even in the presence of 
stents,131 and may be used as a component in the deci-
sion making process to determine the need for interven-
tion on the branch PAs.

Left Sided Structures
Aortic root and ascending aortic dilation are known phe-
nomenon seen in TOF and not only can significantly dilate 
in a high proportion of patients in the late teens and adult-
hood132 but also may cause considerable pathology.133 In 
addition, right aortic arches occur in ~25% of TOF along 
with branching abnormalities and the occasional vascular 
ring. These structures are routinely and easily imaged by 
CMR with and without contrast. Aortic regurgitation (AR), 
associated with aortic root and ascending aortic dilation, 
occurs in TOF134 and should be quantified by CMR38 
using PC-CMR.

Residual Shunting
Residual ASD and VSD flow can be present after sur-
gical repair and can be diagnosed by echocardiography. 
CMR has utility not only visualizing these structures when 
inadequate echocardiography windows are present, but 
the strength of the modality is to quantify net shunting 
via PC-CMR with internal checks (see Qp/Qs section). In 
addition, in TOF patients with pulmonary atresia and mul-
tiple aortic to pulmonary collaterals, CMR again can visu-
alize and quantify the shunt which has been performed 
since the 1990s.135,136

Other Considerations
TR occurs not uncommonly in TOF and is also generally 
seen by echocardiography. CMR can quantify atrioven-
tricular valve regurgitation in 2 separate ways for internal 
consistency and accuracy. Spatial relationships of the 
cardiovascular system and the airways can be impor-
tant such as in TOF with absent pulmonary valve leaf-
lets along with the relationship of the sternum in case of 
reoperation and CMR is useful in defining this anatomy. 
Coronary artery anatomy, for years a staple of CMR, can 
be defined as well in case of stenting the RVOT and main 
PA  (see Coronary Artery section).

It should be noted that in certain circumstances, 
where the necessary airway or coronary anatomy cannot 
be obtained by CMR, or if visualization within a stent is 
needed for delineation of size, cardiac CT may be consid-
ered as an alternative.

Pulmonary Valve Replacement
PVR deserves special attention in that it eliminates PR, 
decreases RV volume overload and improves symptoms 
including TR and exercise intolerance87,88,137,138 but the 
threshold ventricular volumes above which a PVR should 
be performed is unknown.139–144 Indexed end-diastolic vol-
umes have ranged in various studies from 140 to 180 cc/
m2. Other parameters to consider for PVR include large 
RVOT aneurysms, RVOT obstruction, sustained tachyar-
rhythmias related to RV volume overload, left to right shunt 
with a Qp/Qs > 1.5, severe AR or dilation.145 CMR has 
played a major role in attempting to determine the optimal 
timing of PVR and is indicated for baseline and follow-up 
evaluation of the TOF patient for PVR.

Summary of Recommendations
• Prior to definitive TOF surgery, CMR can be use-

ful to delineate various anatomic structures when 
there is a lack of visualization by echocardiography. 
In addition, it can be beneficial to delineate, aortic 
arch anomalies, discontinuous branch PAs, aorto-
pulmonary collaterals and complex TOF anatomy or 
situs anomalies as an adjunct to echocardiography 
(Class IIA, level of evidence C).

• After definitive TOF repair, CMR is reasonable to 
delineate anatomy, physiology, blood flow, ventricu-
lar function and tissue characterization. In specific, 
assessing biventricular performance (ventricular vol-
umes, ejection fraction, cardiac index), valve function 
(PR, TR, AR) and flows to both lungs are crucial to 
quantify (Class I, level of evidence B). RVOT, branch 
PA and aortic root/aortic anatomy are important to 
evaluate and measure (Class I, level of evidence B). 
Discrete myocardial scarring is important to identify 
(Class I, level of evidence B).

• CMR is indicated to evaluate RV volumes as a base-
line, every 2–3 years if not dilated and ≥ 10 years 
of age or yearly if dilated and in the range to be 
considered for PVR (Class I, level of evidence B).
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• Annual CMR is useful when surgery is being con-
sidered to evaluate RVOT aneurysms or obstruction, 
sustained tachyarrhythmias related to RV volume 
overload, left to right shunt with a Qp/Qs > 1.5, 
severe AR or dilation if being considered for PVR 
(Class IIA, level of evidence B).

• If the child requires sedation or anesthesia for CMR, 
this modality is reasonable to delineate anatomy, 
physiology, blood flow, ventricular function and tis-
sue characterization when echocardiography sug-
gests pathology or cannot visualize structures (Class 
IIA, level of evidence B). This can be performed as a 
baseline in childhood and prior to reaching the teen-
age years (Class IIB, level of evidence C).

• Myocardial strain (Class IIA, level of evidence B) and 
diffuse fibrosis (Class IIB, level of evidence C) by 
CMR might be considered for prognostication.

Transposition of the Great Arteries
Background
Transposition of the great arteries (TGA) is anatomically 
defined as a ventriculo-arterial discordance and is the 
second most frequent cyanotic CHD with a prevalence 
of 0.2–0.3 / 1000 livebirths with a male predominance 
of 1.5–3:1,13 accounting for 5–7% of all CHD.146 This 
section will focus on TGA with D-looped ventricles with 
repair using the arterial switch operation (ASO);L-looped 
TGA and repair with an atrial inversion operation is in 

the section on systemic RVs. The ASO is nowadays the 
surgical technique of choice for repair of TGA147 consist-
ing of (1) transecting the aorta and the main PA at the 
level of the sinotubular junction, (2) removing the coro-
nary ostia from the original aortic root and transferring 
them with a piece of surrounding tissue (button) to the 
neo aortic (pulmonary) root, (3) relocating the PA ante-
riorly and connecting it to the previous aortic root, and 
(4) relocating the aorta posteriorly and anastomosing it 
to the neoaortic root (native pulmonary root). With this 
technique, the branch PAs most commonly straddle the 
ascending aorta (LeCompte maneuver). Any additional 
intracardiac communication is closed during the surgery. 
This procedure allows both anatomical and functional 
repair restoring ventriculo-arterial concordance.

ASO can be performed successfully with low mortal-
ity rate.148 Nevertheless, potential postoperative com-
plications include supravalvar and branch PA stenosis, 
coronary ostial occlusion/narrowing with subsequent 
myocardial ischemia and LV dysfunction, AR and neo-aor-
tic root dilatation.149 Coronary artery complications after 
ASO have been reported in up to 10% of cases.150,151 
Early detection of coronary artery lesions is essential 
for preventing ischemia and potentially life-threatening 
events. Notably, hearts after the ASO operation are 
denervated, and chest pain is not a reliable symptom of 
ischemia in these patients.152

Advanced imaging in patients with TGA after ASO is 
targeted to detect all potential residual findings requiring 
medical or surgical treatment. These include ventricular 
dysfunction, supravalvar pulmonary or aortic stenosis, 
branch PA stenosis, coronary artery stenosis/occlusion, 
neo-aortic or pulmonary valve regurgitation and, neoaor-
tic root dilation.153 Even though there is one meta-analysis 
that concludes that coronary surveillance is not needed,154 
multiple studies have concluded otherwise.150–152,155

Indications for CMR
Prior to ASO
Echocardiography is the first line imaging modality 
prior to ASO and in most cases, CMR is not indicated. 

Table 5. Comparison of CMR with Other Imaging Modalities as it Relates to Transposition of the Great Arteries

Characteristics CMR Transthoracic echocardiography Cardiac computed tomography Nuclear scintigraphy

Radiation exposure − −  +++  ++++ 

Safety with pacemakers  +  ++++  +++  +++ 

Ventricular dysfunction  ++++  ++  ++ −

Myocardial ischemia  ++++  + −  ++++ 

Coronary artery anatomy  +++  ++  ++++ -

Coronary artery stenosis  +++ −  ++++  ++ 

Supravalvar aortic or pulmonary 
stenosis

 ++++  ++++  ++++ −

Branch pulmonary artery stenosis  ++++  ++  ++++ ( +)

Neoaortic root dilation  ++++  +++  ++++ −

Neoaortic valve regurgitation  ++++  ++ − −

Table 4. Features Depicted by CMR After the Arterial Switch 
Operation

Features depicted by CMR after the arterial switch operation (ASO) 

Ventricular dilatation, ventricular dysfunction

Right ventricular outflow tract and pulmonary artery branches after 
Lecompte manoever

Neoaortic root dilatation

Neoaortic valve regurgitation

Myocardial perfusion defects due to coronary artery kinking or stenosis

Myocardial viability
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Occasionally there may be anatomic or physiologic 
abnormalities not delineated by echocardiography (e.g., 
branch PAs) and for those few cases, CMR is useful to 
delineate this missing information prior to surgery. When 
it is necessary to delineate the coronary anatomy or if 
echocardiography fails to do so, CMR has become more 
utilized; however, at the current time, it is not widespread 
and standard of care remains cardiac catheterization 
with cardiac CT as a backup.

After ASO
CMR is indicated and can depict almost all common 
potential residual findings after ASO (Table 4).

Ventricular Function
CMR is considered the modality of choice for quantifica-
tion of biventricular volumes and function, especially the 
RV (Table 5).6,8,156,157 CMR has a high accuracy and repro-
ducibility and is therefore the ideal modality for repeated 
measurements during follow up.158,159 In ASO patients, 
CMR can recognize diminished ventricular function in 
ASO patients at times when echocardiography fails to do 
so (Table 5).160 Moreover, advanced imaging with CMR 
can provide potential causes of ventricular dysfunction in 
the same examination (eg myocardial scarring, myocardial 
perfusion imaging if an adenosine stress CMR is being 
performed).

Mild biventricular dilation is not uncommon after the 
ASO operation. LV dysfunction has been observed in up 
to 20% of the cases and is correlated to clinical symp-
toms.161 In presence of ventricular dysfunction, concomi-
tant evaluation of myocardial perfusion and scar imaging 
are essential for assessing coronary artery obstruction. 

RV dysfunction is rarer but can occur in combination 
with RVOT obstruction or stenosis of the branch PAs. 
Therefore, in presence of RV dysfunction, imaging the 
RVOT and the PAs is mandatory. Due to the position of 
the RVOT located immediately posterior to the sternum 
and of the branch PAs straddling the ascending aorta, 
visualization by transthoracic echocardiography (TTE) is 
rarely sufficient as patients grow and postoperative scar 
tissue often limit clear visualization of these structures.

Coronary Arteries, Myocardial Perfusion and Viability
After coronary artery transfer by the ASO, the origin of 
both coronary arteries is usually in a different position than 
normal, facing the anteriorly positioned neopulmonary 
artery (Figure 10). Depending on its individual position, 
the proximal left coronary artery may show a tangential 
course which must be distinguished from true coronary 
artery obstruction. Moreover, it is still unclear whether 
this steep angle of origin may promote stenosis long 
term.162,163 Whole-heart CMR (3D balanced bSSFP, con-
trast enhanced inversion recovery gradient echo imaging 
using gadolinium or ferumoxytol) enables accurate detec-
tion of the abnormal origin and course of the coronary 
arteries even in very young patients with CHD164,165 and 
patients with TGA after ASO are no exception.166 Thus, 
evaluation of the coronary origins and courses routinely 
added to the CMR protocol167 (see section on CMR for 
coronary arteries).

In the cases with symptoms, LV dysfunction or coro-
nary narrowing, evaluation of first-pass perfusion and 
viability can be performed by CMR.168 Myocardial perfu-
sion, typically with the vasodilator adenosine,169,170 can be 

Figure 11. First-pass perfusion imaging. First-pass perfusion image 
showing a decrease intake of contrast-medium in the perfusion 
segments of the circumflex coronary artery in a 9-year-old boy after 
the arterial switch operation. The finding were confirmed at invasive 
coronary angiography.

Figure 10. The coronary arteries after the arterial switch operation. 
3D balanced steady state free precession (bSSFP) reconstructed 
image of the origin of the left coronary artery (LCA). The origin of the 
LCA (*) is occasionally wedged between the main pulmonary artery 
(MPA) and the aortic root (AO).
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safely and accurately performed in children.171–177 In 56 
myocardial first-pass perfusion scans performed in chil-
dren, a sensitivity of 87% and a specificity of 95% have 
been described when compared with coronary angiogra-
phy171 (Figure 11). Another group reported on 64 first-
pass perfusion exams in 48 children and found a positive 
predictive value of 80% and a negative predictive value 
of 88% for detecting coronary lesions.173 There are 

some studies of TGA after ASO which did not find any 
scar or perfusion defects,178 however, there are others, 
using regadenoson as a vasodilator stress agent, which 
detected myocardial perfusion defects in up to 30% with 
very good agreement with coronary angiography.179

LGE can be found in up to 20% of the patients with 
TGA after ASO, some of which occur in a non-coronary 
pattern with small focal enhancement in the septal-free 
wall junction (possibly residuals from thromboembolic 
events during Rashkind maneuver and/or cardiopulmo-
nary by-pass). Elevated diffuse myocardial fibrosis has 
been observed in a cohort of pediatric ASO patients178,180; 
the prognostic significance of this finding remains 
unclear.

Pulmonary Arteries
CMR is effective and superior to echocardiography for 
detecting complications of the PAs after the Lecompte 
maneuver.181–183 As the cross-section of the PAs is ellip-
soid, the antero-posterior dimension is usually smaller 
than the supero-inferior one184 (Figure 12). PC-CMR 
measurements provide accurate quantitative differential 
lung perfusion and add crucial hemodynamic informa-
tion to the anatomical images.185–187 An unbalanced lung 
perfusion > 70:30 is usually taken as cut off for the need 
of an intervention in the PA branches.188 By combining 

Figure 13. Geometry of the aortic arch after the arterial switch 
operation. Right-posterior view of 3D volume rendered angiography 
images showing the typical form of the aortic arch, consisting of a 
higher convexity, after the arterial switch operation.

Figure 12. Geometry of the pulmonary bifurcation after Lecompte 
maneuver. A, Volume rendered 3D reconstruction showing that the 
pulmonary side branches runs around the aortic root. An external 
impression on the proximal course of the pulmonary arteries can 
occur. B, Coronal view of the geometric relation between ascending 
aorta and pulmonary arteries (RPA **, LPA *). Note the oval shape 
of the pulmonary arteries, with the broader diameter in the cranio-
caudal direction and slimmer diameter in the lateral direction. Ao 
indicates ascending aorta; LPA, left pulmonary artery; and RPA, right 
pulmonary artery.
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CMR anatomic findings with flow measurement, CMR 
has demonstrated that orientation of the neo-pulmonary 
root and diameter of the neo-aortic root are major deter-
minants of the degree of branch PA stenosis.189 With 4D 
flow, the hemodynamics in the main PA and in branch 
PAs can be even better understood.190,191

Neoaortic Root Dilation
Neoaortic root dilatation is a common finding during long 
term follow up and has been described by CMR in up 
to 76% of the patients.161 Neoaortic root dilatation pro-
gresses over time and is strongly associated with sig-
nificant semilunar valve regurgitation. CMR is superior 
to other modalities for quantification of neoaortic valve 
regurgitation.192 Older age at time of ASO, presence of 
VSD, and previous PA banding are described risk fac-
tors for neoaortic valve regurgitation.193–195 CMR data 
has also demonstrated that aortic arch geometry (Figure 
13) has a significant influence on the severity of neo-
aortic root dilation, with more acute aortic angles associ-
ated with larger neoaortic root and higher incidence of 
regurgitation.196

Even though reoperation on the neoaortic valve in the 
currently studied adult patients was rarely necessary, the 
potential progression of both neoaortic root dilatation 
and valve regurgitation should have accurate imaging 
follow up.197 CMR is the ideal modality as it provides both 
diameters of the neoaortic root measured in different 
planes and reproducible quantification of the neoaortic 
valve regurgitation (Figure 14).

Summary of Recommendations
• Prior to surgery, CMR is useful in evaluating anat-

omy and physiology required for medical or surgical 

management in patients with TGA which is not delin-
eated by echocardiography (Class I, Level of evi-
dence C).

• A comprehensive CMR examination should be per-
formed during routine follow-up of patients who 
received an ASO and is complimentary to echocar-
diography (Class I, Level of evidence B)

Figure 14. Aortic root dilation. bSSFP cine image in a vertical 
long-axis view through the inlet and outlet of the LV demonstrates 
a significant dilation of the aortic root. Ao indicates aorta; LA, left 
atrium; and LV, left ventricle.

Figure 15. Sinus venosus atrial septal defect with partial anomalous 
venous connection. A, bSSFP cine image in a horizontal long axis 
view showing a dilation of the right atrium and right ventricle. The 
arrow indicates the septal defect of sinus venosus type. B, The 
right upper and at least one branch of the right middle pulmonary 
vein (stars) are connected to the superior vena cava (SVC). This is 
a reconstructed maximum intensity projection image from contrast-
enhanced cardiac magnetic resonance angiography. RA indicates 
right atrium.
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• CMR is beneficial for quantification of biventricular 
volumes and function in TGA after the ASO (Class I, 
Level of evidence B).

• CMR is beneficial for visualization of the coronary arter-
ies in TGA after the ASO (Class I, Level of evidence B).

• CMR is recommended for evaluation of the main PA 
and branch PA stenosis with assessment of differ-
ential pulmonary flow (Class I, Level of evidence B)

• CMR is recommended for measure of neoaortic 
root enlargement and quantification of neoaortic 
valve regurgitation (Class I, Level of evidence B)

• Vasodilator stress perfusion CMR imaging is useful in 
symptomatic patients to test for ischemia (Class I, Level 
of Evidence B) and may be considered as an initial, 
non-invasive screening test for myocardial perfusion 
defects and therefore detection of potential coronary 
artery obstruction. (Class IIB, Level of evidence B)

• In the case of suspected myocardial perfusion defects, 
CMR may be considered for visualization of coronary 
ostial stenosis (Class IIB, Level of evidence B)

• CMR is useful in screening for myocardial scarring 
with LGE (viability imaging) or in confirming the 
diagnosis in cases of symptomatic individuals, given 
manipulation of the coronary arteries in this lesion 
(Class I, level of evidence C).

Pulmonary Venous Anomalies
Background
Anomalies of the pulmonary veins (PVs) can be con-
genital or acquired after an intervention or during the 

progression of a disease. Congenital PV lesions are 
rare and occur with a prevalence of 0.6–1.2 / 10 
000 livebirths.11,198 Partial anomalous PV connection 
(PAPVC) is the most frequent observed lesion and can 
occur in isolation but more frequently in association 
with an ASD (specifically a sinus venosus ASD) (Figure 
15). In presence of a sinus venous ASD of the SVC 
type, a right upper PV connecting to the SVC is com-
mon whereas in a sinus venosus ASD of the IVC type, 
the right lower PV will connect to the inferior margin 

Figure 16. Scimitar syndrome. All venous drainage from the right 
lung is connected (arrow) to the inferior vena cava (IVC) at the 
entrance in the right atrium (RA). Reconstructed maximum intensity 
projection image from contrast-enhanced CMR angiography.

Figure 17. Total anomalous pulmonary venous connection of 
supracardiac type. A, All 4 pulmonary veins are connected to a 
collector (c), which is draining to a vertical vein (vv). B, Along its 
course to the innominate vein, the vertical vein (vv) passes between 
the left main bronchus (B) and the left pulmonary artery (LPA). This 
represents an anatomic vice (*) which may cause obstruction of flow. 
Ao indicates aorta.
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of the right atrium. Another condition associated with 
PAPVC is Turner Syndrome in which typically the left 
upper PV connects to the innominate vein.199 In Scimi-
tar syndrome, usually all right PVs connect anomalously 
to the IVC200,201 which may occur below the diaphragm 
(Figure 16).

Total anomalous pulmonary venous connection 
(TAPVC) occurs in four different formations defined by 
the location of the connection of the PVs to the right-sided 
circulation. In order of prevalence, the sites of connection 
are: supracardiac (Figure 17), infradiaphragmatic (Figure 
18), cardiac, and mixed type. TAPVC can occur in isolation 
or in association with complex CHD such as heterotaxy 
syndrome.202–204 As variations of the course of the PVs 
are not infrequent, accurate imaging of each PV is man-
datory prior to surgery. Moreover, obstruction in the PV 
pathway is not rare and can be caused by (a) stenosis of 
each PV, (b) stenosis at the site of connection, (c) extrinsic 
compression of the connecting channel, (d) compression 
of the vertical vein in between the left bronchus and the 
left PA (supracardiac type) (Figure 17), (e) in the infra-
diaphragmatic type, compression in the small esophageal 
hiatus, in the ductus venosus or in the capillary system of 
the liver (Figure 18) or other solid parenchymal organ.205 
TAPVC with obstruction of the PV drainage causes severe 
symptoms of pulmonary congestion in the first days of life 
and requires immediate surgical or catheter based relief. 
Unobstructed TAPVC usually leads to significant left to 
right shunt and heart failure in the first weeks of life.

Finally, congenital stenosis of one or more PVs can 
occur, a progressive disease which leads to a dismal 

outcome (Figure 19).206 This can occur with or without 
associated CHD, and unilateral PV stenosis can lead to 
flow asymmetry to the lungs (i.e., decreased flow to the 
lung associated with the PV stenosis). It is not uncom-
mon to have recurrent and/or progressive PV obstruc-
tion or even death after surgical repair.207

CMR Indication in PV Anomalies
CMR is nearly always performed after an echocardiog-
raphy for all PV anomalies (Figures 15, 16, 17, 18, 19). 
In presence of an ASD, particularly of the sinus venosus 
type (Figure 15), CMR is indicated for ruling out a PAPVC 

Figure 18. Total anomalous pulmonary venous connection (TAPVC) 
of infracardiac type. In infracardiac type the collector (c) is draining 
to a vertical vein connected to the liver portal system. This contrast-
enhanced CMR angiography was acquired in a patient with 
heterotaxy syndrome, typically associated with TAPVC.

Figure 19. Pulmonary vein stenosis. A, Contrast-enhanced CMR 
angiography depict an intrinsic stenosis (arrow) of the left upper 
pulmonary vein (LUPV). Note the difference of contrast between 
the left and the right pulmonary veins (RPV), as well as the large 
diameter of the right pulmonary veins, probably caused by flow 
redistribution between the two lungs. B, Pulmonary vein (PV) 
stenosis in the Fontan patient is demonstrated in this bSSFP 
cine image in an axial view; external compression of the left lower 
pulmonary vein visualized which is impinged (arrow) between the left 
atrium and the descending aorta (AO) and spine. LA indicates left 
atrium; LT, lateral wall tunnel; and RA, right atrium.



Circ Cardiovasc Imaging. 2022;15:e014415. DOI: 10.1161/CIRCIMAGING.122.014415 June 2022 447

Fogel et al Guidelines for CMR in Congenital Heart Disease

whenever TTE is not conclusive.208,209 Greater than 4 PVs 
may be present and therefore, echocardiography delinea-
tion of only 4 PVs without searching for others in lesions 
associated with PAPVC is not sufficient and CMR is man-
datory. In patients with limited acoustic windows, CMR is 
indicated to delineate other PVs even if 4 are visualized on 
echocardiography. Besides providing clear information on 
the exact location of PV connection and drainage required 
for proper planning of all surgical corrections such as the 
Warden operation,210,211 CMR is useful to assess size and 
function of the dilated right heart, assessing the contribu-
tion of the anomalous vein(s) to the left to right shunt and 
to measure Qp/Qs (Figure 15). In case of isolated PAPVC, 
quantification of Qp/Qs and right heart dilation is a major 
determinant of indication for surgical repair.

CMR is the modality of choice for evaluation of Scimi-
tar syndrome,212,213 demonstrating not only the anoma-
lous drainage of all right PVs into the IVC (Figure 16) 
with the typical shape of an Arabic sword (scimitar) but 
also the associated anomalies including dextrocardia, 
right lung hypoplasia, horseshoe lung, aberrant systemic 
arterial blood supply to the right lower lung. In addition, in 
TAPVC, CMR is an important tool for visualization of each 
single pulmonary vein, their exact site of insertion (espe-
cially in mixed TAPVC), drainage, and if present, site of 
obstruction. (Figure 17). Moreover, shunt fraction and 
blood flow distribution to each lung can be quantified.

In congenital stenosis of one or more PVs, CMR angi-
ography provides exact depiction of the location of steno-
sis, number of veins affected and can be repeated during 
follow up (Figure 19). PV stenosis is also a possible 
complication after surgical TAPVC repair214,215 and if all 
PV are not affected, pulmonary flow redistributes among 
the different lung segments. Recognition of the severity 
of obstruction can be difficult by echocardiography as 
severely diminished flow may not induce turbulence seen 
by color flow Doppler at the site of stenosis; on the other 
hand, turbulence may be visualized at a PV vein which 
is normal size but has increased flow across it. For con-
genital PV stenosis and after surgical repair for TAPVC, 
CMR can clearly depict PV stenosis216,217 and delineating 
not only peak velocities in them (with PC-CMR) but also 
flows in each PV and PA.

Flows in the PVs can be assessed quantitatively218 
and qualitatively.219 The normal PV flow curve consists of 
2 forward waves during systole and early diastole as well 
as a short wave of reverse flow during late diastole at 
atrial contraction. This normal flow profile can be altered 
in several conditions or if atrial compliance is disturbed. 
In presence of unilateral PV stenosis, a redistribution of 
flow occurs within the lung and can be assessed by mea-
suring the flow in the pulmonary arteries by CMR; this 
is correlated with particular changes in flow profile.220,221 
Flow profiles are also affected directly within the PVs; 

proximal to a focal stenosis, flow loses its triphasic profile 
similarly as observed by using Doppler echocardiogra-
phy.219 On the other hand, peak PV flow velocities > 100 
cm/s indicate significant obstruction.217

In complex CHD, particularly heterotaxy syndrome, 
PV anomalies are frequent and occur in a wide anatomic 
variety.204 Due to anatomic complexity, echocardiography 
is often insufficient to describe all diagnostic features 
required for surgical and medical management. In these 
lesions, CMR has an important role for surgical planning 
or staged palliation222,223 especially in SV patients. The PV 
may become impinged between the dilated heart and the 
spine or the descending aorta (Figure 19). PV occlusion 
may increase the overall resistance to pulmonary flow 
which has a negative impact on the Fontan circulation 
and ultimately clinical outcome.

In general, in comparison to other modalities, cross 
sectional imaging is superior to echocardiography or con-
ventional angiography due to 3D data acquisition which 
enables a targeted multiplane reformatting and therefore, 
visualization of each single PV without superimposition of 
other vascular structures.224,225 CT has the same ability to 
delineate anatomy. CMR has been validated against lung 
perfusion scintigraphy for measurement of differential 
lung perfusion and has been shown to be a similarly accu-
rate and robust modality.187,226 In patients with CHD, CMR 
flow has been shown to be even more accurate (especially 
in the presence of systemic to pulmonary collaterals) and 
to overcome some pitfalls associated with scintigraphy.188

Summary of Recommendations
• In patients with PV stenosis or suspected anoma-

lous PV connection, whether PAPVC or TAPVC, 
CMR should be performed for anatomic evaluation 
whenever echocardiography is insufficient (Class I, 
Level of evidence B).

• CMR is useful to understand the hemodynamics of 
PV anomalies such as calculating any shunt (Qp/
Qs) caused by anomalous PV connection and asso-
ciated intracardiac lesions as an indication for sur-
gical repair (Class I, Level of evidence B) as well 
as quantifying differential lung perfusion with flow 
redistribution (Class I, Level of evidence B).

• CMR examination should be performed for assess-
ing PV anatomy in cases with complex CHD when 
there is a clinical or imaging suspicion of anomalies 
of PV connection or drainage, particularly hetero-
taxy syndrome (Class I, Level of evidence B)

• CMR angiography should be performed for surgical 
planning of repair of PV anomalies (Class I, Level of 
evidence B)

• It is reasonable to perform at least one CMR exami-
nation during follow up after surgical repair for PV 
anomalies (Class IIA, Level of evidence B).
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Coronary Artery Disease

Background
Categorically, pediatric coronary artery pathologies can be 
either congenital or acquired. Acquired lesions can also be 
sub-categorized as either “disease” based or “surgically” 
based. Congenital lesions would include those related 
to anomalous aortic origin of a coronary artery (AAOCA) 
from an inappropriate sinus (e.g., anomalous origin of the 
left coronary from the right sinus of Valsalva), anomalous 
origin from a different vessel such as anomalous origin of 
the left coronary from the PA, and/or anomalous course of 
a coronary artery (eg intraseptal) or exit (eg coronary cam-
eral fistulae as seen in pulmonary atresia with intact ven-
tricular septum). “Acquired disease” based lesions would 
include Kawasaki disease whereas “surgically” based 
lesions would include alterations of the locations of the 
coronary ostia or their proximal courses related to correc-
tive surgeries such as the arterial switch operation (Jatene 
procedure)227 or Ross procedure.228 Clearly, many of these 
diseases lend themselves to potentially decrease myocar-
dial perfusion, possibly resulting in ischemia and infarction.

Echocardiography, CT, and CMR are the most com-
monly used non-invasive imaging modalities for the 
evaluation of pediatric patients with coronary artery 
pathologies. Echocardiography is the most easily avail-
able with its inherent mobility and high temporal resolu-
tion and remains the front-line imaging modality. In many 
instances, echocardiography is utilized as a screening 
tool for progression of disease (e.g., Kawasaki’s disease) 

or may suggest a pathology as an incidental finding (e.g., 
an echocardiography for evaluation of physical examina-
tion findings of a murmur that suggests AAOCA).

Cardiac CT, with state-of-the-art dual-source or vol-
ume CT scanners, compared to CMR performed on 1.5 
T or 3 T CMR scanners, has slightly higher isotropic spa-
tial resolution (0.5–0.6 mm), faster total examination and 
scanning time and can, at times, accommodate high heart 
rates (> 120 bpm) despite a modest temporal resolution 
for nearly all scanners of 75 ms, although the fastest 
scanner can obtain a resolution of 66 ms. The drawbacks 
are that CT requires ionizing radiation and rapid bolus 
intravenous injection of iodinated contrast agent along 
with possibly administering medication to slow the heart 
rate (e.g. propranolol). Cardiac CT typically is limited to 
morphologic imaging due to radiation exposure concern.

CMR is generally utilized to confirm the diagnosis by 
echocardiography as well as to allow for visualization of 
longer segments with whole-heart coverage229 in addi-
tion to assessing myocardial function (both regional 
and global), perfusion177 and infarction (ie viability imag-
ing).50,172 Further, CMR adds anatomic information as 
well in the same patient such as those with TGA after 
ASO.172 CMR can obtain in-plane resolution of 0.5–0.6 
mm230 at 3 T in children and can usually obtain 1–1.2 mm 
isotropic resolution at 1.5 T. CMR can also obtain coro-
nary images without the need for contrast in the pediatric 
age range165,231,232 in multiple different formats (eg bright 
blood or dark blood)233 although contrast can enhance 
the imaging.234 Newer techniques,235,236 currently utilized 

Figure 20. Coronary artery imaging in infants utilizing ferumoxytol. The top two panels demonstrated normal origins and courses from a 2 day 
old with Taussig Bing anomaly and hypoplastic aortic root and ascending aorta in the off-axis axial (left) and sagittal views (right). The lower 
image is a 3D reconstruction from a 5 day old with tetralogy of Fallot and pulmonary atresia demonstrating a single right coronary artery (RCA); 
arrows outline the RCA and left main (LMCA) and anterior descending coronary arteries (LAD).
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in several pediatric centers, take advantage of the signifi-
cant increase signal afforded by the iron-particle blood 
pool contrast agent, ferumoxytol, and have shown very 
promising results with sub-mm isotropic whole-heart 
coverage even in infants with high heart rates (Figure 
20) (0.6-0.8 mm in-plane resolution at 1.5 T with slightly 
lower resolution in the z axis).

Indications for CMR to Assess Coronary Arteries
Congenital
Following screening echocardiography for suspicion or 
diagnosis of AAOCA, CMR should be used to confirm the 
presence of AAOCA and further characterize the location 
and shape of the ostium and proximal and mid-segment 
course of the anomalous coronary artery (Figures 21, 22). 

Figure 22. Anomalous origin of the left main coronary artery (LMCA) from the right sinus in an off axis axial view (top left) and with a 3D 
reconstruction (top right). Lower panel is an endoscopic view of the same patient demonstrating the orifice origins and shapes; note the round 
right coronary artery (RCA) os and the oval LMCA os.

Figure 21. Anomalous origin of the right coronary artery (RCA) from the opposite sinus in an off axis axial view (top left with arrows 
demonstrating the RCA course) and with a 3D reconstruction (top right). Lower panel is high resolution from a 3 T CMR scanner 
demonstrating the same with arrow showing origin of an intramural course.
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It should also be used to assess biventricular function both 
globally as well as regionally to assess regional wall motion 
abnormalities which may be due to AAOCA. Finally, viability 
can be performed on a routine basis to determine if there is 
any discrete LGE due to myocardial infarction. Vasodilator 
stress perfusion CMR should be reserved for special cases.

In a prospective study of 50 patients (age range, 18 
days to 18 years), Hussain et al.229showed that whole-
heart coronary artery CMR has a success rate of 94% 
for the detection of coronary origins. Brothers et al. dem-
onstrated prospectively in a small group of patients the 
multifaceted utility of CMR by characterizing stenosis, 
perfusion and fibrosis both prior to and after surgery 
in children with AAOCA.167 The latest techniques using 
ferumoxytol overcomes previous spatial limitations (Fig-
ure 20) even in small infants. Detailed depiction of the 
anomalous coronary artery and its proximal course can 
also be achieved with high in-plane sub-mm spatial reso-
lution coronary CMR imaging with a targeted approach 
and 3D endovascular view of the morphology of the 
ostium can be performed (Figure 22).237 Most recently, 
in one institution, a large cohort of 5,169 asymptomatic 
volunteers (11—18 years of age) were screened with 
CMR for cardiomyopathy and anomalous coronary artery 
origin from the opposite sinus with an intramural seg-
ment (ACAOS-IM). There were 23 such cases (6 left-
ACAOS-IM and 17 right-ACAOS-IM)238,239 establishing 
a prevalence of 0.4%.

Other important anatomic findings of the coronary 
arteries can be detected by CMR such as a conal branch 
coursing anteriorly across the RVOT and/or position of 
left main coronary and proximal left anterior descending 
(LAD) artery with respect to RVOT, significant in patients 
with TOF.240 In a prospective study of whole-heart coronary 
CMR in 100 patients (age 2 months–11 years; median 3 
years), of the 58 patients who underwent surgery, all CMR 

coronary artery findings were confirmed including 4 cases 
of coronary anomalies.165 In addition, coronary anomalies 
of “course” such as an intraseptal or retroaortic course, 
are important to delineate and have been demonstrated 
by CMR.237 Finally, anomalies of exit such as those with 
pulmonary atresia with intact ventricular septum with cor-
onary cameral fistulae or a RV dependent coronary cir-
culation can be delineated by CMR, especially important 
because of the sequelae of myocardial infarction (Figure 
23).

Acquired
CMR can be used to assess for the morphology includ-
ing size, shape, and location of coronary aneurysms in 
diseases such as Kawasaki’s disease (Figure 24). Similar 
to other CHD, it should also be used to assess global and 
regional ventricular performance, viability and perfusion 
(perfusion in select cases).

Mavrogeni et al.241 has shown in a prospective study 
of 16 patients (age range 3–8 years) that coronary CMR 
correlated completely with invasive cath for size and loca-
tion of aneurysms. There were no cases of stenoses for 
comparison. Suzuki et al.242 and in related work by Take-
mura et al.242 showed in a retrospective study with a larger 
cohort of 106 Kawasaki disease patients (median age 13 
years, range: 4 months–33 years) and a smaller cohort of 
35 consecutive pediatric KD patients (under 6 years of 
age) that imaging of coronary arteries in pediatric patients 
with Kawasaki disease can routinely be performed with a 
96% success rate. High sub-millimeter spatial resolution 
imaging that is used for AAOCA has been successful in 
young patients with Kawasaki disease.243,244 In addition, 
CMR should also assess for global and regional ventricu-
lar dysfunction, coronary perfusion, and myocardial scar-
ring/LGE during the convalescence and follow up of the 
Kawasaki disease patients.245,246 Advanced imaging of 

Figure 23. A 3 month old with pulmonary atresia with intact ventricular septum with coronary cameral fistulae and a RV dependent coronary 
circulation. The right panel is an adenosine stress perfusion CMR demonstrating perfusion defects (arrows) while the left panel demonstrates 
myocardial scarring in that same patient (arrows).
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characterization of the coronary vessel wall has also been 
shown to be possible.246

CMR can be used to characterize the anatomy of the 
coronary arteries following surgery in which the position 
and/or origin of the native coronary arteries have been 
altered such as after the Ross procedure or TGA after 
ASO (Figure 10). Taylor et al. reported in a prospective 
study of 50 asymptomatic pediatric TGA patients after 
ASO (age range 6–16 years) a comprehensive CMR 
examination including coronary artery CMR, cine imaging 
for ventricular function, and myocardial characterization 
for scarring.172 In 100 patients after ASO, Rodriguez et al. 

studied 100 whole heart 3D CMRs and found coronary 
artery stenosis in nearly 11%.166

Imaging coronary artery walls for vasculopathy in 
transplant patients247 including those in the pediatric age 
range248 and in other diseases such as Takayasu’s arteri-
tis249 is an emerging application of CMR coronary imag-
ing but should be considered experimental at this time.

Summary of Recommendations
• For patients with suspected AAOCA or other con-

genital anomalies of origin, course or exit, CMR 
is recommended to depict the origin and detailed 

Figure 24. Kawasaki’s disease. Top panels demonstrate a discrete right coronary artery (RCA) aneurysm (arrow) in a 3 year old. The bottom 
left panel is from a 2 year with diffuse aneurysms of both the right and left coronary systems (arrows); clots were found in the left coronary 
systems the resultant infarct and rounding of the left ventricular apex (arrows) is seen from the 4-chamber viability imaging (right).

Figure 25. Coarctation of the aorta in the juxtaductal region in a 4 month old utilizing unbalanced gradient echo cine imaging (left) and 3D 
reconstruction (right). Note the turbulent jet on cine. Arrows point to the coarctation.
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anatomy of the vessels for both diagnosis and pre-
operative planning (Class I, Level of evidence B).

• For patients with Kawasaki disease or other acquired 
“diseased” based coronary pathology, CMR is rec-
ommended to accurately depict the size, shape, and 
location of coronary aneurysms (Class I, Level of 
evidence B).

• For patients with acquired “surgically” based coro-
nary pathology such as TGA after ASO or Ross 
procedure, CMR is recommended to evaluate the 
post-operative coronary anatomy as part of a clini-
cally indicated comprehensive CMR examination. 
(Class I, Level of evidence B)

• CMR should be utilized to assess the second-
ary effects of congenital coronary anomalies or 
acquired pathology such as effects on myocardial 

function (e.g., regional wall motion abnormalities, 
end-diastolic volume, ejection fraction), perfusion 
and infarction (Class I, Level of evidence B) both 
prior to and after repair (if surgery) or in followup.

Coarctation of the Aorta and Bicuspid Aortic 
Valve

Background
Coarctation of the aorta is the most common left sided 
obstructive heart lesion with a mean incidence of 409 
per million live births11 and a prevalence of ~ 7% of 
patients with CHD.198 Coarctation is a discrete or rela-
tively discrete narrowing of the proximal descending 
thoracic aorta, most commonly located in the juxtaductal 

Figure 26. Coarctation of the aorta in the mid-thorax. This figure demonstrates the multiple ways a coarctation can be imaged by CMR. From 
left to right, there is 2D bright blood gadolinium enhanced imaging, a multiplanar reformat of a 3D dark blood sequence, a maximum intensity 
projection 3D image, inplane velocity mapping with color coding of the flow through the coarctation and a 3D volume rendered display. Note 
the collaterals on the maximum intensity projection and 3D volume rendered display. Color coding of the inplane velocity map is red cephalad 
and blue caudad.

Figure 27. Volume rendered image of an ascending to descending aortic conduit from anterior (left) and lateral (right) views to repair a 
coarctation utilizing gadolinium enhanced 3D imaging by CMR.
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region, immediately distal to the left subclavian artery 
(Figure 25) although it may occur anywhere in the tho-
racic (Figure 26) and abdominal aorta. It can be simple 
or complex with arch hypoplasia and tortuosity and asso-
ciated with other significant intracardiac CHD such as 
HLHS, TGA or truncus arteriosus. Bicuspid aortic valve 
(BAV) is frequently identified in patients with coarctation 
with studies reporting an incidence of > 50% and up to 
85% (Figure 27).250 Coarctation is part of a spectrum of 
aortopathies; genetic aortopathies are addressed else-
where in this manuscript.

If not detected prenatally or with pulse oximetry 
screening, neonates with coarctation of the aorta may 
present in clinical distress with significant metabolic 
acidosis and respiratory failure at the time of ductal 
closure.251 The lesion may be ductal dependent, requir-
ing prostaglandin infusion and other supportive meas-
ures for resuscitation and survival of the patient until 
more definitive treatment can be undertaken. Accurate 
detailed diagnosis is essential prior to any interven-
tion. Echocardiography is the first line imaging modal-
ity and may be all that is needed in infants with simple 
coarctation or associated intracardiac defects. If por-
tions of the aorta proximal or distal to the coarctation 
or branching vessels are not well visualized, CMR can 
provide full anatomical details and may be superior to 
echocardiography.252

Coarctation may also present later in childhood or 
early adulthood, usually in the setting of referral for 
hypertension or heart murmur and diminished lower 
extremity pulses. Depending on the age of the patient, 
chest X-ray may demonstrate rib notching such as when 
significant large collateral vessels may be present. When 
a native coarctation of the aorta is first diagnosed in an 
older child or adult by echocardiography, CMR is then 
used to define the anatomical and hemodynamic severity 
in preparation for treatment by surgery or in the cardiac 
cath lab. Echocardiography may demonstrate the unu-
sual arch anatomy and abnormal Doppler flow patterns 
through the obstruction, but due to limited acoustic win-
dows, may not allow for full visualization of the coarc-
tation or its proximal and distal segments, aortic arch 
branching abnormalities, or the presence and magnitude 
of associated collateral vessels which are all important 
pieces of clinical information to aid in determining the 
appropriate method of intervention.

In infancy and early childhood, coarctation of the 
aorta is most commonly repaired surgically with meth-
ods including subclavian flap repair, patch aortoplasty 
and simple or extended end-to-end anastomosis. In 
some situations, coarctation may be initially treated 
with balloon angioplasty with or without placement of 
a stent. In more unusual complex anatomical situations, 
bypassing the severe arch obstruction with a LV apical 
or ascending to descending aorta conduit may be rarely 
undertaken (Figure 27). Regardless of method of initial 
repair, long-term complications that require monitoring 
include residual coarctation, recoarctation, associated 
arch hypoplasia or tortuosity, aneurysm formation near 
the site of repair (Figure 28), dissection, hypertension 

Figure 28. Candy cane view of a 12 year old after subclavian flap 
angioplasty repair of coarctation of the aorta with a moderate sized 
aneurysm formation.

Figure 29. Maximum intensity projection of a patient with 
coarctation and multiple aortic collaterals. Flow in these collaterals 
can be quantified (see text).
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and endocarditis. Abnormalities of the aorta will often 
impact LV function. Long-standing hypertension leads 
to LV hypertrophy and ventricular dysfunction, as well 
as increased incidence of coronary heart disease and 
multiple other sequelae eventually leading to premature 
morbidity and mortality.253,254

Indication for CMR
Important anatomic and hemodynamic data is obtained 
with CMR having been utilized for many years in the 
assessment of coarctation of the aorta. Multiple tech-
niques, including non-contrast and contrast CMR 
sequences are used to provide a complete anatomi-
cal 3D analysis (Figure 26). Collateral vessels can 
be visualized providing flow to the descending aorta 
distal to the obstruction and CMR can be utilized to 
quantify this flow both prior to and after intervention 
(See Colateral flow section of this document) (Fig-
ure 29).255–260 Anatomic measurements throughout 
the aorta can be applied and compared to published 
normative data.261 Cine bSSFP provides visualization 
of the flow disturbance in the narrowed and dilated 
regions of the aorta and PC-CMR is used to assess 
flow, estimate gradients (Figure 26)262 and quantify 
collateral flow255,256,258–260 (see Qp/Qs and collateral 
flow section).

CMR is used as preplanning for intervention, as well 
as continued surveillance of the entire aorta and function 
of the systemic ventricle.263 After surgical coarctation 
repair, CMR is the preferred imaging modality.252,264,265 
Monitoring for restenosis is important and visualization 
of collaterals and measurement of flow volume increase 
from the coarctation repair site to the diaphragm aorta 
level is more reliable for assessment of recoarctation 
than arm-leg blood pressure drop.259 Aneurysms may 
occur at the repair site (Figure 28) and patients with 
poorly controlled hypertension may be at risk for dis-
section. The most cost-effective approach to care of 
patients with coarctation after balloon angioplasty or 

surgical repair is clinical assessment and CMR in every 
patient.266 In adults, guidelines recommend CMR imag-
ing of coarctation repair for routine follow up at intervals 
as much as every 1–3 years depending on the patient’s 
physiologic state1 and similar reasoning may be thought 
of in older children and young adults.After stent place-
ment, CMR is safe and may be chosen to evaluate areas 
around the stent and other vascular or intracardiac con-
cerns, including BAV, as well as the effects of residual 
abnormalities such as LV hypertrophy, cardiac index 
and collateral flow but is not absolutely dependable for 
visualizing the interior of the stent although dark blood 
imaging can visualize patency (but not exact dimen-
sions). With the advent of ferumoxytol, in stent visuali-
zation has improved for bright blood imaging but exact 
dimensions remains still elusive. If visualization of the 
interior of the stent is needed, CT and invasive angiog-
raphy may be performed.

Besides collateral flow measurements and cardiac 
index, 4-dimensional (4D) flow CMR imaging has been 
utilized to determine flow and visualize 4D flow pat-
terns in coarctation of the aorta both prior to and after 
repair.267–269 There has also been recent work using 4D 
flow CMR to measure pressure drop in the aorta of 
patients with coarctation.270,271 Although promising, 4D 
flow is not yet routinely performed in clinical practice 
across all centers.

Physiologic assessment of the effects of coarcta-
tion on the LV can be assessed by CMR as it is the 
gold standard for this evaluation.272 LV mass, ventricu-
lar volumes, global and regional ventricular dysfunction 
should be routinely assessed. LV myocardial strain can 
be assessed using tissue or feature tracking and can 
be abnormal with LV hypertrophy and systemic hyper-
tension.273 Diffuse fibrosis and increased ECV may be 
increased in hypertensive heart disease,94,274 although 
not routinely performed clinically. All of these methods 
for determining LV status will provide important data for 
making clinical decisions.

Figure 30. Bicuspid aortic valve with fusion of the right and non-coronary cusps using through plane phase contrast-cardiovascular magnetic 
resonance (PC-CMR) (left without color and 2nd from left with color). Second from the right panel is an bSSFP image in the LV outflow tract 
demonstrating the limited excursion of the valve leaflets while the right panel is an inplane phase contrast (PC-CMR demonstrating a peak 
velocity of 3.5 m/s.
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Summary of Recommendations
• At the initial diagnosis of coarctation by echocar-

diography, CMR is recommended to provide conclu-
sive anatomical and functional details needed prior 
to treatment or to decide if treatment is needed 
including anatomy of the coarctation, LV hypertro-
phy, cardiac index and the presence of a BAV etc. if 
these are not fully delineated by echocardiography 
(Class I, level of evidence B).

• CMR is reasonable to assess collateral flow in 
patients with coarctation of the aorta, especially 
if it is unclear from other criteria that treatment is 
needed (Class IIA, level of evidence B).

• After surgical repair of coarctation, CMR is indicated 
to monitor the status of the aorta and to visualize 
restenosis or aneurysm formation (Class I, level of 
evidence B).

• After stent placement, CMR can be useful to pro-
vide anatomic and hemodynamic assessment of the 
aorta surrounding the stent, but not to accurately 
visualize in-stent stenosis (Class IIA, level of evi-
dence B).

• After coarctation repair, CMR is recommended to 
assess the aorta and LV function every 1–3 years 
in children and adolescents, similar to adults, if 
echocardiography is insufficient or pathology is sus-
pected (Class I, level of evidence B).

• CMR holds the potential to assess LV myocardial 
strain and diffuse fibrosis/increased ECV in patients 
with coarctation to assess effects on the LV and 
may be considered for this purpose (Class IIB, level 
of evidence B).

Bicuspid Aortic Valve
Background
BAV is the most common congenital cardiac abnor-
mality with a prevalence estimated from 0.5 to 2% in 

the general population and has a 2:1 male to female 
ratio.11,275,276 Some families demonstrate an autoso-
mal dominant inheritance pattern.277 Unless associ-
ated with significant stenosis or regurgitation or other 
LV outflow tract lesions, young individuals are often 
asymptomatic (Figure 30). Critical and moderate to 
severe aortic stenosis associated with abnormal valve 
morphology often requires intervention during infancy 
or early childhood. Later in life, patients may be at 
risk for associated complications such as ascending 
aortic dilation with aneurysms (Figure 31) and dissec-
tion, aortic stenosis, AR, and endocarditis, all of which 
could eventually require aortic valve replacement and 
other aortic surgery. Many cases of BAV diagnosed 
after childhood may not need intervention until after 
the fourth decade and beyond.

There are multiple types of valve morphology under 
the rubric of BAV in children and adolescents.278 The 
most common type is fusion of the right and left coro-
nary commissures (70%) followed by fusion of the right 
and non-coronary commissures (28%); fusion of the left 
and non-coronary commissures is the least common. The 
vast majority of patients with coarctation have fusion of 
the right and left coronary commissures while fusion of 
the right and non-coronary commissures is most com-
monly associated with aortic regurgitation.278 Other types 
of morphology include partial or complete fusion of one 
or more of the commissures of the coronary cusps with 
associated cusp asymmetry and complete or incomplete 
raphe, as well as “true” symmetric BAV cusps without 
raphe. Some severely malformed valves are labeled “uni-
commissural” which may or may not be classified under 
this label (Figure 31).279,280

Indication for CMR in BAV
Historically, TTE, when acoustic windows are adequate, 
has been reported as highly sensitive and specific for diag-
nosing BAV.281 If not well visualized by echocardiography, 

Figure 31. Unicuspid aortic valve with only the left coronary-non coronary commissure open without (left) and with color (middle). Ascending 
aortic dilation is seen on the right panel
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CMR can determine aortic valve anatomy (Figures 30, 
31). In a more recent analysis comparing pathology spec-
imens with TTE and CMR images, the ability to assess 
valve morphology was higher with CMR when compared 
to TTE (96% vs 73%).282 Valve morphology has not been 
definitely associated with severity of disease other than 
a small subgroup of patients with preferential dilation of 
the sinuses of Valsalva who have right-left coronary cusp 
fusion. Flow abnormalities associated with the different 
types of aortic valve have been characterized, but clinical 
implications are still being identified.279

For aortic valve morphology, CMR planimetry for aortic 
valve area has been demonstrated to have the best sen-
sitivity and specificity of all non-invasive methods when 
compared to invasive catheterization and has high reli-
ability and reproducibility.283–285 Valve area by CMR can 
be obtained using velocity time integrals and compares 
favorably to echocardiography.286 Other ways to measure 
aortic valve area by CMR include Hakki’s formula287 and 
the continuity equation.

CMR can assess hemodynamic effects of associated 
stenosis and AR from aortic valve disease. This includes 
LV hypertrophy and dilation as well as functional volumetric 
analysis, changes in strain or fibrosis and ECV expansion. 
In those with significant aortic valve dysfunction, CMR 
is advantageous for serial evaluation of LV volumes and 
mass. The standard for determining ventricular sizes and 
volumes is CMR.272 Though quantitative evaluation of AR 
volume can be calculated by the difference between RV 
and LV volumes (assuming no intracardiac shunting, atrio-
ventricular valve insufficiency or PR), PC-CMR sequences 
allow for direct measurement of forward and reverse vol-
ume used to calculate a regurgitant fraction, as well as 

peak velocity of the jet in the prescribed plane286; checks 
on the data include subtracting the flow of caval return, 
main PA flow or the sum of branch PA flowfrom aortic for-
ward flow making CMR more accurate. CMR also allows 
for assessment of myocardial blood flow with first-pass 
perfusion at rest and stress, as well as tissue characteriza-
tion with myocardial LGE for fibrosis and viability. All this 
information by CMR provides assistance in determining 
timing for aortic valve intervention or replacement.3

CMR allows for evaluation of the ascending aorta (Fig-
ure 31) as it relates to BAV disease and should be uti-
lized when the morphology of the aortic root or ascending 
aorta cannot be viewed well or measured accurately by 
echocardiography. Once the aorta is dilated, serial yearly 
evaluation should occur.288 Because of its strong associa-
tion with coarctation of the aorta, patients diagnosed with 
a BAV should also undergo imaging for coarctation of the 
aorta.250 CMR has also been used to evaluate shear wall 
stress of the aorta in patients with BAV.289 See Genetic 
Aortopathy section and the 4D flow imaging subsection.

Summary of Recommendations
• If echocardiography is unable to visualize morphol-

ogy of a BAV or visualize the aortic root or ascend-
ing aorta adequately, CMR is indicated to provide the 
needed information. (Class I, level of evidence B)

• CMR should be used for serial monitoring in the set-
ting of BAV valve with associated aortic stenosis or 
AR and to quantify these hemodynamics (Class I, 
level of evidence B).

• CMR is useful for serial monitoring of the size of 
the aortic root and ascending aorta in the setting of 
BAV. (Class I, Level of Evidence B)

Table 6. Summary of the Genetic Aortopathies

Disorder Genetic defect/mutation Histology Aortic disease

Marfan syndrome Fibrillin-1-encoding FBN-1 gene Vascular smooth muscle cell loss and 
cystic medial necrosis

Aortic root dilatation and increased 
risk of aortic dissection

Vascular Ehlers-Danlos syndrome COL3A1 encoding Collagen III Increased fragility of vessels Increased risk of dissection and rup-
ture often without dilation

Loeys-Dietz syndrome TGFBRI, TGFBRII, SMAD3 gene, 
TGFB2 gene, TGFB3 gene

Increased medial collagen, elastic 
fiber fragmentation and medial de-
generation

Widespread arterial tortuosity, aneu-
rysms and dissection (often without 
dilatation)

Turner syndrome 45 XO or mosaic 45 XO Cystic medial necrosis possibly sec-
ondary to primary neural crest defect 
in 4th branchial/pharyngeal arch lead-
ing to cardiac, vascular and lymph 
anomalies

Aortic dilatation typically beginning at 
aortic root/ascending aorta, bicuspid 
aortic valve aortic coarctation

Noonan syndrome PTPN 11 mutation and other muta-
tions in RAS-Mitogen activated pro-
tein kinase pathway

Signal changes in several intracellular 
transduction pathways leading to car-
diofacial abnormalities, abnormalities 
in valvulogenesis and lymphedema

Aortic root dilation, ascending aorta 
dilatation, coronary artery aneurysms 
and pulmonary artery stenosis

Osteoarthritis-Aneurysm syndrome SMAD3 Disorganization of the tunica media, 
fragmentation and loss of elastic fi-
bers and accumulation of collagen

Aortic root dilation, aortic dissection 
and widespread aneurysms associ-
ated with early onset osteoarthritis

Non syndromic familial thoracic aneu-
rysms and dissections

ACTA2
MYH11
MYLK

Vascular smooth muscle cell protein 
abnormalities

Familial thoracic aortic aneurysms 
and dissections
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• CMR is recommended for serial monitoring of the 
effects of aortic stenosis and AR on the LV (e.g. LV 
volumes, EF and mass) (Class I, Level of Evidence 
B) and to obtain direct measurement of AR volume, 
peak flow velocity and aortic valve area when deter-
mining need for aortic valve/aortic surgery (Class 
IIA, Level of Evidence B).

• CMR is beneficial to determine lesions associated 
with BAV such as coarctation of the aorta, inter-
rupted aortic arch other left sided obstructed lesions 
(Class I, Level of Evidence B).

Genetic Aortopathy
Background
Genetic disorders associated with aortopathy include 
Marfan syndrome (MFS), autosomal dominant Vascular 
Ehlers-Danlos (EDS), Loeys-Dietz (LDS), aneurysms-
osteoarthritis syndromes, Turner syndrome, Noonan 
Syndrome and non-syndromic familial thoracic aortic 
aneurysms and dissections (FTAAD). These group of 
disorders are associated with altered connective tissue 
composition leading to a combination of cardiovascular, 
skeletal and often ocular manifestations.

The cardiovascular features include valvular and vas-
cular disease, in particular aortic dilatation with increased 
risk of dissection, aneurysm, rupture and death. The aortic 
dilation most often affects the aortic root and ascending 
aorta but can also affect the more distal aorta including 
the transverse arch and descending aorta. These disorders 
have variable effect on other cardiac structures. For exam-
ple, mitral valve prolapse (MVP) is a feature of MFS and 
LDS, but not EDS, which in turn has a higher risk of coro-
nary artery dissections than the other aortopathies. Turner 
syndrome is due to the partial absence of an X chromo-
some, and phenotypically has short stature and ovarian 
insufficiency, in addition to aortic dilatation, BAV, PAPVR 
and aortic coarctation. Noonan Syndrome is considered 
a renin-angiotensin system (RAS)opathy, a group of dis-
orders which have mutations in the signaling proteins for 
RAS/mitogen activated protein kinase (MAPK) pathway 
and results in cardiovascular, facial and lymphatic anoma-
lies. Inheritance and penetrance of all these conditions is 
variable, with many patients representing new sporadic 
mutations. The diagnosis of these conditions is most often 
in infancy, due to the combination of musculoskeletal, facial 
and cardiovascular anomalies. However, the progressive 
nature of the associated vasculopathy means that lifelong 
cardiovascular imaging surveillance is required. Table 6 
contains a summary of the genetic aortopathies.

Indications for CMR

Aortic Size Measurements
A small study comparing reproducibility of aortic mea-
surements at multiple levels in both pediatric BAV and 
genetic aortopathy patients showed that echocardiogra-
phy derived measurements were systematically smaller 

by 5–7% and were less reproducible than CMR mea-
surements, particularly in dilated aortic roots and in the 
descending aorta.290 Most of the genetic aortopathy 
patients have the potential for complex abnormalities that 
may affect the entire aorta necessitating comprehensive 
evaluations. Furthermore, the presence of concomitant 
skeletal abnormalities renders echocardiography less 
reliable due to poor acoustic windows. The need for 
accurate and reproducible aortic size measurements 

Figure 32. A 1 day old with Loeys-Dietz syndrome. A, Axial oblique 
bSSFP image in aortic root plane showing massively dilated aortic 
root with a diameter of 2.2 cm (z score of 8.7) (B) 3D gadolinium 
enhanced image showing diffuse aneurysmal dilatation of the 
superior mesenteric artery (arrow).
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is of utmost importance as aortic size is considered a 
surrogate for aortic dissection, surveillance recommen-
dations and surgical interventions in genetic aortopa-
thies.291 The 2010 published guidelines for diagnosis 
and management of thoracic aortic diseases including 
genetic aortopathies with surgical repair recommenda-
tions for genetic aortopathies are purely based upon 
aortic size.291

The aortopathy in Turner syndrome is complicated 
by the presence of short stature necessitating a Turner 
specific z-score (TSZ) developed for 2D echocardiogra-
phy.292 In patients > 15 years of age, a unique index, the 
aortic size index (ASI), was proposed (ASI = maximum 
aortic diameter/bodysurface area) and has been shown 
to be a better predictor of vascular complications than 
traditional Turner z score analysis.293 The AHA recently 
published a scientific statement on the management of 
Turner syndrome and recommends CMR at diagnosis 
and CMR surveillance due to the high incidence of undi-
agnosed vascular anomalies such as coarctation, PAPVC, 
systemic venous anomalies and coronary anomalies. In 
low risk Turner syndrome patients, imaging surveillance 
can be performed every 5–10 years, but with increased 
frequency of surveillance in patients with high ASIs  
(> 2.3 cm/m2).294

The natural history of most genetic aortopathies is 
one of a thinned aortic wall which progressively dilates 
and loses distensibility thereby heightening the risks of 
aneurysm formation and dissection throughout its length, 
but particularly at the root.295 Cohort studies have shown 
that nearly 60% of MFS patients will have aortic root 
dilatation by age 35 years and that the aorta increases 
further with age.296–298

Valvular Disease
As the root dilates, aortic leaflets fail to fully coapt and 
AR increases. Echocardiography is the mainstay of AR 
surveillance but a systematic review of 11 articles com-
paring quantification of AR by CMR to semiquantitative 
evaluation with echocardiography confirmed that direct 
aortic measurements using PC-CMR at the sinotubular 
junction/aortic valve are highly reproducible and accu-
rate and predicts those who progress to surgery with 
high overall sensitivity and specificity.299 Similarly, the 
2014 AHA/ACC guidelines recommend CMR for quan-
tification of AR in patients with moderate or severe AR 
with suboptimal echocardiography images and evaluation 
of LV systolic function and volumes.300 Atrioventricular 
valve disease is more common in MFS compared to other 
genetic aortopathies with some studies demonstrating > 
65% prevalence of mitral valve disorders. Infants and 
children with MFS present early with tricuspid and mitral 
valve fibroxanthomatous thickening and prolapse.301,302 
CMR has emerged as an important noninvasive modal-
ity to diagnose and characterize MVP and help quantify 
mitral regurgitation.303–306

Figure 33. A 10 year old with Loeys-Dietz syndrome. A and B 3D 
gadolinium enhanced shaded surface displays showing a dilated 
ascending aorta, dilated bilateral carotid arteries and tortuous 
bilateral vertebral arteries. Vertebral tortuosity Index was 95 on right 
and 65 on left.
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Left Ventricular Function
Dilated cardiomyopathy is an under-recognized clinical 
feature of aortopathy syndromes. Myocardial dysfunction is 
often considered to be the consequence of valvular insuf-
ficiency and ventricular volume overload,307 however, in a 
subgroup of aortopathy patients without significant valvu-
lar dysfunction or aortic dilatation, subclinical cardiac dys-
function has been described,308 attributed to a combination 
of increased aortic wall stiffness and extracellular matrix 
abnormalities. CMR is the reference standard for evaluat-
ing biventricular function as mentioned previously3,309 and 
can be used to evaluate ventricular performance.

Systemic Vascular Screen
Although aortic aneurysms generally occur at the aortic 
root in many patients (Figure 32), approximately 50% 
of patients with LDS syndrome have aneurysms remote 
from the aortic root, including the head and neck vessels, 
intracranial berry aneurysms, abdominal branch arterial 
aneurysms and iliac artery aneurysms. Current recom-
mendations are that LDS patients have annual CT/CMR 
examination from head to pelvis. CMR, which avoids ion-
izing radiation and ability to combine both non-contrast 
and contrast enhanced angiography to achieve whole 
body evaluations, has distinct advantages over a full 
body CT with runoff, especially for repeat examinations 
over time. Non-vascular abnormalities including Chiari I 
malformation, vertebral subluxations, diaphragmatic her-
nias, pectus abnormalities and scoliosis are frequently 
unsuspected clinical findings found on whole body evalu-
ations.310 Patients with Turner syndrome have increased 
incidence of PAPVC, systemic venous anomalies such 
as left SVC/interrupted IVC, congenital portosystemic 

shunts and coronary artery anomalies, many of which are 
not appreciated on echocardiography, yet relatively easily 
appreciated on CMR.

Aortic Dissection
Aortic dissection is a catastrophic complication of aortic 
wall disease associated with high mortality and morbidity. 
In acute symptomatic dissection, rapid imaging diagnosis is 
essential. CMR can be used to diagnose dissection, distin-
guish aortic pseudoaneurysm from dissection and assess 
intimal flaps and aortic branch vessel involvement.311–313 
Multiple CMR sequences, both contrast and non-contrast 
enhanced, all provide specific and unique information 
including exact positioning of the intimal flap and ability 
to distinguish slow flow from thrombus in the false lumen.

Vertebral Tortuosity Index (VTI)314 
Increased arterial tortuosity of the head and neck vessels, 
particularly the vertebral arteries, has been described in 
LDS, MFS and Turner syndrome (Figure 33) and can 
be calculated easily by CMR. VTI is defined as [(actual 
vertebral artery length/straight vertebral artery length-1) 
× 100] measured from vertebral artery origin to C2 if 
included in the study. Higher VTIs (> 50) have been 
associated with major adverse clinical outcomes, includ-
ing a more severely dilated aortic root, increased rate of 
cardiac surgery, younger age at dissection and death.314

4D-Flow CMR in Aortopathies
(Figure 34) Hemodynamic quantification is a major 
advantage of CMR over other imaging modalities in 
genetic aortopathy. Multiple studies have demonstrated 
that BAV-related aortopathy patients, expressing abnor-
mal wall shear stress, may develop significant alterations 
in elastin fiber and extracellular matrix protein compo-
sitions predisposing patients to further aortic dilatation 
and heightened risk for dissection.315,316 Less is known 
about genetic aortopathies, however, emerging 4D- flow 
CMR data suggests that similar findings are present in 
pediatric genetic aortopathy patients and become more 
pronounced over time.317,318

Advantages of CMR
MR has been shown to be very accurate in the diagnosis 
of thoracic aortic disease with sensitivities and specifici-
ties that can exceed echocardiography.319–321 CMR pro-
vides a multiplanar evaluation of the thoracic aorta and 
its branch vessels and can conceivably cover the entire 
systemic arterial circulation from head to toe. CMR has 
the additional ability to evaluate the competence of the 
valves and assess LV function in addition to a detailed 
morphological assessment of the thoracic vessels and 
additional musculoskeletal abnormalities that are related 
to aortopathies. The modality is also very accurate in the 
diagnosis of aortic dissection but in cases of suspected 
acute dissection, CT may be preferred to speed of exami-
nation in a potentially unstable patient. CMR is also pre-
ferred for VTI calculation due to the beam hardening CT 

Figure 34. A 17 year old with severe aortic dilatation. Sagittal 
multiplanar reformatted images from 4D-flow CMR showing severe 
ascending aortic dilatation extending to involve the common origin of 
the innominate and left common carotid arteries.
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artifacts related to the intraforaminal courses of these 
vessels. There is a plethora of CMR literature in pediatric 
genetic aortopathies.290,314,317,318,322–327

Summary of Recommendations
• CMR is the recommended imaging modality for aor-

tic size measurement and surveillance in pediatric 
patients with genetic aortopathy, as well as assess-
ment of valve regurgitation and LV function. (Class I, 
Level of evidence B).

• CMR should be utilized for complete arterial screen-
ing and surveillance in pediatric patients with genetic 
aortopathy (Class I, Level of evidence C).

• Depending upon the risk of the mutation, serial 
CMRs should be performed every few years (Class 
I, Level of evidence C) and if stenosis, dilation or 
aneurysm are determined to be progressing, serial 
CMRs should be occur more frequently (as much as 
every 6 months) (Class I, Level of evidence C).

• CMR is indicated for assessment of aortic dissection 
risk: In patients with Turner syndrome with additional 
risk factors, including BAV, coarctation of the aorta, 

and/or hypertension, and in patients who attempt to 
become pregnant or who become pregnant, it may 
be reasonable to perform imaging of the heart and 
aorta to help determine the risk of aortic dissection. 
(Class I, Level of evidence C).

• CMR may be beneficial for VTI measurement for 
risk stratification in patients with genetic aortopathy 
risk: Limited populations examined have suggested 
that VTI > 50 is associated with adverse clinical out-
comes. (Class I, Level of evidence B).

Vascular Rings and Slings
Background
Vascular rings and slings are rare congenital anomalies 
involving the aortic arch and PAs, representing about 
1–3% of CHD.328,329 The vessels encircle the trachea and 
esophagus and can lead to varying degrees of compres-
sion and clinical symptoms involving the respiratory and/or 
gastrointestinal system. Some patients are asymptomatic, 
diagnosed incidentally when imaging is needed for other 
unrelated reasons and do not require treatment.329 Visu-
alization of the entire ring or sling can be challenging due 
to indirect imaging of structures with chest radiography 
or barium esophagram and suboptimal acoustic windows 
with echocardiography. Due to their significant respiratory 
symptoms, some patients may first undergo bronchoscopy, 
revealing a pulsatile stenosis and tracheomalacia, again 
indirect evidence of a vascular anomaly.330–334 In addition, 
the vascular structures completing the ring may be atretic, 
or unable to be opacified with any imaging modality.333,335,336

Indication for CMR in Vascular Rings and Slings
There is an extensive history of the utilization of CMR to 
diagnose aortic arch anomalies330,335,337–347 CMR provides 
many advantages for the assessment of vascular rings 
and slings including imaging of the airway and allowing a 
conclusive diagnosis to guide in therapeutic management.

Vascular Rings
The most common type of vascular ring, accounting for 
about 50–60% of cases, is double aortic arch, with per-
sistence of both fourth arches. The double aortic arch may 
be right-dominant, left-dominant, or codominant, though 
right dominance occurs in the large majority (Figure 35). 
Portions of the double arch may also be atretic.333,334 Neo-
nates may present with life-threatening complications of 
the airway.331 With significant tracheomalacia, symptoms 
may persist after surgical intervention, with some cases 
requiring further tracheal surgery.331 CMR has been dem-
onstrated to successfully diagnose patent double arches 
and those with atretic portions and is superior to cardiac 
catheterization angiography in its ability to demonstrate 
associated compression of the airway.330,331,335

The next most common vascular ring type involves 
a right aortic arch (30–35% of cases) with aberrant 
left subclavian artery, left ligamentum arteriosum and 

Figure 35. A right dominant double aortic arch. A, Three different 
views from a contrast enhanced 3D volume rendering from the 
lateral (left), posterior angled cephalad (middle) and anterior angled 
caudad (right). Note the ring in the center. B, Dark blood imaging of 
the trachea in the sagittal (left) and coronal views (right). Note the 
narrowing distally on the sagittal view and how both arches can be 
visualized in cross-section on the coronal (arrows). LAO indicates 
left aortic arch; and RAO, right aortic arch.
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diverticulum of Kommerell (Figure 36). A small portion 
of patients with right aortic arch may have mirror image 
branching and a retroesophageal ductal ligament that 
can identified by an aortic “dimple” delineated on CMR 
imaging (diverticulum) in conjunction with tracheal and 
esophageal compression.333,348 Both double aortic arch 
and right aortic arches constituting vascular rings have 

been known to occur in conjunction with CHD such as 
TOF.349

Circumflex aortic arch is more rare type of vascular 
ring with contralateral locations of the transverse aor-
tic arch over the bronchus and descending aorta where 
there is a “retroesophageal segment” of the aortic arch; 
that is to say a right aortic arch with a left descending 

Figure 36. A right aortic arch with a diverticulum of Kommerell and an aberrant left subclavian artery (LSCA) in a 6 year old. The descending 
aorta is seen on the left with the diverticulum (arrow) and the LSCA originating as the last branch while the 3D shaded surface display is in the 
center of the image viewed posteriorly. The trachea from 3D dark blood imaging is visualized on the right.

Figure 37. A cervical circumflex right aortic arch as demonstrated by a contrast enhanced volume rendered display as viewed from anterior 
(left), posterior (middle) and from superior (right). The ascending aorta (AAo) ascends on the right and the transverse aortic arch (TAo) crosses 
posteriorly to the left, posterior to the trachea and esophagus and the descending aorta (DAo) descends on the left.
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aorta or a left aortic arch with a right descending aorta 
(Figure 37). Over half of patients have additional cardiac 
anomalies and some may also have a “cervical” aortic 
arch. CMR has much higher sensitivity for diagnosing the 
circumflex aortic arch when compared to chest radiogra-
phy and echocardiography. Accurate diagnosis is essen-
tial for surgical planning.342

Other rarer vascular rings with varying location of 
aberrant vessels and the ligamentum arteriosum (eg 
right aortic arch with an aberrant left innominate vein) 
have all been optimally imaged with CMR (Figure 38).

Pulmonary Artery Slings
A PA sling is the anomalous origin of the left PA from the 
right PA which courses between the trachea and esopha-
gus, creating a “sling “around the distal trachea or proxi-
mal right bronchus (Figure 39). Impingement of the airway 
leads to respiratory symptoms and compression of the 
esophagus commonly causes dysphagia and vomiting. The 
ability to diagnose PA sling is equivalent with CT and CMR 
(although to diagnose a complete tracheal ring, CT should 
be utilized), though CMR avoids ionizing radiation, iodinated 
contrast and flows to both lungs can be evaluated.331,339,340

Considerations
Vascular rings and slings may present with life-threat-
ening complications of the airway in the newborn period. 
Upper airway obstruction and dysphagia are common 
presenting symptoms during this time and later in 
infancy or early childhood and beyond. Prolonged or 
recurrent respiratory symptoms or refractory asthma 
may necessitate workup for vascular anomalies. While 

chest radiography, barium esophagography, bronchos-
copy and echocardiography are suggestive of a vas-
cular ring or sling, full details of the vascular anomaly 
and impacted structures (esophagus, trachea, bron-
chi) must be delineated further for adequate surgical 
management, and these can be provided by CMR. As 
some surgeons prefer a 3D reconstruction of the great 
vessels prior to operating on arch anomalies, CMR 
can faithfully create a 3D model using both contrast 
enhanced and non-contrast techniques.332 CT can cre-
ate 3D reconstructions of the great vessels as well as 
the trachea and can be utilized for this in centers that 
do not have the expertise in CMR. Invasive angiography 
is not indicated for the sole diagnosis of vascular rings 
and slings and have been replaced by CMR,331,333,334 
but may be utilized in the setting of additional intracar-
diac defects needing intervention.

Summary of Recommendations
• After preliminary assessment and clinical suspi-

cion for a vascular ring or pulmonary sling, CMR is 
indicated for definitive anatomic diagnosis in the 
management of these lesions prior to therapeutic 
intervention. (Class I, level of evidence B) Flows to 
both lungs may be assessed in pulmonary sling.

• CMR is indicated for the assessment of tracheal 
narrowing in patients with vascular rings and slings 
(Class I, level of evidence B)

• CMR is indicated for the assessment of associated 
lesions of vascular rings such as TOF (Class I, level 
of evidence B)

Figure 38. 3D volume rending of a right aortic arch with an aberrant left innominate artery (L Inn) visualized from posterior (left) and anterior 
(right). RCA indicates right carotid artery.
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TGA With a Systemic RV (Corrected TGA or TGA 
After Atrial Inversion)
Background
TGA, apart from those with a SV, may occur with a sys-
temic RV in 2 different categories:

• Congenitally corrected transposition (ccTGA), also 
called L-looped TGA or TGA {S,L,L}, occurs when 
the morphologic LV is on the right side of the cir-
culation and associated with the pulmonary valve 
and the morphologic RV is on the left side of the 
circulation and associated with the aorta.350 There 
is atrioventricular and ventriculoarterial discordance 
which results in normal hemodynamics where sys-
temic venous returns is directed towards the lungs 
and pulmonary venous return is directed towards 
the body. These patients most commonly have no 
other CHD, but if CHD occurs, they most com-
monly have VSD, pulmonary stenosis or may have 
Ebstein’s anomaly of the left sided tricuspid valve.

• TGA after atrial inversion, also called TGA after atrial 
switch, occurs when patients with D-looped TGA (i.e. 
{S,D,D}; the morphologic RV is on the right side of the 
circulation and associated with the aorta and the mor-
phologic LV is on the left side of the circulation and 
associated with the pulmonary valve) undergo an atrial 
switch operation, either a Senning or a Mustard pro-
cedure. In D-looped TGA, there is atrioventricular con-
cordance and ventriculoarterial discordance resulting 
in the systemic and pulmonary venous systems in 
parallel circuits; the Senning and Mustard procedures 
baffle venous return to the correct ventricle physi-
ologically. Most of these operations were performed 

in the era prior to ASO so the vast majority of these 
patients are adults although in some circumstances, 
this is performed in the "double switch" operation for 
TGA {S,L,L}.Whether the RV can tolerate a lifetime of 
systemic vascular resistance and pressure, whether 
a morphologic D-loop or L-loop, has always been 
debated, making study of RV performance in this 
patient population crucial. In a multi-institutional ret-
rospective analysis, by 45 years of age, 67% of those 
with ccTGA with intracardiac lesions and 25% with-
out intracardiac lesions had heart failure and systemic 
ventricular dysfunction.350 Mechanics of the systemic 
RV are markedly different from the single RV and from 
the normal systemic LV.30 Both the RVs in ccTGA and 
TGA after atrial inversion can be dilated, spherical and 
poorly functioning.351 For those with TGA after atrial 
inversion, after a high short term mortality rate (up to 
20%), there is a longer lower mortality rate which nev-
ertheless remains significant.352 Multiple studies have 
demonstrated a significant decline in RV function in 
adulthood, with or without symptoms.353,354 Both RV 
and LV in the systemic RV circulation demonstrate 
abnormal response to exercise.355

Indications for CMR
CMR is ideally suited for the study of the systemic RV 
in the setting of TGA due to its ability to overcome the 
issues of RV geometry and retrosternal location that 
challenge echocardiography. The issue of RV geometry is 
very germane in these diseases as the RV remodels and 
the anatomy changes when it becomes a systemic ven-
tricle. In addition, the geometry of a D-looped RV (Fig-
ure 40) as in TGA after atrial inversion is very different 

Figure 39. A pulmonary artery sling 
where the left pulmonary artery (LPA) 
arises from the right pulmonary artery 
(RPA) in a one year old. Off axis axial 
CMR cine (upper left), dark blood (upper 
right) and 3D reconstruction (lower left) 
demonstrate the anatomy. Lower right 
displays an off-axis coronal view of the 
trachea.
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than that of an L-looped RV as in ccTGA (Figure 41). The 
use of CMR for quantification of RV function and ven-
tricular volumes in these patients have been extensively 
published351,355–362 including the aforementioned abnor-
mal response to exercise. Adverse cardiac events have 
been associated with RV volume, RV mass index, RVEF, 
RV wall stress and LV volume.363–365 There is evidence to 
demonstrate that as they age, patients with a systemic 
RV have functional decline and no resting parameters 
correlate with exercise function.366,367 Because of the 
ability to quantify ventricular performance independent of 
geometry, CMR has been utilized in several pharmaco-
logic trials in this patient population.368,369 Systolic strain 
by CMR has also been quantified using feature track-
ing methods370 and dyssynchrony, as measured by fea-
ture tracking, correlates well with major cardiac events in 
those with a systemic RV.363

In patients with TGA after atrial inversion, CMR has 
been utilized for several decades to assess the size, 
patency and leaks of intra-atrial baffles371–373 (Figure 40) 
as well as ventricular outflow tract obstruction.357,359,374 It 
is not uncommon to visualize obstruction to the supe-
rior limb of the systemic venous pathway375 or right to 
left shunts due to baffle leaks by cine.359 PC-CMR is 
utilized to determine the size of the shunt (Qp/Qs) with 
internal checks along with in-plane velocity mapping to 
visualize the leak. Ventricular outflow tract obstruction is 
assessed by CMR on a routine basis.376

Similar to the debate regarding whether the RV can 
tolerate a lifetime of systemic vascular resistance and 
pressure, the ability of the morphologic tricuspid valve 
to maintain systemic atrioventricular valve work is also 
questioned. TR is generally due to annular dilation and 
systemic RV dysfunction in ccTGA,377 however, this may 
also be due to Ebstein’s anomaly of the left sided tricus-
pid valve378; either way, it presents a volume load on the 
ventricle. Indeed, in the presence of significant TR and 
if present, deteriorating RV function, a “double switch” 
may be performed, combining an ASO procedure with a 
Senning379 and CMR is utilized not only to evaluate the 
intra-atrial baffle but also the coronary arteries and ven-
tricular function. CMR, as previously noted, can measure 
atrioventricular valve insufficiency via 2 methods utilizing 
PC-CMR alone or in combination with cine CMR. There 
is evidence to demonstrate that the systemic RVEF can-
not increase in response to increasing atrioventricular 
valve insufficiency.380 Ultimately, though, accurate meas-
urements of TR by CMR are important as this has been 
linked to ventricular function and clinical outcomes in 
this patient population.381–383

Other anatomic abnormalities can be assessed by 
CMR including VSD repair, pulmonary stenosis and PR 
after repair and the size of the branch PA in patients 
with ccTGA (Figure 41). PC-CMR is used to determine 
Qp/Qs similar to baffle leaks along with quantification of 
flows to both lungs and PR fraction similar to TOF.

Figure 40. Transposition of the great 
arteries after atrial switch. A, Panel on 
the left is a cine of the upper limb (UL) 
and lower limb (LL) of the systemic 
venous pathway, in this case, a Mustard 
operation. On the right is a 4-chamber 
view with the asterisk denoting the distal 
end of the systemic venous pathway. B, 
3D gadolinium volume rendering of the 
main pulmonary artery (MPA) arising from 
the left ventricle (LV) on the left and the 
aorta (Ao) arising from the right ventricle 
(RV). Note on the left that the UL of the 
systemic venous pathway can be seen 
(arrow).
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Characterization of the myocardium with CMR has 
demonstrated a role for the assessment of myocardial 
fibrosis and its link to the gradual decline of the systemic 
RV (Figure 42). The presence of LGE is associated with 
older age, RV volume and function, QRS duration, and 
prior arrhythmia or syncope.384 In a study of 34 patients 
with systemic RVs, LGE was linked not only to older 
age, lower RVEF and arrhythmia but also higher RV wall 
stress, reduced peak oxygen uptake during exercise and 
a worsening of clinical symptoms.365 LGE in the systemic 
RV is related to collagen content385 as well as ventricu-
lar dyssyncrhony.386 Diffuse fibrosis, using ECV, has also 
been assessed in the systemic RV in a dual chambered 
circulation.387,388 Importantly, the presence of myocardial 
fibrosis is prospectively related to a mix of adverse clini-
cal outcomes in follow up.389,390 These types of studies 
have been important in understanding the role of fibro-
sis in the natural history of the systemic RV, and may 
indirectly imply a role of anti-fibrotic medical therapy.

Summary of Recommendations
• CMR is indicated for quantification of systemic RV 

volumes, mass, and ejection fraction (Class I, level of 

evidence B) and can be useful for quantification of 
pulmonary LV performance parameters in patients 
with a dual chambered circulation (Class IIA, level of 
evidence C)

• CMR is recommended for the assessment of the sys-
temic atrioventricular valve (left sided tricuspid valve 
in TGA {S,L,L} or right sided tricuspid valve in TGA 
{S,D,D} after atrial inversion procedure) in patients 
with a systemic RV (Class I, level of evidence B)

• CMR is useful for detecting systemic RV myocardial 
fibrosis, which may have important implications for a 
given patient’s prognosis and therapy options (Class 
I, level of evidence B)

• CMR is beneficial for the detection of stenosis and 
leaks of the interatrial baffle in those patients with 
systemic RVs who have undergone an atrial inver-
sion procedure (Class I, level of evidence B) as well 
as for detection of the presence and severity of out-
flow tract obstruction (Class I, level of evidence B).

• CMR is useful to assess associated lesions and the 
sequelae of repair such as VSD, pulmonary stenosis 
and PR, especially in patients with ccTGA (Class I, 
level of evidence B).

Figure 41. Corrected transposition of the great arteries (ccTGA). The upper left panel is a stack of bright blood cine images depicting the 
geometry of a 2 year old patient with ccTGA. The upper right panel is one slice showing the right ventricle (RV) on the left and the left ventricle 
(LV) on the right. The lower panel is a 4-chamber view.
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Hypertrophic Cardiomyopathy

Background
Hypertrophic cardiomyopathy (HCM) is a disorder of 
increased LV mass and may be differentiated into syn-
dromic  (with other systemic involvement) and nonsyn-
dromic (without other systemic involvement) types. This 
section describes nonsyndromic disease. This type of 
HCM is a common genetic cardiomyopathy resulting 
from autosomal dominant mutations in multiple genes 

encoding the cardiac sarcomere; including cardiac 
β-myosin heavy chain, cardiac myosin binding protein C 
and Troponin T. There have been over 1400 mutations 
described.391 On histopathology, HCM is character-
ized by myocyte disarray, myocardial hypertrophy and 
fibrosis along with abnormal small intramural arterioles 
with thickened walls and narrowed lumen resulting in 
ventricular dysfunction and ventricular arrhythmias. 
The presentation of HCM is heterogenous with var-
ied symptomatology including fatigue, chest pain, 

Figure 43. A 14 year old with 
hypertrophic cardiomyopathy 
(HCM). Upper left panel is a cine 
bSSFP sequence in short axis plane 
demonstrating diffuse LV myocardial 
hypertrophy affecting the basal septum 
the most (*) with phase sensitive 
inversion recovery image demonstrating 
corresponding late gadolinium 
enhancement (upper right, arrow). 
Myocardial Strain “bullseye” map 
demonstrating globally decreased LV 
myocardial circumferential strain (lower 
panel).

Figure 42. Myocardial scarring in the right ventricle (RV) in a patient with ccTGA from 2 views. Ao indicates aorta.
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palpitations and even sudden cardiac death (SCD). 
Treatment options include medical management, surgi-
cal myomectomy or alcohol septal ablation for relief of 
critical LV outflow obstruction (gradient ≥ 50 mmHg), 
and implantable cardioverter and defibrillators (ICD) for 
those patients considered to be at highest risk for SCD.

Guidelines for the diagnosis and treatment of HCM 
have been published by both the European society of 
Cardiology (ESC) and the ACC/AHA.392,393 Both sets of 
guidelines have similar requirements regarding the diag-
nosis of HCM, which in adults is defined as a left ven-
tricular wall thickness (LVWT) of > 15 mm in one or more 
myocardial segments, not explained by loading conditions. 
In children, the diagnosis requires an LVWT > 2 standard 
deviations from the predicted mean (z score > 2).

Risk stratification for SCD in pediatric HCM has also 
been extrapolated from these adult based guidelines as 
suggested in the current ACC/AHA guidelines.393 The 
ESC guidelines differ from the ACC/AHA in that the ESC 
uses a risk prediction model to guide use of implanted 
cardiodefibrillator (ICD). In addition, the ESC guidelines 
are only intended for adult use while the ACC/AHA 
guidelines are intended for both adult and pediatric use. 
In the ACC/AHA guidelines, focus on the presence of 
at least one clinical risk factor for SCD (LVWT ≥ 30 mm, 
syncope, nonsustained ventricular tachycardia (NSVT), 
family SCD history or abnormal blood pressure response 
to exercise) as class IIa indications for the implantation 
of ICD as primary SCD prevention. Recently, there have 
been attempts at creating risk calculators solely for pedi-
atric use.394–396

Indications for CMR

Quantification and Distribution of LV Hypertrophy
The diagnosis of HCM is characterized by an increased 
diastolic LVWT in at least one segment in the presence 
of a nondilated LV chamber (Figure 43) which is readily 
identified on CMR at any age. Increased LVWT may be 
present at birth or may develop during childhood and 
adolescence despite previously normal echocardio-
graphic evaluations, necessitating serial evaluations in 
patients with gene positive or suspected HCM.397 One 
of the critical indications for pediatric CMR in this dis-
ease is the identification of increased LVWT not visual-
ized by echocardiography but visualized by CMR.398,399 
This is not a trivial occurrence particularly when the 
increased LVWT is focal and limited (as is not infre-
quently the case in pediatrics) which is present in up 
to 5% of children. This leads to an HCM diagnosis that 
would have otherwise been missed with CMR solely 
responsible for diagnosis.400–402

The most common pattern of HCM is increased LVWT 
in the basal anteroseptal region which is frequently asso-
ciated with LVOT obstruction and mitral valve leaflet elon-
gation. Other phenotypes include diffuse hypertrophy 

involving more than 50% of the myocardium, reverse sep-
tal contour, apical aneurysm403 and apical HCM which may 
manifest clinically with arrhythmias, diastolic dysfunction 
and small cavity size,404,405 all of which can be delineated 
comprehensively by CMR. RV hypertrophy is additionally 
observed in a third of adult HCM patients, most com-
monly at the RV septal hinge points.406 CMR derived 
LVWT measurements have a primary role in risk stratifica-
tion with massive LV hypertrophy (LVWT ≥ 30 mm) asso-
ciated with the highest risk of SCD.407,408 A meta-analysis 
of 25 pediatric HCM studies found a similar significant 
association between extreme LVWT and SCD in children 
and young adolescents. The hazard ratio for LVWT was 
1.80 (95% CI 0.75–4.32, p = 0.19, I2 = 21%). The odds 
ratio estimate for extreme LV hypertrophy was 1.70 (95% 
CI 0.85–3.40, p = 0.13, I2 = 31%). For pediatric patients, 
new guidelines suggest that a maximal LVWT with a Z 
score ≥ 20 or > 10 in conjunction with other risk factors 
is reasonable as a risk factor for SCD.393

Biventricular Functional Assessment
As mentioned, CMR is the reference standard for eval-
uating biventricular function.3,309 bSSFP sequences 
performed in the standard planes provide accurate mea-
surements of LVEF , chamber size and LV mass409 (Figure 
43) which can be used serially for surveillance in suspected 
or confirmed HCM. Over time, a gradual transition from a 
hypertrophied, non-dilated LV with hyperdynamic systolic 
function to one of reduced systolic function can be seen 
in adults although this is uncommon in children. This is 
termed end-stage HCM and is generally regarded as hav-
ing unfavorable outcomes with a mortality rate of 11% per 
year.406,410 In a large cohort of adult HCM patients, those 
with the lowest LVEF had the largest ventricular sizes and 
degrees of LGE by CMR, suggesting advanced remodel-
ing in end-stage disease. Conversely, those with hyper-
dynamic systolic function had the lowest amount of LGE. 
Some pediatric HCM patients develop abnormal diastol-
ogy with restriction which may manifest on CMR as left 
atrial dilatation, without LV dilation and is associated with 
poorer outcomes.411

Assessment of Dynamic Left Ventricular Outflow Tract 
(LVOT) Obstruction 
Dynamic obstruction of the LVOT due to mitral valve 
systolic anterior motion (SAM) as well as due to sep-
tal hypertrophy is one of the leading causes of exercise 
intolerance in HCM patients and may necessitate inva-
sive treatment measures such as myomectomy or septal 
ablation. LVOT gradients are conventionally measured 
using echocardiography, but CMR can identify the site 
of obstruction and assess whether there are contribut-
ing anomalies such as anomalous insertion of the ante-
rior papillary muscle and elongated mitral valve leaflets 
(mitral leaflet length > 2 × the transverse dimension of 
the LVOT) at end systole.412 These findings are important 
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in pre-operative planning in HCM patients who are con-
sidered surgical candidates by characterizing role of 
the mitral valve and sub-mitral apparatus and providing 
the surgeon an accurate estimate to the depth of the 
extended surgical resection of septal muscle necessary 
to achieve optimal relief of outflow obstruction.

Myocardial Fibrosis Assessment
• LGE (Figure 43): The precise pathophysiologic mech-

anism responsible for LGE in HCM remains uncertain 
but is likely a combination of gadolinium deposition 
in areas of myocardial fibrosis and between areas of 
myocardial disarray. It is most prevalent in areas of 
hypertrophy and has been associated with increased 
incidence of ventricular tachyarrythmias and heart 
failure.413,414 LGE usually is patchy and midmyo-
cardial in distribution. LGE has been described in 
46–73% of children and adolescents with pheno-
typic HCM, despite preserved systolic function; it has 
been shown to increase annually with serial CMR 
surveillance, constituting on average 10.4% of LV 
mass.415,416 Those children with LGE were found to 
have greater LV mass and were at risk for adverse 
events including ventricular tachycardia,417 aborted 
SCD418 as well as having decreased ventricular strain 
(Figure 43).416,419–422 A 4-center study of 1,293 adult 
patients followed for 3.3 years showed that LGE of 
≥ 15% was associated with a twofold increase in 
SCD event risk.423 Two subsequent meta-analyses 
that included that study and others confirmed that 
the incidence of SCD was increased in the presence 

of LGE, but differed in whether extent of LGE was 
important.424,425

• Diffuse fibrosis (Figure 44): Adult patients with 
HCM have abnormal T1 indices concordant with 
diffuse myocardial disease, even in the absence 
of LGE.426–428 Additionally, diffuse ventricular fibro-
sis by T1 mapping has been shown to be a pre-
dictor of non-sustained ventricular tachycardia and 
aborted SCD in adult HCM patients.429 In pedi-
atric HCM patients, studies have demonstrated 
increased native T1 and ECV in hypertrophied areas 
of myocardium compared with non-hypertrophied 
areas and higher in LGE positive segments.430,431 
T1 mapping can also be used to distinguish HCM 
from other potential causes of hypertrophy includ-
ing hypertensive cardiomyopathy and the athletes’ 
heart.432,433 Nevertheless, more studies are needed 
in this area.

Exclusion of Other Diagnoses
Although HCM accounts for the majority of unexplained 
LV hypertrophy seen in adolescents, a number of other 
non-sarcomeric diseases can produce/mimic increased 
myocardial thickness including non-HCM causes of 
LVOT obstruction, hypertensive cardiomyopathy, LV non-
compaction and metabolic/ infiltrative conditions includ-
ing Anderson-Fabry’s disease and Friedrich’s ataxia. 
CMR can have a role in differentiating these conditions 
by identifying focal, limited hypertrophy not well visual-
ized by echocardiography, distinguishing trabeculations 
from hypertrophy and identifying characteristic patterns 
of LGE. CMR may clarify and even alter the diagnosis in 

Figure 44. On the left is an extracellular volume  map showing globally elevated elevated extracellular volume fraction (ECV) in a 14 year old 
patient with hypertrophic cardiomyopathy (HCM). On the right is a T2 map of left ventricular myocardium with T2 value of 69 ms ± 1.2 also in a 
14 year old patient with HCM.
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patients initially diagnosed with apical HCM who actually 
demonstrate LV non compaction on CMR.434

Myocardial Strain Assessment
The myocardial disarray, myocardial hypertrophy and abnor-
mal papillary muscle orientation are all thought to contrib-
ute to abnormalities in myocardial strain by speckle tracking 
echocardiography in areas of hypertrophy and fibrosis. In 
addition, it has been associated with adverse cardiac events 
in pediatric and adult HCM.435,436 CMR feature tracking 
using standard cine bSSFP (Figure 43) can detect reduced 
LV myocardial mechanics (global and segmental longitudi-
nal strain) in children and young adults with HCM and nor-
mal values in children have been published.97 This decrease 
in strain correlates with the degree of LVOT obstruction, 
LVWT and LGE420–422 as well as adverse events.421 Never-
theless, more studies are needed in this area.

Myocardial Perfusion
Adverse microvascular remodeling and coronary micro-
vascular dysfunction (CMD) has been noted in HCM. 
Studies investigating myocardial perfusion in HCM 
patients have demonstrated abnormal perfusion metrics 
in both hypertrophied and non-hypertrophied segments 
of the LV, as well as correlation between the extent of 
perfusion abnormalities, LGE and degree of hypertro-
phy.437,438 A small pediatric study, demonstrated induc-
ible myocardial ischemia in 7/13 pediatric HCM patients 
who were LGE negative suggesting that CMD may pre-
cede macroscopic fibrosis, however,  it remains unknown 
whether CMD is an independent risk factor for SCD in 
HCM.439 Although promising, at present, it remains a 
research technique and more studies are needed.

T2 Weighted Imaging
Recent interest in T2 weighted imaging and its associa-
tion with SCD has developed (Figure 44). Two studies 
investigating T2 signal in HCM patients are notewor-
thy. One demonstrated increased myocardial T2 signal 
intensity in patients classified as high risk for SCD and 
demonstrated positive correlation with the presence of > 
15% LGE while the other demonstrated a positive cor-
relation with life threatening arrhythmias.440,441 As with 
perfusion, although promising, at present, it remains a 
research technique and more studies are needed.

Coronary Artery Imaging
Myocardial bridging of the LAD is more common in HCM 
than in other causes of LV hypertrophy and may potentially 
be a mechanism for SCD, although there is no evidence 
to support this hypothesis. Myocardial bridging may be 
demonstrated by specific coronary CMR sequences (see 
Coronary section).

Advantages of CMR Over Other Modalities
Although TTE assessment of patients with HCM has 
been traditionally performed, limited acoustic windows, an 
inability to reliably capture focal hypertrophy and imaging 

plane obliquity may result in both under and overestima-
tion of LVWT. CMR provides high contrast between bright 
blood and dark myocardium, excellent spatial resolution, 
and full biventricular coverage. In addition, short-axis 
images, derived perpendicular to the true LV long axis, 
allows LVWT measurements by CMR to be more precise 
and reproducible,442 enabling a diagnosis of HCM which 
may be missed by TTE.400–402 This holds true even in chil-
dren, who have better acoustic windows than adults; a 
small study of pediatric HCM patients demonstrated that 
echocardiography derived measurements had poorer 
inter-observer and intra-observer reproducibility com-
pared with CMR measurements.443 This may be due to 
superior visualization of the LV epicardial/endocardial 
borders with CMR, and visualization of all hypertrophied 
segments without any risk of obliquity272,400,444.

CMR is the only non-invasive modality that can assess 
tissue characteristics including the presence of macro-
scopic and global fibrosis, the former of which can be 
clinically utilized to risk stratify patients regarding poten-
tial ICD implantation. The emerging roles of parametric 
T1 mapping, myocardial perfusion imaging, and T2 imag-
ing will likely increase our understanding of tissue char-
acterization and may further stratify SCD risks.

Summary of Recommendations
• CMR is the recommended for confirmation of HCM 

diagnosis, evaluation of possible apical HCM or 
aneurysm and surveillance of LVWT in HCM400,409,445 
(Class I, Level of evidence A).This includes patients 
with LV hypertrophy in whom there is a suspicion of 
alternative diagnoses including the athlete’s heart. In 
children and adolescents with a diagnosis of HCM, 
contrast enhanced CMR surveillance should occur 
every 3–5 years for risk stratification, evaluation of 
LGE, wall thickness and ventricular performance 
(Class I, Level of evidence B).

• CMR is the recommended to screen for HCM in 
patients with a family history of HCM when echocar-
diography is inconclusive (Class I, Level of evidence A)

• CMR is beneficial to monitor ventricular function 
when a more accurate measure than echocar-
diography is needed, when there is a concern for 
ventricular performance by echocardiography, or 
in selected patients for risk stratification for ICD 
placement393 (Class I, Level of evidence A). CMR is 
also useful to monitor LVOT obstruction in pediatric 
HCM patients when echocardiography is inconclu-
sive (Class I, Level of evidence B)

• CMR is reasonable for the evaluation of myocar-
dial fibrosis for risk stratification in pediatric HCM, 
possible ICD placement and to monitor the patient 
more closely than those without LGE. (Class I, Level 
of evidence B)

• CMR can be beneficial in pediatric patients with 
LV hypertrophy in whom alternative diagnoses in 
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addition to HCM are suspected. (Class I, Level of 
evidence B)

• CMR strain measurements may be considered in 
pediatric HCM patients to monitor ventricular func-
tion as well as for risk stratification; patients should 
be monitored more closely if strain is below the lower 
limits of normal97 (Class IIb, Level of evidence B)

Duchenne Muscular Dystrophy
Background
Duchenne muscular dystrophy (DMD) is an X-linked 
genetic neuromuscular disorder resulting in dystrophin 
protein mutation. DMD is one of the dystrophinopathies 
that also include Becker muscular dystrophy (BMD), and 
X-linked dilated cardiomyopathy. DMD results in the more 
severe phenotype presenting as skeletal muscle weak-
ness early in life and often progressing to loss of ambula-
tion early in the second decade of life. BMD is milder with 
a considerably more variable phenotype. The incidence of 
DMD is estimated to be ~ 1 / 5000 live male births.446 The 
United States prevalence is estimated to be 1.4 per 10,000 
males.447 DMD patients also develop respiratory insuffi-
ciency. The restrictive lung disease is a result of diaphragm 
and secondary respiratory muscle weakness. Historically, 
the most common cause of death was respiratory failure. 
However, improved respiratory therapies have resulted in 
cardiomyopathy and resultant heart failure and arrhythmias 
becoming the most common cause of death.448

The cardiomyopathy of DMD and BMD is character-
ized by progressive loss of functional myocytes leading 
to regional dysfunction followed by global dysfunction. 
Although, the cardiomyopathy has been commonly 
described as having a dilatated phenotype, chamber dila-
tion occurs only in the late stages of the disease. The car-
diomyopathy is variable both in age of onset and severity. 
Histologically, the dystrophinopathies lead to alternat-
ing areas of myocyte hypertrophy, atrophy and necrosis, 
and finally fibrosis with replacement of cardiomyocytes 
by connective tissue and fat. It is estimated that ~ 30% 
are symptomatic, but elucidating symptoms from patients 
who are non-ambulatory secondary to skeletal muscle 
disease is very difficult.449 Although myocardial damage 
is present on a cellular or histological level starting very 
early in life, echocardiographic abnormalities are usually 
delayed until the second decade of life. For DMD, risk of 
LV dysfunction increases significantly with age, from < 
5% for boys < 10 years of age to > 75% for men > 20 
years of age.450 There are patients who will have reduced 
ejection fraction as early as 8 years of age.451 Subtle 
abnormalities of deformation using strain analysis can be 
seen in patients as young as 5 years.452

Indications for CMR
There are several guidelines available addressing the 
cardiovascular care of DMD/BMD patients.453 All recom-
mend that cardiac care begin shortly after initial diagnosis 

is made. Since the risk of cardiovascular involvement is 
low for very young children, the initial evaluation consists 
of clinical evaluation, baseline ECG, and TTE. Yearly TTEs 
are recommended until the child is old enough to undergo 
CMR without sedation.

TTE has limitations in neuromuscular diseases.454,455 As 
patients age, the image quality is degraded due to sev-
eral factors including spinal and thoracic bony deformities, 
increased thoracic and abdominal adiposity that decreases 
ultrasound penetration and alteration of the inter-rib 
spaces decreasing the size of acoustic windows. A study 
evaluating TTE image quality for 31 DMD patients aged 
11–34 years showed that none of the apical four-chamber 
image acquisitions were of diagnostic quality.456 In a study 
designed specifically to assess the ability of TTE to assess 
DMD patients,457 they found that by 13 years of age, 50% 
of the studies were classified as suboptimal with ≥ 30% of 
segments inadequately visualized, and by 15 years of age, 
78% of studies were suboptimal. Consequently, in this pop-
ulation, TTE data may not always accurately reflect cardiac 
function. Some of these limitations can be overcome by 
administration of ultrasound contrast,458 however, contrast 
echocardiography has not been included in the standard 
clinical care guidelines and is used only in patients who 
have suboptimal acoustic windows and contraindications 
to CMR. Secondary to the known difficulty with accurate 
TTE assessment, the first CMR studies for DMD cardio-
myopathy patients were performed to accurately measure 
the LVEF where echocardiographic windows were poor.

CMR is a proven modality for accurate and reproducible 
assessment of both RV and LV volumes and masses that 
is not affected by body habitus or lung artifacts,459,460 so it 
is not surprising that it has been utilized for accurate mea-
sures of ventricular function in children with this diagno-
sis454,455,461–464 and to assess the efficacy of treatment.465 
Although the use of CMR is very common in this patient 
population, there are few direct head-to-head comparisons 
of CMR with echocardiography. Brunklaus et al.462 stud-
ied 35 DMD boys (12–18 years; median 15 years) who 
underwent both TTE and CMR, and although echocardio-
graphic shortening fraction correlated with CMR LVEF (rs 
= 0.67; p < 0.001), 75% of the TTE studies had deficient 
ultrasound scanning windows and in 26% measurements, 
either significantly over- or underestimated LV systolic 
function compared to CMR. Buddhe et al.464 studied 35 
subjects with a mean age of 13.6 years old who also had 
both TTE and CMR and found, similar to the previous 
study, weak correlation of TTE parameters with CMR EF.

CMR strain imaging has been studied in patients with 
DMD and has been found useful to detect occult contractile 
dysfunction and dyssynchrony.463,464,466–468 Hagenbuch et al. 
found that serial monitoring of cardiac dysfunction by serial 
strain measurements was able to predict progression of the 
disease in the absence of deterioration of LVEF.469

The first large scale clinical report of CMR in DMD with 
both ventricular function and myocardial characterization 
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using LGE came from Brazil in 2007,462 although there 
have been a number of other studies of LGE with ventricu-
lar function in pediatrics.464,467 Silva and colleagues showed 
the feasibility of using CMR for routine assessment of both 
ambulatory and non-ambulatory DMD patients and dem-
onstrated for the first time that DMD patients have LGE in 
a pattern that appears to represent the known myocardial 
fibrofatty replacement. They showed that even patients with 
normal LVEF were positive for LGE down to age 8 years 
and that LVEF was markedly different between the groups 
with and without LGE, linking LGE with decreased LV per-
formance. They noted the LGE was predominantly seen in 
the inferolateral and anterolateral segments, a finding that 
has long been known from early pathology studies.470

The first report of CMR in a small multi-institutional 
retrospective study in children with DMD showed LGE 
was prevalent,471 finding 32% with LGE primarily involving 
the basal inferolateral segment of the LV in a sub-epicar-
dial distribution. Patients with LGE were older than those 
without (mean age 16.4 vs 12.9 years), but most impor-
tantly, they noted a similar finding to that seen by Silva et 
al.461 where LGE was inversely correlated with LVEF. A 
larger study of 314 DMD children by Hor et al. showed 
the overall prevalence of LGE was ~ 36%,451 increasing 
from 17% of patients < 10 years to 34% of those aged 
10–15 years and 59% of those > 15 years-old. Ten per-
cent (11/113) of patients who had LGE died an average 
of 10.8 months after CMR. Conversely, only one patient 
from the LGE negative group died. Patients who died had 
larger LV volume and greater number of positive LGE 
segments compared to those who remained alive.

CMR has been associated with outcomes for the 
DMD/BMD population. In young adults, Florian et al. 
prospectively studied 88 male DMD/BMD patients472 
and during a mean follow-up time of 47 ± 18 months, the 
primary endpoint (death or transplantation) was observed 
in 3% and the secondary endpoint (hospitalization and/
or ventricular tachycardia) in 24%. They found that LVEF 
and the presence of “transmural” LGE were independent 
predictors for secondary endpoints. Interestingly, in the 
group of patients with preserved function (LVEF > 45%), 
patients with “transmural” LGE had a significantly lower 
event-free-survival compared to those without. Similarly, 
in children and adolescents, Menon et al. found LGE 
present in 78% of the boys.473 Compared with patients 
without LGE, those with LGE were older with lower LVEF 
(46 ± 12 vs 56 ± 9% respectively) and a higher inci-
dence of ventricular tachycardia (40 vs 0%, respectively). 
Interestingly, during the study period, six of the subjects 
(19%) died. The factors associated with mortality were 
increased age, advanced grade of LGE, higher LV end-
systolic volume, lower LVEF, and ventricular tachycardia.

There are now longitudinal studies of CMR in DMD 
populations that help to inform the appropriate longitudinal 
timing for these exams. Tandon et al. reviewed 465 serial 
CMR DMD studies, all of whom had ≥ 4 assessments.474 

They determined that LVEF declined ~ 0.58% per year 
independent of LGE status. More interestingly, LVEF did not 
decline over time if LGE was absent but declined at a rate 
of ~ 2.2% per year when LGE was present. The number of 
LGE-positive LV segments increased with age as well.

Limitations of CMR as it Relates to DMD Patients
Although CMR imaging does not suffer from the limitation 
of poor acoustic windows attributable to body habitus, 
thoracic abnormalities, or lung disease, there are factors 
that do limit its utility for imaging every patient with DMD. 
Some DMD patients cannot be comfortably positioned 
on the CMR table because of significant contractures, 
severe back pain, or immobility which is particularly true 
for older, non-ambulatory patients. CMR image quality is 
limited in patients with atrial or ventricular arrhythmias, 
irregular respiratory rates or motion, or inability to remain 
motionless in the scanner. Although some of these limita-
tions can be overcome with sedation or anesthesia, such 
studies come with increased risk in this patient popula-
tion secondary to compromises in respiratory or cardiac 
function. A thorough risk–benefit analysis is required 
before undertaking a sedated CMR study for a DMD 
patient. Finally, there is potential for artifact leading to 
CMR image degradation from implanted devices in DMD 
patients including both cardiac electrophysiologic thera-
peutic devices such as pacemakers and ICDs as well as 
skeletal devices including spinal fixation rods.

Summary of Recommendations
• CMR should be used to evaluate biventricular size 

and systolic function of DMD and BMD patients 
after the age of 8 years (or when they do not need 
sedation) (Class I, Level of Evidence B) and may be 
performed every year if needed.

• CMR myocardial fibrosis evaluation of DMD and 
BMD patients is recommended for prognostication 
and risk stratification (Class I, Level of Evidence B).

• CMR strain analysis of DMD and BMD patients may 
be considered for prognostication and risk stratifi-
cation (Class IIb, Level of Evidence B).

Cardiac Tumors
Background
Cardiac tumors are rare in the pediatric population, with 
an incidence between 0.027 and 0.3%.475,476 Manage-
ment requires differentiation of specific tumor types, 
an objective for which imaging plays a significant role. 
Echocardiography remains the primary modality for ini-
tial detection and screening of cardiac tumors though 
has a limited ability to further characterize the mass 
other than its presence with the exception of echogenic 
and echolucent (presumably cystic) regions. In addition, 
echocardiography can be limited by acoustic windows 
and reliable differentiation of tumor from vegetation or 
thrombus can be difficult. Many masses are benign but 
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still need to be distinguished from malignancies, char-
acterized for prognosis, assessed for impact on heart/
valve function and determined whether an intervention is 
needed. Thus, additional imaging is generally warranted.

Indications for CMR
After identification of masses by echocardiography, CMR 
is utilized in a number of different ways (Figure 45) and 
has demonstrated utility for477–482:

• Precise definition of anatomic location of the tumor 
including size, sites of myocardial attachment, and 
tissue layers involved.

• Tissue characterization and differentiation between 
benign and malignant tumors as well as to differen-
tiate the mass with thrombus. 

• Differentiation between tumor and thrombus483

• Determining the extent of the tumor and relationship 
with surrounding structures to determine impact on 
heat and valve function and guide surgical resection 
(eg outflow tract obstruction).

• Imaging of fetal tumors
As certain genetic syndromes are also associated with 

cardiac tumors, CMR is especially useful in establishing 

the diagnosis when cardiac masses are noted on echo-
cardiography in that patient population.482Given the over-
all low incidence of cardiac tumors and the varied types 
of tumors in pediatrics, relevant published CMR expe-
rience includes case reports as well as relatively small 
case series.484–491 Other publications492–498 have provided 
reviews and experiences of various centers of the utility 
and approach to CMR imaging for pediatric masses and 
how the findings may direct care.

As noted in a prior consensus statement, the utility 
of CMR is its ability to describe location, size, hemody-
namic effects, and tissue type of cardiac masses (throm-
bus, benign or malignant tumor)2 upon which clinical 
decisions are often based. Various publications have 
described tissue characterization techniques for differ-
entiating benign tumors such as  rhabdomyomas499 most 
commonly or myxomas486,487 from others such as osteos-
carcoma,490 highly vascularized tumors such as hemangi-
nomas,488,491 or adipose tissue such as lipoma.489

In the one published multicenter study comparing 
pediatric CMR to histologic diagnoses in a blinded fash-
ion to demonstrate the ability of CMR ability to accurately 
differentiate cardiac masses,477 97% of tumors were 

Figure 45. Cardiac fibroma in an 8-year-old male characterized by cardiovascular magnetic resonance. A, Still frame of bSSFP cine shows a 
large mass in LV free wall. B, Phase sensitive inversion recovery (PSIR) sequence positive for late gadolinium enhancement, characteristic of a 
cardiac fibroma. C, Mass surgically resected, pathology confirmed fibroma.
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correctly identified compared to histologic diagnosis. Of 
these, a single correct diagnosis was made in 55% and 
a limited differential diagnosis which included the cor-
rect diagnosis was made in 42% (21% with 2 diagno-
ses and 23% with 3 or more diagnoses). There were only 
2 cases of incorrect diagnoses, both having an atypical 
appearance on CMR. Generally, incorrect or incomplete 
diagnoses related either to atypical features of the mass, 
such as unusual location, or to technical imaging issues 
such as incomplete image acquisition or poor quality. This 
multicenter experience demonstrated the clinical utility of 
CMR in differentiating masses non-invasively, and thus its 
role in clinical management of affected patients (Table 7).

Summary of Recommendations
• CMR with gadolinium based contrast is indicated 

for the evaluation of cardiac masses for tumor type, 
characterization, accurate identification of location, 
size or hemodynamic effects of the mass or visu-
alization of the mass for surgical planning (Class I, 
Level of Evidence B)

• CMR is indicated to distinguish between a benign 
and malignant cardiac tumor. (Class I, Level of 
Evidence B)

• CMR is indicated to distinguish cardiac tumor from 
thrombus. (Class I, Level of Evidence B)

• Non-contrast CMR is reasonable in patients with 
compromised renal function (eGFR < 30 ml/
min/1.73 m2) for description of location, size, and any 
hemodynamic effect, but may be less useful for tis-
sue characterization. (Class IIA, Level of Evidence C)

Myocarditis
Background
Myocarditis is a potentially life-threatening disease and a 
significant cause of pediatric morbidity and mortality.500,501 At 
the same time, it remains a difficult disease to diagnose501 
with limited literature in pediatrics. Definitive diagnosis of 
myocarditis can be made from endomyocardial biopsy 
(EMB) which remains the diagnostic gold standard and can 
help guide therapy.501 EMB, however, is prone to low sen-
sitivity related to sampling error,501,502 practice variation503 
or adverse events due to its invasive nature.504,505 Thus, the 
diagnosis of myocarditis in pediatrics is often made from a 
combination of clinical factors including the patient’s history, 
symptoms, ECG changes and serologic findings.506

Non-invasive imaging plays a key role in diagnosis, 
almost always starting with echocardiography, with the 
addition CMR imaging to vastly increase the diagnostic 
sensitivity and specificity.506 In adults, CMR has become 
a well-established modality for diagnosing myocarditis507 
with recommendations by the International Consensus 
Group on CMR (ie the “Lake Louise” criteria) published in 
2009508 and updated in 2018.509 Evidence suggests CMR 
is indicated in the diagnosis of pediatric myocarditis; as a 
matter of fact, one of the first publications of CMR findings 
and tissue characterization in myocarditis was in children 
in 1991 which also compared these findings to EMB.510

CMR Indication
In the clinical setting of acute chest pain and concern-
ing diagnostic testing (ECG, elevated cardiac enzymes 

Table 7. Tumor Characterization by Cardiac Magnetic Resonance

Reproduced with permission from Beroukhim et al.477
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or other serology, etc.), a diagnosis of myocardial inflam-
mation can significantly affect prognosis and manage-
ment.500,511 CMR is useful in the setting of suspected 
myocarditis for:

• Confirming the presence of myocardial inflamma-
tion and edema

• Differentiating ischemic (i.e. coronary) from non-
ischemic causes of myocardial inflammation.

• Risk stratification and prognostication
• Guiding subsequent investigations

Confirming the Presence of Myocardial 
Inflammation
TTE is usually the 1st non-invasive imaging test in 
the evaluation of suspected myocarditis and allows 
assessment of ventricular function, size, regional wall 
motion abnormalities, valvular abnormalities and peri-
cardial effusion. The common TTE findings in myo-
carditis are usually non-specific though TTE can help 
distinguish between the different myocarditis pheno-
types of fulminant myocarditis (severe dysfunction), 
acute (non-fulminant) myocarditis512 or dilated car-
diomyopathy. Beyond these findings, however, echo-
cardiography lacks the sensitivity and specificity to 
further characterize myocardial inflammation and a 

test with higher diagnostic accuracy is required for 
further clinical management.

The value of CMR in myocarditis is to evaluate the tis-
sue characteristics of myocardial inflammation; edema, 
hyperemia and capillary leak (using T1 and T2 weighted 
sequences) and necrosis or scarring of ventricular myo-
cardium (Figure 46).500,508 Additional supportive criteria 
such as pericarditis, pericardia effusion or LV systolic 
dysfunction is also evaluated by CMR.509 The 2009 (aka 
“original”) Lake Louise criteria consists of:

• T2 weighted imaging showing the presence of myo-
cardial edema.513,514

• T1-weighted images obtained before and early after 
administration of gadolinium-contrast revealing 
early gadolinium enhancement (EGE),508 consistent 
with myocardial hyperemia or inflammation.

• T1-weighted segmented inversion-recovery gradi-
ent-echo sequence515 showing LGE, characteristic 
of myocardial necrosis or scarring.

It also specified two positive findings (either T2 
or T1 based) are necessary to diagnose myocarditis 
(Figure 46).

The Lake Louise criteria have been validated in pedi-
atrics mainly from case reports516 or single-center series 
with relatively small populations.510,517–520 There has been 

Figure 46. On the left is a CMR T2 weighted sequence showing > 2X enhancement of myocardium (green region of interest, ROI) compared 
to skeletal muscle (yellow, pink or blue ROI), meeting criteria for myocardial edema per 2009 Lake Louise criteria. On the right is a post-
contrast phase sensitive inversion recovery (PSIR) sequence showing sub-epicardial late gadolinium enhancement indicating necrosis or scar 
(yellow arrow).
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one retrospective multicenter study that has evaluated 
CMR techniques in children with myocarditis which 
included 13 centers and 143 subjects521 and although 
there was variability in tissue characterization protocols 
among centers, overall sensitivity for CMR positive myo-
carditis was high (82%).

The 2009 Lake Louise criteria were updated in 2018 
to include parametric mapping techniques that have 
significantly advanced in the diagnosis of myocardial 
inflammation in adult patients.507,522,523The updated rec-
ommendations included one T2 relaxation-based marker 
for myocardial edema (T2-mapping or T2 weighted 
images) and one T1 relaxation-based marker (abnormal 
T1, ECV or LGE) for associated myocardial injury.510 While 
the inclusion of multiparametric mapping is supported by 
a robust evidence base in adults, the mutiparametric map-
ping literature in pediatrics has been limited to small sin-
gle-center studies.430,524–527 There is, however, emerging 
data about the potential added value of multiparametric 
mapping in the evaluation of pediatric myocarditis.528 The 
authors of the 2018 Lake Louise criteria currently state 
that “the original Lake Louise Criteria provide a good 
overall diagnostic performance, and thus they should 
remain in use in centers that have good experience with 
their application.” The MYKKE consortium is one effort 
currently underway to establish a multicenter registry with 
prospective data collection in pediatric myocarditis.529

Differentiating Ischemic from Non-ischemic Causes 
of Myocardial Inflammation
In the setting of myocarditis resembling an acute coro-
nary syndrome with a young patient presenting acutely 
with chest pain, elevated cardiac enzymes and ECG 
abnormalities, CMR can be used to differentiate between 
myocarditis and myocardial infarction due to coronary 
artery disease:

• In myocarditis, the pattern of LGE enhancement is 
characteristically subepicardal, may be transmural 
(but usually in a non-coronary distribution), and usu-
ally in a patchy distribution.530

• The LGE pattern from coronary artery disease (myo-
cardial infarction), is subendocardial or transmural 
and in a distribution of coronary perfusion territory.

Establishing the diagnosis of myocarditis in a patient 
with low risk for coronary artery disease (i.e. most pedi-
atric patients) is helpful and avoids unnecessary cardiac 
catheterization for coronary angiography.

Risk Stratification and Prognostication
CMR can be useful for risk stratification with adult stud-
ies showing robust outcomes data on adverse cardiac 
events and arrhythmias.531–536 Similarly, CMR has been 
shown to be useful in evaluating outcomes in pediat-
rics537,538 including a large, multi-center study.539 Lastly, 
myocarditis has a known association with dilated cardio-
myopathy (DCM), either as a precursor to DCM or as 
an acute illness that “unmasks” previously undetected 

DCM.540 Long-term studies in patients with acute myo-
carditis report the development of DCM in 21%, showing 
the utility of CMR for chronic management.541

Guiding Subsequent Investigations
Following the diagnosis of myocarditis by CMR, more 
detailed information may be needed from EMB to direct 
therapy. In this situation, there is diagnostic synergy 
between non-invasive CMR and invasive EMB to identify 
and treat particular etiologies of myocarditis. Examples 
may include giant cell or eosinophilic myocarditis that are 
typically treated with immunomodulator therapy.

Summary of Recommendations
• The original Lake Louise Criteria (2009) is recom-

mended for diagnosing myocardial inflammation 
for centers that have a good experience with these 
criteria in the pediatric age range (Class I, Level of 
Evidence B).

• CMR with gadolinium-based contrast is indicated for 
evaluation of myocarditis to confirm the presence of 
myocardial inflammation in pediatric patients (Class 
I, Level of Evidence B).

• CMR is beneficial in children and adolescents for 
differentiating ischemic from non-ischemic causes 
of myocardial inflammation, risk stratification/prog-
nostication, and guiding subsequent investigations 
(Class I, Level of Evidence B).

• CMR with multiparametric mapping can potentially 
add value in the evaluation of pediatric myocardi-
tis, and more studies are needed in this population 
(Class IIa, Level of Evidence C).

FUNCTION AND HEMODYNAMICS
Ventricular Function
Background
The end result of many congenital and pediatric heart 
lesions is ventricular dysfunction which may result in 
much of the morbidity and mortality associated with 
these diseases. Therefore, quantifying ventricular func-
tion is a vital aspect of continuing assessment.

At the simplest level, cardiac failure is defined as an 
inability to produce adequate cardiac output to supply the 
bodies metabolic needs. Thus, measurement of cardiac 
output can provide important information regarding car-
diac function. The traditional reference standard method 
of measuring cardiac output is at cardiac catheterization 
using either thermodilution or the Fick method. Unfor-
tunately, invasive assessment is associated with not 
insignificant risk as well as cost and is therefore not per-
formed routinely. More importantly, most CHD patients 
have normal baseline cardiac output due to cardiac 
compensation (e.g. ventricular dilation, hypertrophy and 
increased filling pressures). Many symptoms are actually 
related to these compensatory mechanisms as well as 
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an inability to augment cardiac output during exercise. 
Assessment of many of these compensatory mecha-
nisms requires visualization of the ventricles and there-
fore, cardiac imaging is vital.

The most ubiquitous cardiac imaging modality used 
in CHD and acquired pediatric heart disease is echocar-
diography which has many advantages over other imag-
ing techniques and is considered the first line method of 
assessing cardiac size and function. Nevertheless, echo-
cardiography still has some significant problems such as 
operator dependence, poor acoustic windows and poor 
blood pool to myocardial contrast. In the last 20 years, 
as mentioned, CMR has become the reference standard 
method of assessing biventricular function.3,32,102–106,272,309

Indications for CMR
Ventricular Volumes and Ejection Fraction (Figures 4  
and 40)
Many CHD lesions are associated with volume load-
ing due to shunts or valvular regurgitation. This is true 
in not only such common shunt lesions such as ASDs, 
VSDs and patent ductus arteriosus but in more complex 
and less common lesions such as anomalous pulmonary 
venous connections or left SVC connected to the left 
atrium. Similarly, valvular regurgitation in patients with 
BAV, cleft mitral valve or TR associated with HLHS can 
cause significant volume loads. The cardiac response to 
volume loading is dilation which can result in increased 
risk of arrhythmia, increased wall stress and predisposi-
tion to dysfunction. Thus, measuring ventricular volumes 
is an important component of evaluating CHD.

Although less common, small ventricular volumes also 
need to be evaluated. Varying degrees of hypoplasia are 
seen in diseases such as HLHS, critical aortic stenosis, 
double outlet RV and malaligned atrioventricular canals 
to name a few. There has been a number of studies 
which attempt to aid in management of these patients, 
however, many questions remain.542–544

There are other lesions which occur in pediatric and 
CHD where the assessment of biventricular performance 
is important. Patients with anomalous coronary artery ori-
gins and courses, patients with surgically manipulated 
coronary arteries (see section on Coronary arteries), and 
patients with myocarditis (see Myocarditis section) are 
all examples where ventricular performance are useful.

Although ventricular volumes can be estimated by 
2D echocardiography, most methods rely on significant 
geometric assumptions. These may hold true for the nor-
mal LV but are inadequate for the crescentic RV545 or 
the malformed LV in CHD. Newer 3D echocardiographic 
techniques do hold promise for true volumetric assess-
ment, however, they still suffer from operator dependence 
and potentially inadequate acoustic windows. CMR has 
some distinct advantages over echocardiography. Firstly, 
it is not limited by body habitus and can be acquired in 

any patient irrespective of size. Secondly, unrestricted 2D 
imaging can be performed, allowing imaging of contigu-
ous slices covering both ventricles. The result is true 3D 
measurement of ventricular volumes.546 Further, although 
there are CMR techniques that can be real-time (ie 
instantaneous acquisition), cine imaging for ventricular 
function is built over multiple heart beats, averaging the 
data in the image; whereas in echocardiography or cath-
eterization, the imager is required to average the ventric-
ular function in their minds, CMR averages it in the image 
itself and the quantification is a more true reflection of 
typical ventricular performance in the patient. Finally, 
modern bSSFP CMR techniques provide high blood pool 
myocardial contrast, aiding segmentation and further 
post-processing.547

An important benefit of accurate volume assessment 
is that it also enables precise measurement of ejection 
fraction which is a well-recognized measure of cardiac 
function and ventricular arterial coupling and an impor-
tant prognostic marker in many forms of CHD and pedi-
atric cardiovascular disease.109,548,549

Another metric that can be accurately evaluated from 
this sort of data is ventricular mass. Increased ventricu-
lar mass is common in patients with obstructive lesions 
(e.g. aortic stenosis or PA stenosis) or in for example, 
the RV of HLHS or TOF. As CMR allows visualization of 
the whole ventricular mass, especially the RV and its free 
wall, it enables very accurate measurement which is key 
to understanding the physiology and managing patients.

Several studies have shown that CMR provides highly 
accurate and reproducible measurement of ventricular 
volumes, mass and ejection fraction data in CHD.159,550,551 
For these reasons CMR is now be considered the refer-
ence standard method of measuring LV and RV volumet-
ric data.

Several studies have demonstrated that CMR mea-
surements of ventricular volumes, mass and ejection 
fraction provide important clinical information in condi-
tions such as repaired TOF,548,549SV at different stages of 
the Fontan palliation (Figure 4)36 and pediatric pulmonary 
hypertension549 to name a few. This includes prediction 
of outcome (e.g. mortality or major cardiac event) and 
exercise tolerance, as well as response to interventions 
(e.g. valve replacement).552

There are some limitations in using CMR to mea-
sures ventricular volumes and ejection fraction. In some 
patients, particularly children, breath holding is difficult 
and free breathing approaches are required including 
signal averaged and real-time acquisitions. Real-time 
sequences are becoming increasingly used in pediatric 
imaging and with the advent of new accelerated tech-
niques, are now reaching the quality of conventional 
breath hold cines.553 Studies have validated real-time 
CMR for measurement of ventricular volumes and they 
should be considered a possible alternative to conven-
tional imaging. Real-time imaging can also be useful in 
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patients with irregular cardiac rhythm, although no large-
scale studies demonstrating utility have been performed. 
Motion correction techniques, now in common use, can 
be used to increase image quality and negate respiratory 
artifacts.

Ventricular Filling and Diastolic Dysfunction
Diastolic dysfunction is often overlooked as a cause 
of symptoms in CHD. Evaluation of diastolic dysfunc-
tion requires measurement of the dynamic aspects of 
ventricular filling. Thus, a limitation of conventional ven-
tricular volume and ejection fraction assessment is that 
it provides little information regarding diastolic func-
tion. The traditional method of assessing diastolic func-
tion is echocardiography assessment of atrioventricular 
valve inflow. Specifically, the ratio of peak early to late 
inflow velocities (E/A ratio) is an important indicator of 
ventricular diastolic dysfunction. The E/A ratio can also 
be assess using PC-CMR and some studies have dem-
onstrated clinical utility.554 However, this should be con-
sidered a subsidiary measurement rather than the main 
reason to perform CMR. A better method of assessing 
systolic and diastolic function may be to directly mea-
sure myocardial motion in diastole and myocardial veloci-
ties have been measured by CMR and validated against 
echocardiography.555

Myocardial Motion
Volumetric measurement enables evaluation of global 
changes to ventricular volume and function. However, 
assessment of volumes alone does provide the full pic-
ture of cardiac dysfunction. There is evidence that both 
systolic and diastolic early ventricular dysfunction is bet-
ter identified by evaluating the specific aspects of local 
myocardial motion. Although the cardiac myocyte can 
only shorten, the heart has complex local motion due to 
the specific arrangement of myocytes. This includes lon-
gitudinal and radial contraction, twisting and wall thicken-
ing. Some or all of these metrics can be measured with 
echocardiography using tissue Doppler or strain imag-
ing. However, like all echocardiographic techniques, they 
may suffer from inadequate windows and are always 
operator dependence. There are also several CMR tech-
niques that can be used to evaluate myocardial motion 
such as myocardial tagging,556,557 tissue phase mapping 
and strain/displacement encoding. These techniques 
have been used to better understand pathophysiology 
in CHD. However, significant clinical utility has not been 
demonstrated and a number of sequences are still at the 
research stage.

More recently, strain (and strain rate) data has been 
derived from conventional CMR cines using feature and 
tissue tracking,558,559 processed using the same tools 
used for echocardiography strain imaging. The main ben-
efit of this approach is that imaging acquired for conven-
tional volumetric analysis can also provide local motion 
data. This has allowed retrospective analysis of historical 

cine data and demonstration of clinical utility. Several 
studies have now shown that strain metrics can inde-
pendently predict outcome (e.g. death or major cardiac 
event) and exercise tolerance in patients with CHD.560–

562 However, no large scale studies have demonstrated 
that CMR strain measures outperform conventional ven-
tricular volumes or ejection fraction data. Thus, currently, 
strain assessment should be considered as an addition 
to rather than a replacement of conventional ventricular 
volumes.

Regional ventricular wall motion is important in pedi-
atric heart disease patients  such as  AAOCA, surgically 
manipulated coronary arteries, myocarditis, arrhythmo-
genic RV cardiomyopathy and other lesions which occur 
in pediatric and CHD. This may be performed qualita-
tively on cine imaging or using quantitative measures 
such as myocardial strain.

Finally, tissue characterization such as LGE and dif-
fuse fibrosis can add another dimension to the assess-
ment of ventricular function, elucidating the etiology of 
regional or global myocardial dysfunction (see previous 
sections).

Summary of Recommendations
• CMR should be performed for the evaluation of 

biventricular volumes, mass and ejection fraction in 
patients with volume or pressure overload lesions as 
well as with varying degrees of RV or LV hypoplasia 
(Class I, Level of Evidence B).

• CMR is useful in assessing biventricular volumes 
and ejection fraction in patients with non-structural 
pediatric heart disease (e.g. DMD, myocarditis or 
pulmonary hypertension) or in those patients with 
congenital or surgically manipulated coronary artery 
lesions (Class I, Level of Evidence B).

• CMR is indicated in assessing ventricular volumes 
and ejection fraction in patients with SV (Class I, 
Level of Evidence B).

• CMR strain analysis may be considered in assess-
ing ventricular function in CHD and prognostication 
of outcome (Class IIB, Level of Evidence B).

• CMR tissue characterization is reasonable in 
assessing ventricular function in CHD and prognos-
tication of outcome (Class IIA, Level of Evidence B)

Systemic to Pulmonary Blood Flow Ratio and 
Collateral Flow
Background
Cardiovascular shunts between the systemic and pul-
monary circulations are the commonest result of CHD, 
accounting for approximately 50% of all cases.563 Shunts 
are characterized in 3 main ways: (i) location, (ii) magni-
tude and direction, and (iii) effect on ventricular volume 
and function. This section addresses evaluation of shunt 
magnitude and direction by calculation of the systemic 
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and pulmonary blood flow ratio (Qp/Qs). A left-to-right 
shunt will result in greater blood flow to the pulmonary 
vasculature compared to the systemic vasculature and a 
Qp/Qs ratio > 1 (higher Qp/Qs indicates a larger shunt). 
Conversely, a right-to-left shunt will result in greater flow 
to the systemic vasculature and thus a Qp/Qs ratio < 1 
(the closer the Qp/QS is to zero, the larger the shunt). 
Quantifying Qp/Qs is vital in deciding appropriate man-
agement of patients with shunt lesions and is included in 
most current international guidelines.564

The reference standard method of measuring Qp/Qs 
is invasive oximetry with measurement of oxygen satu-
rations (or content) in the pulmonary and systemic arte-
rial and venous systems. This method should be used if 
measurement of PA pressure and pulmonary vascular 
resistance are also required (e.g., Eisenmenger physiol-
ogy). However, there are some disadvantages to catheter 
based evaluation of Qp/Qs. The most obvious are its 
invasive nature which can associated be morbidity and 
high cost. Furthermore, there, some technical problems 
with invasive oximetry that should be understood. Firstly, 
the requirement for measurement of oxygen saturation 
from multiple sampling sites during steady state can 
result in significant error propagation and inaccurate Qp/
Qs quantification.565 Secondly, quantification of Qp/QS is 
only possible if sampling can be performed distal to the 
shunt which is not possible in some extracardiac lesions 
(e.g., systemic-pulmonary arterial collaterals). Finally, in 
some lesions such a SV after BDG, it is impossible to 
obtain adequate mixed systemic venous saturation as 
it is separated into SVC and IVC circuits.43 For all these 
reasons, non-invasive assessment of Qp/QS is becoming 
increasingly important in the assessment of shunt lesions.

The simplest non-invasive method is Doppler echo-
cardiography with several techniques based on vessel 
area and blood flow velocity being described.566 The 
main benefit of this approach is that echocardiography 
is already the first line method of anatomically evaluating 
shunt lesions. Unfortunately, echocardiographic evalua-
tion of shunt magnitude is prone to inaccuracy due to 
inadequate data acquisition and invalid assumption in the 
calculation.567

Collateral flow in CHD comes in 4 broad categories: 
(1) systemic to pulmonary (Figure 3), (2) veno-venous 
collaterals as found, for example, in patients with SV, (3) 
aortic collaterals which develop, for example, in patients 
with coarctation (Figure 29) and (4) coronary collater-
als; these guidelines will not address coronary collaterals. 
Systemic-to-pulmonary collaterals have been known for 
many years to develop in SV patients,22 however, precise 
measurement of flow in these vessels remained a chal-
lenge up until the past 10 years. Their clinical impact has 
been debated in the past568 in part due to the challenge 
of quantification, although it is clear now that there is 
an effect on patient care and management49,569–571; it 
has also been demonstrated by pilot data that these 

collaterals can be mostly obliterated in the catheteriza-
tion lab with a measured decrease in the collateral flow.44 
Similarly, veno-venous collaterals are found not uncom-
monly in SV patients, from 20 to 33%,572,573 and interven-
tions have some time been needed. Finally, known since 
the 1930s and 1940s,574 aortic collaterals develop from 
existing vessels such as intercostal and mammary arter-
ies to bypass aortic obstructions such as coarctation of 
the aorta which clearly has clinical implications for the 
diagnosis and treatment of the disease.

Indications for CMR
Recently, CMR has become the non-invasive refer-
ence standard method of measuring Qp/Qs using PC-
CMR which has been shown to allow highly accurate 
and reproducible quantification of Qp/Qs. In PC-CMR, 
through plane flow is directly measured without assump-
tions—which has been borne out by the significant num-
ber of studies that have demonstrated good agreement 
between PC-CMR and both direct measurement of flow 
in phantom studies575,576 and invasive oximetry in patient 
studies.577–579 A further benefit of PC-CMR over invasive 
oximetry is that measurement Qp and Qs is not limited 
to assessment of flow in the pulmonary trunk and aorta 
respectively. For instance, Qp and Qs can be quantified 
by measuring flow in the PV and vena cavae respectively. 
These alternative calculations are particularly useful in 
situations where: (i) it is not possible to measure blood 
flow in one of the great arteries (i.e. artifact obscuring the 
pulmonary trunk in a patient with prosthetic valve contain-
ing metal) and (ii) invasive oximetry fails, such as patients 
with systemic-to-pulmonary arterial collaterals. Finally, and 
maybe more importantly for the accuracy of the technique, 
these multiple methods of evaluating Qp and Qs can be 
performed in the same patient, providing key internal qual-
ity assurances.

An important additional benefit of CMR is the ability to 
accurately measure ventricular volumes (see Ventricular 
function section). It is possible to measure Qp/Qs directly 
using ventricular stroke volumes. However, shunt location 
must be taken into consideration. An ASD and VSD may 
both have a Qp/Qs of 2:1, but RV stroke volume will be 
twice the LV stroke volume in the ASD, while LV stroke 
volume will be twice the RV stroke volume in the VSD. 
Thus, without knowledge of shunt location, ventricular 
stroke volume should be used with caution. Furthermore, 
accurate assessment of Qp/Qs using ventricular stroke 
volume relies on competence of the atrioventricular and 
semilunar valves. Consequently, measurement of ven-
tricular volumes is not the first line method of calculat-
ing Qp/QS. Nevertheless, ventricular stroke volumes do 
provide a way of performing internal quality assurance of 
the PC-CMR calculation. More importantly, evaluation of 
ventricular size and function allows accurate evaluation 
of the physiological sequelae of a shunt lesion (e.g., RV 
volume loading in an ASD).
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Another important advantage of CMR is the ability to 
anatomically delineate shunts. Studies have shown that 
CMR can provide definitive diagnosis and evaluation, for 
example, of sinus venosus defects and anomalous PV 
connections (see PV section).580,581 This is relevant as 
these lesions are difficult to image with echocardiogra-
phy, particularly in older patients. Several studies have 
also shown that CMR provides comprehensive evalua-
tion of secundum ASDs and can determine candidacy 
for transcatheter or surgical closure.582–584 Patients with 
VSDs are generally diagnosed and managed using echo-
cardiography, however, CMR with 3D imaging may useful 
for delineation of complex or multiple defects.585 Finally, 
CMR can be useful in delineating the anatomy of patent 
ductus arteriosus and aorto-pulmonary windows in older 
patients, where echocardiography can be insufficient.

With all the possible shunt lesions in CHD other than 
the ones listed above such a truncus arteriosus, double 
outlet RV, TOF, it is not feasible to list them all in this 
guidance. Suffice it to say that when clinically important 
shunt lesions are present, imaging with CMR is useful.

Systemic-to-pulmonary collateral vessels can be visu-
alized by CMR most notably by administering contrast 
(Figure 3) and flow in these vessels was first quantified 
by CMR in 2009.23,45 CMR is the only methodology that 
can accurately quantify this flow.43 The use of CMR to 
quantify this flow has demonstrated that these collaterals 
do have a measurable effect on outcome46,49,569–571 and 
act to steal blood from key organs such as the brain.47 
CMR has been able to quantify the short term decrease 
in systemic-to-pulmonary collateral flow after emboliza-
tion in the catheterization lab.44

CMR has also been extensively used to quantify col-
lateral flow around a coarctation site (Figure 29) which is 
calculated by measuring flow volumes in the aorta near the 
coarctation and at the diaphragm.255,256,258–260 An increased 
flow volume at the diaphragm indicates significant col-
lateral flow into the aorta, bypassing the narrowing (see 
Coarctation of the aorta section).258 Venovenous collaterals 
are also imaged by CMR586–588 and their presence needs 
to be taken under consideration prior to intervention.

Summary of Recommendations
• CMR should be used for the evaluation of the mag-

nitude and direction of intracardiac shunts in chil-
dren and adults such as with ASDs and VSDs as 
examples (Class I, Level of Evidence B).

• CMR is indicated for the evaluation of the magni-
tude and direction of extracardiac shunts in children 
and adults such as with patent ductus arteriosus 
and systemic-to-pulmonary collaterals as in Fontan 
patients (Class I, Level of Evidence B).

• CMR is beneficial for the anatomic and quantitative 
flow assessment of systemic-to-pulmonary collater-
als, aortic and venovenous collaterals (Class I, Level 
of Evidence B).

Late Gadolinium Enhancement (LGE)
Background
CMR is an integral part of the non-invasive imaging of 
both acquired and CHD lesions in children for the eval-
uation of complex cardiac anatomy, quantification of 
ventricular and valvular function, and myocardial charac-
terization. A primary mode of myocardial characterization 
is with post-contrast LGE imaging.115 The principle of this 
technique is that gadolinium-based contrast agents have 
increased volume of distribution in abnormal myocardium. 
The difference between normal and abnormal tissue dis-
tribution volume (Vd) results in a CMR signal difference. 
The mechanism of increased Vd is variable. In inflamma-
tory disease such as acute myocarditis or acute ischemia, 
the increased volume of distribution results from myocar-
dial cell injury or death. In chronic myocardial infarction 
or fibrosis in cardiomyopathies, the extracellular space is 
expanded.

The standard LGE imaging is performed ~10 min fol-
lowing intravenous administration of 0.1–0.2 mmol/kg 
of gadolinium-based contrast agent (GBCA). Because of 
increased cardiac output, LGE imaging in pediatrics can 
start as early as 6 min  after infusion. It should be noted 
that due to the risk of nephrogenic systemic fibrosis, the 
use of GBCA should be used with caution in acute or 
chronic renal disease. Multiple versions of the sequence 
have been developed since it was first introduced.589

Indications for CMR

Masses (see Tumor section)
CMR with LGE imaging is very useful in the evaluation 
of pediatric cardiac masses because of its tissue charac-
terization capabilities, allowing a narrowing of differential 
diagnoses. Cardiac mass evaluation includes standard 
cine, T1-weighted, and T2-weighted, perfusion and 
LGE sequences. Using LGE in a comprehensive study 
of cardiac masses adds significantly to the differentia-
tion of common tumor types.477 This is particularly true 
for fibroma that shows marked enhancement. In addi-
tion, CMR using LGE and a TI scout following gadolinium 
administration is highly accurate in discerning tumor ver-
sus chronic thrombus.483

Myocarditis and Other Inflammatory Diseases (See 
Myocarditis Section)
LGE is a primary component of the CMR myocarditis 
evaluation..508,509 The presence of LGE in patients with 
suspected myocarditis has a high specificity with the 
signal thought to represent areas of necrosis or fibro-
sis. The LGE lesions are typically patchy, subepicardial, 
located in the basal or mid-ventricular segments, and 
are not in a coronary distribution. The median area under 
the ROC curve for LGE alone in myocarditis is 83% but 
that is much improved when other criteria are taken into 
account. It is sensitive for acute myocarditis with large 
severely affected areas. It is not sensitive for mild cases 
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and does not yield information regarding acute edema or 
active inflammation.

CHD
In a variety of both unrepaired and repaired CHD, LGE 
imaging has been investigated (Figures 5, 23, 42, 43) 
and has played a significant role.590,591 When extensive 
LGE is seen following surgeries for CHD, it is generally 
associated with adverse prognosis such as in systemic 
RVs (see below and ccTGA section). Scarring can be 
an iatrogenic complication when a coronary is injured or 
there is a problem with cardiopulmonary bypass or myo-
cardial protection. The following lists some of the appli-
cations in CHD but is certainly not comprehensive.

In TOF (see TOF section), LGE is normally detected in 
the RVOT (and occasionally at the VSD patch), particu-
larly following transannular patch repair, but occasionally 
extends beyond the site.117 A greater degree of RV LGE 
has been shown to be associated with arrhythmias and 
lower exercise capacity, all of which imply poor prognosis.118

LGE is seen in patients following both the ASO and atrial 
switch procedure for TGA (see TGA section).172,365 LGE 
can be seen because of myocardial fibrosis from either 
preoperative hypoxemia or from demand–supply mismatch 
caused by increased myocardial mass or decreased myo-
cardial flow reserve. The extent of LGE correlates with age, 
RV dysfunction, QRS duration, QT dispersion and clinical 
events (arrhythmia and sudden cardiac death).

LGE has been seen in 28% of patients who had the 
Fontan operation50 and can be seen in the LV of patients 
with HLHS as endocardial fibroelastosis (see SV section). 
Presence and extent of LGE correlate with lower ejec-
tion fraction, dilated and hypertrophied systemic ventricle, 
regional wall motion abnormalities and NSVT; however, 
positive LGE is shown not to be associated with clinical 
endpoints (i.e. death or listing for cardiac transplant).

Congenital aortic valvular stenosis in children is caused 
by developmentally abnormal dysplastic aortic valve. Severe 
aortic stenosis can result in myocardial fibrosis manifested 
as LGE in a diffuse subendocardial pattern.592 Subendo-
cardial LGE in adolescents who underwent balloon valvulo-
plasty in infancy corresponds to fibroelastosis on pathology 
and is associated with diastolic dysfunction.

Ischemic Lesions (See Coronary Section)
Although rare in children and adolescents, myocardial 
infarctions occur as a result of cardiac surgery, thrombotic 
events, inflammatory heart disease (including Kawasaki 
disease) and hypercoagulable states.593,594 This becomes 
even more important with patients who have congenital 
coronary abnormalities (eg anomalous coronary arter-
ies) or who have had coronary manipulation due to CHD 
(e.g., TGA after ASO). CMR has an important role in 
the evaluation of myocardial infarction and LGE is use-
ful in establishing the diagnosis and extent of ischemic 
myocardial injury. LGE in a myocardial infarct is always 
subendocardial extending toward the epicardium and 

becoming transmural in severe infarctions. LGE can be 
used to quantify the scar either in a qualitative or quan-
titative manner. There is an inverse correlation between 
the extent of scar and recovery of contractile function.

Pericardial Disease
CMR is used in the diagnosis and management of both 
acute and chronic pericarditis. Acute pericarditis mani-
fests with pericardial thickening (> 4 mm) and pericar-
dial effusion. Most standard acute pericarditis does not 
require CMR. LGE imaging shows focal or diffuse peri-
cardial enhancement.517 More complicated cases of 
recurrent or chronic pericarditis often require advanced 
imaging and studies have shown the correlation between 
pericardial enhancement and systemic inflammation. 
Chronic pericarditis results in restriction from non-compli-
ant and thickened pericardium. In patients with constric-
tive pericarditis who have LGE as evidence of pericardial 
inflammation, aggressive anti-inflammatory therapy may 
result in resolution without the need for surgery.

Cardiomyopathies

Hypertrophic Cardiomyopathy (See Hypertrophic 
Cardiomyopathy Section)
LGE is seen in 40–80% of adults with HCM. Recent 
studies in children have shown LGE in 28–73% of 
patients in a similar pattern as in adults. LGE has been 
shown to have diagnostic importance for both diagnosis 
and management. It is correlated with adverse clinical 
outcomes including arrhythmia and SCD in both children 
and adults.416,417,419 There is a significant relationship 
between the extent of LGE and the presence of NSVT.

Dilated Cardiomyopathy
CMR demonstrates linear mid-myocardial LGE in a non-
vascular distribution in patients with idiopathic DCM. The 
presence of LGE, regardless of its extent or distribution, 
is associated with adverse prognosis such as SCD. In 
children, a study performed on a group with DCM showed 
the presence of LGE in only 16%.595

Neuromuscular Disease
CMR is the standard for longitudinal evaluation of neu-
romuscular disease patients as they age and echocar-
diography becomes more difficult. LGE is an important 
part of these exams as increase in signal likely represents 
fibrofatty replacement of myocardium and portends onset 
of declining function.474

Summary of Recommendations
• CMR with LGE is recommended for evaluation of 

cardiac tumors or masses. (Class I, Level of evi-
dence B)

• CMR with LGE is indicated for assessment of sus-
pected myocarditis (Class I, Level of evidence B)

• CMR with LGE is reasonable for assessment of 
post-operative CHD (Class I, Level of evidence B)

• CMR with LGE is indicated for assessment of pedi-
atric HCM, dilated cardiomyopathy and neuromus-
cular disease patients (Class I, Level of evidence B)
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• CMR with LGE should be used for myocardial viability 
assessment in pediatric patients with decreased ven-
tricular function, suspicion of a CHD, acquired, or iat-
rogenic coronary lesions (Class I, Level of evidence B).

• CMR with LGE can be beneficial for assessment of 
chronic pericarditis when the diagnosis or therapeu-
tic strategy is unclear (Class IIa, Level of evidence B)
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