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Abstract: Carvone is a monoterpene compound that has been widely used as a pesticide for more than
10 years. However, little is known regarding the fate of carvone, or its degradation products, in the
environment. We used GC-MS (gas chromatography–mass spectrometry) to study the fate of carvone
and its degradation and photolysis products under different soil and light conditions. We identified
and quantified three degradation products of carvone in soil and water samples: dihydrocarvone,
dihydrocarveol, and carvone camphor. In soil, dihydrocarveol was produced at very low levels
(≤0.067 mg/kg), while dihydrocarvone was produced at much higher levels (≤2.07 mg/kg). In water
exposed to differing light conditions, carvone was degraded to carvone camphor. The photolysis rate
of carvone camphor under a mercury lamp was faster, but its persistence was lower than under a
xenon lamp. The results of this study provide fundamental data to better understand the fate and
degradation of carvone and its metabolites in the environment.

Keywords: carvone; soil degradation; photolysis; degradation products

1. Introduction

The use of pesticides has become an essential component of agricultural production
due to their proven efficacy in improving crop yields and quality, thus enabling producers
to meet an ever-rising demand for food [1]. However, off-target toxicity and environmental
pollution caused by the mis- and overuse of pesticides has rightfully begun to raise con-
cern [2]. In an answer to these concerns, environmentally-persistent pesticides have been
gradually replaced by environmentally-degradable pesticides. When applied, pesticides
enter the soil, water, and atmosphere, where a combination of intrinsic and environmental
factors determines their fate. Pesticides can be retained within the immediate area, migrate
to different areas, or be transformed and degraded into other compounds [3]. Degradation,
whether through biotic or abiotic processes, generally results in the breakdown of pesticides
into non-toxic or less-toxic compounds [4].

Degradable pesticides are presumed harmless; however, their residues and degra-
dation products may still have harmful effects on non-target organisms and the environ-
ment [5]. For example, the photodegradation products of alloxydim [6,7], a post-emergence
herbicide, show a higher toxicity than the parent compound, and the degradation products
of benzothiazole (TCMTB), a broad-spectrum biocide, show high toxicity to aquatic organ-
isms. Therefore, in order to fully understand the fate of pesticides in the environment and
the risks they may pose, it is necessary to study not only the parent compound but also the
degradation products of pesticides in different environments.

The potential use of monoterpenoids, found in plant essential oils, as pesticides has
been studied for many years. Compared with traditional synthetic pesticides, monoter-
penoids have the advantages of abundant raw materials, limited insecticide resistance,
and environmental friendliness [8]. Monoterpenoid pesticides tend to have chemical and
physical attributes which make them highly environmentally degradable compared to
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traditional synthetic pesticides [9,10]. Specifically, monoterpenoid pesticide compounds
tend to have a low molecular mass and a cyclic structure and also tend to be aromatic
and volatile at near-room temperature. These attributes make monoterpenoid pesticides
prone to oxidation, cyclization, isomerization, dehydrogenation, and other decomposition
reactions [10], rendering them environmentally unstable.

Monoterpenoids emitted into the atmosphere tend to form aerosols, inducing pho-
tochemical degradation [11]. For example, the monoterpenoid limonene is oxidized into
carvone, limonene oxide, carveol, and limonene hydroperoxide in the atmosphere [12].
In soil and water, monoterpenoids are primarily degraded by microorganisms, while a
minority may be lost to leaching and evaporation [13]. This degradation process will
be affected by environmental conditions, such as soil type, pH, temperature, humidity,
precipitation, etc. [14]. Previous research on the degradation of monoterpenoids produced
by Myrtis communis in the soil found that decomposition accelerated during periods of high
microbial activity [15]. Moreover, some monoterpenoids can achieve the bioremediation of
contaminated soil by promoting the degradation of organic pollutants through increasing
microbial activity and residency time [16].

The monoterpenoid carvone has shown potential as an insecticide, fungicide, an-
tioxidant, and plant growth regulator [17–20]. Carvone naturally occurs in parsley oil
(S-isomer), dill seed oil (S-isomer), and spearmint oil (R-isomer) [21]. Carvone exists as
two isomers, d-carvone and l-carvone, and the enantiomeric nature of the compound has
been fully analyzed [22]. Previous research has found that carvone has low persistence
in soil [23]. Additionally, carvone is converted to carveol in both rat and human liver
microsomes [24]. In an ethanol–water solution, carvone has been shown to photodegrade
to carvone camphor [25]. The structures of carvone and its degradation productions can be
seen in Figure 1.

Because carvone has potential as a broad-spectrum pesticide, it is very important to
understand its environmental behaviour and fate in agricultural soils and related environ-
ments. We studied the degradation behaviour of carvone in various soil types and light
conditions in order to quantify the carvone residues and degradation products. These data
can provide reference values for the environmental impact and commercial use of carvone.
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2. Materials and Methods
2.1. Chemicals and Instruments

The following chemicals were used in our experiments: Carvone (purity > 99.3%)
was purchased from McLin Co., Ltd. (Shanghai, China). Dihydrocarveol (purity > 99.5%),
dihydrocarvone (purity > 99.1%), and carvone camphor (purity > 98.7%) were purchased
from Merck Chemical Technology Co., Ltd. (Shanghai, China). Chromatographic grade
ethanol and n-hexane, and analytical grade sodium chloride (NaCl), anhydrous magnesium
sulfate (MgSO4), potassium dihydrogen phosphate (KH2PO4), sodium hydroxide (NaOH),
hydrogen peroxide (H2O2), and hydrochloric acid (HCl), were supplied by McLin Co.,
Ltd. (Nanchang, China). Octadecylsilane (C18, 60 µm), PSA (50 µm), and GCB (50 µm)
adsorbents were purchased from Bona Air Group Ltd. (Tianjin, China).

The following instruments were used in our experiments: gas chromatography (7890b)-
mass spectrometry (5977B) equipped with HP-5MS capillary column (60 m length, 0.25 mm
inner diameter, 0.25 µm film thickness, 5% phenyl-methyl polysiloxane) (Agilent Tech-
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nologies Co., Ltd., Beijing, China); Milli-Q Advantage AW deionized water system (Merck
Chemical Technology Co., Ltd., Shanghai, China); OGX-450C intelligent light incubator
(Kunning Instrument Co., Ltd., Shanghai, China); EX224ZH electronic analytical balance
(OHAUS Instrument Co., Ltd., Shanghai, China); Eppendorf centrifuge 5804R high speed
and large capacity refrigerated centrifuge (Eppendorf AG, Hambery, Germany); vacuum
dryer (Huixin Chemical Glass Instrument Co., Ltd., Hengshui, China); LDZX-50KBS verti-
cal autoclave steam sterilizer (Shenan Technology Co., Ltd., Shanghai, China); CME-PC
photochemical reactor (CME Technology Co., Ltd., Beijing, China); and KQ2200E ultrasonic
cleaner (Kunshan Ultrasonic Instruments Co., Ltd., Kunshan, China).

2.2. Preparation of Stock Standard Solutions

To make n-hexane standard solution, samples (100 ± 0.1 mg) of carvone, dihydro-
carveol, dihydrocarvone, and carvone camphor standards were weighed into 100-mL
brown volumetric flasks using an electronic analytical balance and were dissolved in
n-hexane. The samples were then subjected to 5 min of ultrasonic treatment with an ultra-
sonic cleaning machine. After cooling to room temperature, the samples were mixed in
equal volumes in n-hexane to obtain a 1000 mg L−1 mixed standard stock solution. The
preparation of ethanol standard solution of carvone is the same as the above operation.
The matrix standard working solutions (0.05–5 mg L−1) were prepared by diluting the
reserve solutions with blank matrix extract. All matrix standard working solutions and
standard working solutions were stored in 10-mL brown volumetric flasks at −18 ◦C.
Each solution was analyzed by GC-MS to ensure that the error value did not exceed the
experimental standard.

2.3. Collection and Characterization of Soil Samples

Four types of soils were collected from different regions of China: Hubei (S1), Jilin (S2),
Sichuan (S3), and Zhejiang (S4). All soil samples were collected from a depth of 0–20 cm,
dried naturally, and filtered through a 2 mm sieve. According to the FAO soil classification
standards [26,27], these soils were identified as Alisols (S1), Phaeozems (S2), Gleysols (S4),
and Anthrosols (S4). The physical and chemical properties of soil samples, as determined
according to the method of the Southern United States Cooperative Extension [28], are
shown in Table 1.

Table 1. Soil physical and chemical properties.

Soils Site
Texture

PH
CEC a

(cmol kg−1) OC b (%) OM c (%)
Sand (%) Silt (%) Clay (%) Texture Class

S1 Yichang, Hubei
(N33◦06′ , E111◦25′) 88.17 7.91 3.92 Sand 7.32 12.1 0.5G 0.86

S2 Chengdu, Sichuan
(N30◦56′ , E105◦51′) 51.88 23.35 24.77 sandy clay loam 7.35 25.4 1.0 1.72

S3 Tiangang, Jiling
(N43◦91′ , E126◦88′) 17.17 61.66 21.17 Silty loam 6.86 15.7 1.5 2.58

S4 Ningbo, Zhejiang
(N29◦14′ , E121◦48′) 42.15 42.83 15.02 loam 7.65 12.9 0.98 1.70

a CEC is the cation exchange capacity; b OC is the organic carbon content; and c OM is the organic matter content.

2.4. Degradation of Carvone in Different Soil Types

The abiotic and biotic degradation of carvone in soil was analyzed as follows:

(1) Aerobic treatment: 50 ± 0.1 g of soil sample (S1–S4) was weighed in a 250 mL conical
flask; 250 µL of 1000 mg L−1 carvone ethanol solution was added into it and mixed
evenly for 5 min to form an initial carvone concentration level of 5 mg kg−1. The soil
sample was then covered with a sterile cotton plug, which was opened weekly to
maintain the aerobic state of the soil.

(2) Anaerobic treatment: Carvone was added according to the above description, and
enough sterilized deionized water was added to the soil sample (S1–S4) to form
a water layer of at least 2 cm on the soil surface. The soil sample was then cov-
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ered with a sterile cotton plug and vacuum extracted in the conical flask to form
anaerobic conditions.

(3) Sterilized treatment: 50± 0.1 g of soil sample (S1–S4) was weighed in a 250 mL conical
flask, plugged with a cotton stopper, and placed in a high-pressure sterilization pot at
121 ◦C and 200 kPa for 30 min. After the soil samples were cooled to room temperature,
soil respiration was measured by alkali absorption method (AA-method) [29] to
ensure complete sterilization. This procedure was repeated until no soil respiration
was detected. After this, carvone was added according to the above description.

Incubation was carried out according to the following: 10% (w/w) deionized water
was added to each sample, and the mixture was incubated in a constant temperature and
humidity incubator at 25 ± 1 ◦C for 14 days in the dark. The soil moisture was regulated
every two days.

Degradation of Carvone in Different Soil Conditions

The degradation of carvone under various soil conditions was analyzed as follows,
using S2 soil under aerobic condition:

(1) pH: We used 0.1 M hydrochloric acid (HCl) aqueous solution to adjust the pH of
the soil to pH 3, 4, and 5. At the same time, a control group without HCl and only
deionized water was created.

(2) Organic matter: In order to remove the organic matter, 100 g S2 soil was added to a 2 L
beaker, mixed with deionized water, and stirred evenly. Then, 30% hydrogen peroxide
was slowly added and vigorously stirred to prevent the bubbles from overflowing.
After the foam subsided, the beaker was heated in a water bath at 70~80 ◦C, in order
to speed and complete the reaction. This process was repeated until the soil no longer
produced foam upon the addition of hydrogen peroxide. Then, 400 mL deionized
water was added to the beaker and the mixture was boiled to remove all hydrogen
peroxide. This process was repeated until no hydrogen peroxide remained. Finally,
soil was dried in a 105 °C oven and screened to obtain organic-matter-free S2 soil;
50 g of treated soil was sterilized in an autoclave at 121 ◦C and 200 kPa for 30 min to
ensure both sterilization and complete removal of organic material.

(3) Temperature: S2 soil was cultured in incubators at 10 ◦C, 25 ◦C, 35 ◦C, and 50 ◦C, of
which 25 ◦C was the control condition.

(4) Moisture: The water content of S2 was set to 0.1, 10, 20, and 30% (w/w) using deionized
water, of which 25% level is the maximum water holding capacity of the soil.

2.5. Photolysis of Carvone

The light-induced degradation of carvone was analyzed as follows:
In order to create a buffered solution for photolysis testing, 500 mL 0.1 mol L−1

potassium dihydrogen phosphate solution was weighed in a 1000 mL beaker, treated with
296.3 mL of 0.1 mol L−1 sodium hydroxide, diluted to 1000 mL with deionized water, and
mixed completely. After ultrasound, a buffer solution with pH 6.8 ± 0.1 was obtained.
The buffer solution and deionized water were used to dilute 1000 ppm carvone solution
into 5 mg L−1 carvone aqueous solution and mixed completely. The carvone aqueous
solution was placed into a quartz photolysis reaction tube, capped, and placed into the
photochemical reaction device, with a reaction temperature of 25 ◦C. Two light sources
were used, a 4.9 A, 500 W mercury lamp and a 5.1 A, 500W xenon lamp, both with a light
intensity of 5200 lux. The spectrum of both the mercury lamp and the xenon lamp is shown
in Figure 2. As a control, a quartz photolysis reaction tube was wrapped in aluminum foil.
The photolysis device was located in a dark, closed space to eliminate the interference of
other light sources.
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2.6. Sample Extraction and Purification

All soil and water samples were extracted and purified using the QuEChERS method [30].
Briefly, a homogenized 5 g sample was placed into a 50 mL polypropylene tube with 10 mL
n-hexane and 5 mL ultra-pure water and vortexed for 2 min. Then, 2 g MgSO4 and 1 g
NaCl were added. After 1 min of vortexing, the sample was centrifuged at 7000 rpm in a
high-speed centrifuge for 5 min. After extraction, 1 mL of the supernatant was transferred
to a 2.5 mL polypropylene tube containing 40 mg C18 and 100 mg NaSO4 and vortexed
for 2 min, then centrifuged at 5000 rpm for 5 min. The supernatant (0.5 mL) was aspirated
with a sterile syringe and transferred to the injection bottle through a 0.2 µm syringe filter
for GC-MS analysis.

2.7. Instrumental Analysis

All samples were analyzed on an Agilent gas chromatograph (7890B)-mass spectrome-
ter (5977B), which used high-purity helium (>99%) as a carrier gas. The temperatures of the
ion source, the quadrupole, and the interface were set at 280 ◦C, 150 ◦C, and 270 ◦C, respec-
tively. The GC-MS conditions were optimized by the qualitative analysis of a 100 mg L−1

sample in the full-scan mode. The initial column temperature was set at 90 ◦C for 5 min.
The temperature was then raised to 230 ◦C at a rate of 10 ◦C min−1 and maintained at the
final temperature for 1 min. The split ratio was set to 5:1 by means of split injection; the
injection volume was 1 µL, and the column flow rate was 1.5 mL min−1. The ionization
energy of the electron impact ion source (EI) was 70 eV. A quantitative ion and a pair of
qualitative ions with the highest relative abundances were selected for each substance
based on its NIST mass spectrum. Selective ions were used in the selected ion monitoring
(SIM) mode. The solvent delay was set to 6.5 min.

2.8. Method Validation and Data Processing

The method was validated according to the instructions of SANCO/12682/2019 [31].
A series of compound standard solution concentrations and compound matrix standard
solution concentrations of 0.01–5 mg L−1 carvone and its degradation products were
configured. According to Armbruster and Pry [32], the limit of detection (LOD) is defined as
the lowest concentration of a component that can be reliably detected with a given analytical
method. Additionally, the limit of quantification (LOQ) is the lowest concentration at which
the analyte can not only be reliably detected but at which some predefined goals for
bias and imprecision are met. The LOQ of each sample can be calculated at a signal-
to-noise ratio of 10 [33]. The accuracy and precision of the method were verified using
three different spike levels, and the recovery rate (ratio of treated sample concentration to
standard concentration) of each spike level was measured five times. The precision was
expressed by relative standard deviation (RSD%), and the accuracy was expressed by the
recovery (%) of spiked samples. The linearity of the method was verified by analyzing
standard working solution samples and matrix standard working solution samples. The
selectivity of the method was verified by analyzing blank and spiked samples from low to
high concentrations. The uncertainty of the analytical method is usually caused by random
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effects and system effects in the experiment, which can be calculated using the covering
factor K = 2 at a 95% confidence level (SPSS software). The matrix effect was calculated by
Equation (1), the recovery and RSD of the matrix sample were calculated by Equations (2)
and (3). Dissipation data are calculated using first-order kinetic Equations (4) and (5):

ME =
(S M−SS)

SS
(1)

R =
C0 − C

C0
× 100% (2)

RSD =
SD
R
× 100% (3)

Ct = C0e−kt (4)

T0.5 =
ln2
k

(5)

where ME is the matrix effect, SM is the slope of the matrix sample, SS is the slope of the
standard sample, R (%) is the calculating spiked recovery, C (µg kg−1) is the concentration of
the matrix sample extract, C0 (mg L−1) is the concentration of the standard working solution,
SD is the standard deviation of the replicate, Ct is the time-dependent concentrations of
soil and water, and K is the degradation rate constant.

The standard mixed working solution of 1000 mg L−1 carvone and its degradation
products were prepared and diluted step by step into 6 samples of different concentrations
for injection test, and the test was repeated three times for each concentration. Based on the
detection limit and quantitative limit of dihydrocarvone, the spiked recovery experiments
of 0.05, 0.5, and 5 mg kg−1 were carried out in blank soil and buffer solutions each with a
different pH, and each spiked level was repeated 5 times.

The degradation products were qualitatively analyzed by GC-MS, and their mass spec-
tra were obtained in full-scan mode. Then, the data were compared with the compounds in
NIST database to preliminarily identify the degradation products. Standard compounds
were tested by the same operation for secondary validation.

3. Results and Discussion
3.1. Sample Extraction and Purification

For its nonpolarity, n-hexane is frequently employed as an essential oil extractant [34].
Acetonitrile is also often used as an extractant for pesticides. Therefore, the two solvents
were tested in this study. In general, the recovery of carvone and its degradation products
in n-hexane was higher than that in acetonitrile, so we chose n-hexane as the extractant.

PSA, C18, and GCB were tested as purifying agents in this study. Aqueous and buffer
solutions did not require additional purification operations. Considering the comprehen-
sive recovery rate, 40 mg C18 and 100 mg Na2SO4 were selected for this study.

3.2. Validation of the Analytical Method

During the analysis of pesticide residue, the chromatographic signal is suppressed
or enhanced due to the matrix interference, which is known as the matrix effect [35]. To
reduce the influence of the matrix effect, 0.05–5 mg L−1 matrix standard solutions were
used to analyze the identified conditions by GC-MS, and a calibration standard curve
was fitted using quantitative GC-MS analysis software. The results (Table S1) showed
that carvone, carvone camphor, dihydrocarveol, and dihydrocarvone had good linear
correlation coefficients (R2 = 0.9979–0.9998). The LOQs of carvone and its degradation
products in various matrices were in the ranges of 10–50 µg kg−1. When the matrix effect
is between −20% and 20%, it can be ignored. When between −50% and 50%, the matrix
effect is stronger, and the matrix standard curve must be quantified to eliminate the matrix
effect on the results. However, the sample preparation method should be re-optimized
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when ME > 50% or ME < −50% [36]. All matrices had low matrix effects (−20% < ME
< 20%), indicating that it can be ignored (Figure 3). As shown in Table S2, the average
recovery of carvone in soil and buffer solution was between 90.2−98.7% ± 1.8−9.6%
RSD. The average recovery of dihydrocarveol and dihydrocarvone in S2 soil was between
81.0−99.4% ± 1.6−4.9% RSD. The average recovery of carvone camphor in buffer solution
with pH = 7 was within 95.7–104.2% ± 3.8−8.0% RSD. According to the instruction of
SANCO/12682/2019 [31], these data indicate that the method can be used for the accurate
determination of carvone and its degradation products in soil and water samples.
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3.3. Degradation of Carvone in Different Soil Types

The degradation of carvone in soil follows the first-order kinetic equation. The results
of degradation kinetic equation, correlation coefficient (R2), and degradation half-life (t0.5)
are shown in Figure 4. The data showed that there is a strong correlation between the
degradation of carvone in soil and soil types (r = 0.803, p < 0.05). In aerobic, anaerobic,
and sterilization conditions, carvone shows the same degradation law in four kinds of
soils. The degradation is the fastest in S1 and the slowest in S4. The degradation half-life
of non-sterilized soil is significantly shorter than that of sterilized soil, indicating that the
degradation of carvone in soil is mainly caused by microorganisms in soil. Biodegradation
in soil accounts for 82.69, 99.25, 99.20, and 99.45% of the total degradation, respectively. We
can infer that the degradation of carvone in soil is basically biological; the contribution of
abiotic processes such as chemical degradation or volatilization is minimal [37].



Molecules 2022, 27, 2415 8 of 14

Molecules 2022, 27, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 3. Chromatogram of carvone and its degradation products in the standard solution and ma-
trix solutions at the 5 mg kg−1 level. (a–c) and (d) represent the intensities of carvone camphor, dihy-
drocarveol, dihydrocarvone, and carvone, respectively. 

3.3. Degradation of Carvone in Different Soil Types 
The degradation of carvone in soil follows the first-order kinetic equation. The results 

of degradation kinetic equation, correlation coefficient (R2), and degradation half-life (t0.5) 
are shown in Figure 4. The data showed that there is a strong correlation between the 
degradation of carvone in soil and soil types (r = 0.803, p < 0.05). In aerobic, anaerobic, and 
sterilization conditions, carvone shows the same degradation law in four kinds of soils. 
The degradation is the fastest in S1 and the slowest in S4. The degradation half-life of non-
sterilized soil is significantly shorter than that of sterilized soil, indicating that the degra-
dation of carvone in soil is mainly caused by microorganisms in soil. Biodegradation in 
soil accounts for 82.69, 99.25, 99.20, and 99.45% of the total degradation, respectively. We 
can infer that the degradation of carvone in soil is basically biological; the contribution of 
abiotic processes such as chemical degradation or volatilization is minimal [37]. 

  

Molecules 2022, 27, x FOR PEER REVIEW 9 of 16 
 

 

 

Figure 4. Degradation dynamic curves of carvone in soil under different treatment conditions. (A) 
Degradation under aerobic conditions. (B) Degradation under sterilized conditions. (C) Degrada-
tion under anaerobic conditions. 

The degradation half-lives of carvone in S1, S2, S3 and S4 soils treated by anaerobic 
treatment are 1.8, 2.2, 2.1, and 3.2 d, respectively. Carvone degraded faster in aerobic con-
ditions, indicating that microorganisms are more suitable for aerobic conditions, which is 
consistent with the research results of Harder and Probian [38]. Although all soils were 
cultured in the same conditions, the physical and chemical properties of different soils are 
different, and the reasons affecting the degradation of carvone in soil were very complex. 
The degradation of carvone in soil is mainly affected by biological factors. The abundance 
of microbial communities in different soils is different, which may also be the reason for 
the different degradation rates of carvone in different soils [39]. In order to better under-
stand the degradation behaviour of carvone in the specific factors, different factors were 
selected for experiments. 

3.4. Degradation of Carvone in Different Soil Conditions 
Carvone degrades more quickly in untreated soil without sterilization. However, in 

sterilized soils, carvone degraded faster in soil with organic matter removed. Among the 
four soils tested, the organic matter content of S2 soil was the highest and that of S1 soil 
was the lowest. However, in the degradation experiment, the degradation rate of S1 soil 
was higher than that of S3. In previous experiments, the degradation of carvone was fast-
est in S1, followed by S3, and S3 was a little faster than S4. These results showed that the 
content of organic matter is closely related to the degradation of carvone. Organic matter 
can accelerate the degradation of carvone in soil, but carvone will also be adsorbed by soil. 
The degradation rate will decrease when the content of organic matter is at a high level. 
This may be because soil microorganisms need organic matter as a carbon source for nor-
mal biological activities [40]. After sterilization, there are no microorganisms in the soil, 
and carvone will be adsorbed by organic matter, resulting in a slower degradation rate 
[37].  

According to Figure 5A, carvone shows longer persistence in acidic soils, which is 
consistent with the findings of Gámiz, et al. [23]. We found that the half-life of carvone is 
prolonged by 1.07 d in soils with pH 5, 1.81 d with pH 4, and 4.53 d with pH 3. Considering 
that carvone is a neutral (non-ionized) compound, and pH has little effect on the adsorp-
tion of carvone in soil, we observed a decrease in soil microbial respiration. We suspect 
that soil pH may be affecting microbial activity rather than acting on carvone directly. 
According to de Carvalho [41], some microorganisms involved in the degradation of car-
vone are more suited to neutral or alkaline environments, indicating that acidic conditions 
may not be suitable for the biodegradation of carvone. 

Figure 4. Degradation dynamic curves of carvone in soil under different treatment conditions.
(A) Degradation under aerobic conditions. (B) Degradation under sterilized conditions. (C) Degrada-
tion under anaerobic conditions.

The degradation half-lives of carvone in S1, S2, S3 and S4 soils treated by anaerobic
treatment are 1.8, 2.2, 2.1, and 3.2 d, respectively. Carvone degraded faster in aerobic
conditions, indicating that microorganisms are more suitable for aerobic conditions, which
is consistent with the research results of Harder and Probian [38]. Although all soils were
cultured in the same conditions, the physical and chemical properties of different soils are
different, and the reasons affecting the degradation of carvone in soil were very complex.
The degradation of carvone in soil is mainly affected by biological factors. The abundance
of microbial communities in different soils is different, which may also be the reason for the
different degradation rates of carvone in different soils [39]. In order to better understand
the degradation behaviour of carvone in the specific factors, different factors were selected
for experiments.

3.4. Degradation of Carvone in Different Soil Conditions

Carvone degrades more quickly in untreated soil without sterilization. However, in
sterilized soils, carvone degraded faster in soil with organic matter removed. Among the
four soils tested, the organic matter content of S2 soil was the highest and that of S1 soil
was the lowest. However, in the degradation experiment, the degradation rate of S1 soil
was higher than that of S3. In previous experiments, the degradation of carvone was fastest
in S1, followed by S3, and S3 was a little faster than S4. These results showed that the
content of organic matter is closely related to the degradation of carvone. Organic matter
can accelerate the degradation of carvone in soil, but carvone will also be adsorbed by
soil. The degradation rate will decrease when the content of organic matter is at a high
level. This may be because soil microorganisms need organic matter as a carbon source for
normal biological activities [40]. After sterilization, there are no microorganisms in the soil,
and carvone will be adsorbed by organic matter, resulting in a slower degradation rate [37].

According to Figure 5A, carvone shows longer persistence in acidic soils, which is
consistent with the findings of Gámiz, et al. [23]. We found that the half-life of carvone is
prolonged by 1.07 d in soils with pH 5, 1.81 d with pH 4, and 4.53 d with pH 3. Considering
that carvone is a neutral (non-ionized) compound, and pH has little effect on the adsorption
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of carvone in soil, we observed a decrease in soil microbial respiration. We suspect that soil
pH may be affecting microbial activity rather than acting on carvone directly. According to
de Carvalho [41], some microorganisms involved in the degradation of carvone are more
suited to neutral or alkaline environments, indicating that acidic conditions may not be
suitable for the biodegradation of carvone.
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under different temperature conditions. (E) Degradation under different water content conditions.
W1, W2, W3, and W4 represent 0.1, 10, 20, and 30% (W/W) water content, respectively.

Temperature increases the degradation of carvone, and we found a strong correlation
between temperature and K value (r = 0.987, p < 0.05) (Figure 5). With the increase of
temperature, the K value increased and the degradation half-life of carvone decreased.
The degradation half-life of carvone increased by 150% at 10 ◦C compared with room
temperature. When the temperature is 50 ◦C, the degradation half-life is shortened by
51% compared with that at room temperature. We also observed that soil temperature
affects soil respiration, which is significantly reduced at low temperatures (10 ◦C) and
high temperatures (50 ◦C) and increased at 35 ◦C. Carvone is a volatile organic compound
that can easily escape from soil, leading to lower efficacy and higher application cost. At
10–35 ◦C, the increase in temperature not only enhanced soil microbial activity but also
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accelerated the volatilization of carvone in soil, while at 35−50 ◦C, the volatilization rate of
carvone in soil was stronger than the decrease in soil microbial activity affected by temper-
ature. Therefore, minimizing the emissive loss of carvone is important to address economic
concerns as well as to maximize weed and pest control efficacy and crop growth [42].

Carvone degrades more quickly in wet soils, and we found a strong correlation
between soil water content and compound half-life (r = 0.951, p < 0.05). When soil water
content increased from 0.1% to 30%, the half-life of carvone decreased from 3.2 to 0.48 d,
in accordance with other studies [43]. This may be because as the water content of soil
increases, the adsorption capacity of the soil decreases, allowing for the faster degradation
of carvone.

3.5. Photolysis of Carvone

The photolysis of carvone in aqueous solution conforms to the first-order kinetic curve
(Figure 6). At the same light intensity, the degradation of carvone under the xenon lamp
was significantly slower than under the mercury lamp. The photolysis half-life under
the xenon lamp was 1.81–1.93 d, while the photolysis half-life under the mercury lamp
was 0.76–0.83 d. The radiation spectrum of the mercury lamp is between 200–600 nm
and that of xenon lamp is between 200–1000 nm. Carvone strongly absorbs ultraviolet
radiation with a wavelength of between 200–240 nm, with absorption maxima at 223 nm
and 240 nm [44]. The light emitted by the mercury lamp is mainly ultraviolet light with
short wavelength and high energy, while the emission spectrum of the xenon lamp is closer
to that of sunlight [45]. Under natural light conditions, the environmental behaviour of
carvone would likely be more similar to that under xenon lamp irradiation.
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The degradation of carvone in buffer solution was slightly faster than that in deionized
water (i.e., the dissipation rate has no obvious change in dark conditions), which indicates
that the salt ions in aqueous solution will affect the photolysis of carvone. We noted that
in the dark condition, the content of carvone continuously decreased and conforms to the
first-order kinetic curve, with a degradation half-life is 3.61 d. Carvone has hydrolytic
stability, and no hydrolysate was found when we tested the water sample. Carvone, a
volatile organic compound, is unstable in aqueous solution and volatilizes easily. Therefore,
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the correct half-life of carvone under the mercury lamp is between 0.96-1.16 d, and under
the xenon lamp is between 3.61–4.13 d.

3.6. Identification and Quantification of Carvone Degradation Products

The retention times of carvone camphor, dihydrocarveol, and dihydrocarvone in
SCAN mode were 13.062, 13.822, and 13.908 min, respectively. Their chromatograms,
structural formulae, and mass spectra are shown in Figure 7. The degradation products
obtained are consistent with those previously reported [46,47].
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matogram of changes in intensity of a, b, c and d, respectively. (C–E) The standard mass spectra of
carvone camphor, dihydrocarvone, and dihydrocarveol, respectively.

Dihydrocarveol and dihydrocarvone were detected in non-sterilized S2 soil (Figure 8B).
However, these two compounds were rarely detected in anaerobic and sterilized conditions,
indicating that dihydrocarvone and dihydrocarveol are mainly bio-transformed by soil
microorganisms. The highest concentration of dihydrocarvone was 2.07 mg kg−1 at 36 h,
which decreased thereafter. The highest concentration of dihydrocarveol was 0.067 mg kg−1

at 24 h, which was undetectable after 96 h.
Carvone camphor was detected in aqueous solution after photolysis. While the

degradation rate of carvone under the mercury lamp was faster than under the xenon
lamp, the conversion rate of photolysis product was higher under the xenon lamp than the
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mercury lamp (Figure 8A). The average conversion of carvone to carvone camphor was
65.9% under the mercury lamp and 85% under the xenon lamp.
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4. Conclusions

In this work, a sensitive and effective method for the determination of carvone and its
metabolites was established by GC-MS, and the method was successfully applied to study
the degradation of carvone in soil and aqueous solution. The results showed that changes
in temperature, pH, oxygen, organic matter, water content, and microbial community
affected the degradation of carvone in soil. Overall, high temperature, moderate soil
moisture, aerobic conditions, neutral pH, high microbial activity, and low organic material
(in the absence of microbial activity) all increased the degradation rate of carvone in soil.
Dihydrocarvone and dihydrocarvone, which are the degradation products of carvone,
were detected in soils. The conversion rate of dihydrocarveol is very low and that of
dihydrocarvone is high, but neither are persistent in soil. The stability of carvone in
aqueous solution is not strong and it is easy to volatilize. In aqueous solution, carvone
is photoisomerized into carvone camphor under light irradiation. The photolysis rate
was faster under the mercury lamp (shorter wavelength), while the conversion rate of
photolysis products was higher under the xenon lamp (similar to natural light).

Carvone has shown potential as an insecticide, fungicide, antioxidant, and plant
growth regulator and is currently in use as a potato germination inhibitor. When applied to
plants, carvone will enter the water, atmosphere, and soil, and undergo chemical changes.
Because of its volatility, some carvone will likely be lost in the process of application, the rate
of which will be affected by environmental factors such as wind speed, temperature, and
so on. The volatilized carvone will undergo photochemical reaction under light irradiation.
It appears that carvone is not a persistent compound in either soil or water. However, its
degradation products may show higher persistence. Subsequent studies should focus on
their potential impact on target and non-target organisms to fully assess the environmental
and health risks associated with the use of carvone.
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