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SUMMARY

Herein, we report an oral cavity squamous cell carcinoma (OCSCC) patient-derived xenograft 

(PDX) platform, with genomic annotation useful for co-clinical trial and mechanistic studies. 
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Genomic analysis included whole-exome sequencing (WES) and transcriptome sequencing (RNA-

seq) on 16 tumors and matched PDXs and additional whole-genome sequencing (WGS) on 9 of 

these pairs as a representative subset of a larger OCSCC PDX repository (n = 63). In 12 models 

with high purity, more than 90% of variants detected in the tumor were retained in the matched 

PDX. The genomic landscape across these PDXs reflected OCSCC molecular heterogeneity, 

including previously described basal, mesenchymal, and classical molecular subtypes. To 

demonstrate the integration of PDXs into a clinical trial framework, we show that pharmacological 

intervention in PDXs parallels clinical response and extends patient data. Together, these data 

describe a repository of OCSCC-specific PDXs and illustrate conservation of primary tumor 

genotypes, intratumoral heterogeneity, and co-clinical trial application.

In Brief

Campbell et al. report the genomic fidelity of patient-derived xenograft models from oral cavity 

squamous cell carcinomas. These models conserve the mutation and expression profile of their 

matched tumors, validating their use for co-clinical trial and mechanistic studies.

Graphical Abstract

INTRODUCTION

Oral cavity squamous cell carcinomas (OCSCCs) are a global health problem, with more 

than 500,000 reported cases per year. Despite major advances in surgical techniques and 

chemo-radiotherapy, outcomes for patients with locally advanced disease have remained 

unchanged at 30% local or regional disease recurrence, 25% distant metastases, and 40% 

overall 5-year survival (Chinn and Myers, 2015; Zhang et al., 2013). Molecular 

characterization using next-generation sequencing has broadened our understanding of 

common OCSCC genomic alterations and carcinogenesis (Cancer Genome Atlas Network, 

2015; India Project Team of the International Cancer Genome Consortium, 2013; Pickering 
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et al., 2013). Precision medicine approaches targeting specific pathways implicated in 

OCSCC are in early stages, with validation studies pending for a number of oncogenic 

dependencies (Hammerman et al., 2015). These large-scale studies would benefit from 

additional insight obtained using in vivo models that capture the complex genetic 

background of OCSCC.

Patient-derived xenografts (PDXs) represent a high-fidelity, personalized model for pre-

clinical testing and validation of targeted therapeutics (Hammerman et al., 2015; Hidalgo et 

al., 2014). In addition, they provide a valuable resource for the study of intratumoral 

heterogeneity and clonal dynamics (Eirew et al., 2015; Hammerman et al., 2015; Hidalgo et 

al., 2014). A recent study of more than 1,000 diverse tumor xenografts integrated into a PDX 

clinical trial (PCT) framework revealed the fidelity of xenografts in confirming multiple 

genotype relationships with drug sensitivities (Gao et al., 2015). This study included seven 

PDXs derived from head and neck squamous cell carcinomas (HNSCCs). Three studies have 

reported initial engraftment rates for HNSCC PDXs ranging from 17%–80% but included 

the use of distinct immunodeficient mouse strains (Keysar et al., 2013; Li et al., 2016; Peng 

et al., 2013). Another study analyzed gene expression of matched primary tumors and PDXs 

showing variable levels of conservation, but this was limited to three cases (Guo et al., 2016; 

Peng et al., 2013). Interestingly, studies in larger HNSCC PDX cohorts have shown that 

engraftment success has no relation to pathologic stage or clinical behavior of the primary 

tumor (Keysar et al., 2013; Li et al., 2016). Large PDX collections are critical to capturing 

the population-wide genomic alterations that are obscured in analysis of smaller cohorts 

(Gao et al., 2015). However, existing OCSCC-specific PDX models have not been 

comprehensively defined to sufficiently depict the heterogeneous disease landscape.

Herein we describe a cohort of OCSCC xenografts derived from patients who have 

undergone standard-of-care surgery or who enrolled in neoadjuvant trametinib or 

pembrolizumab clinical trials. We performed sequencing analysis on 16 case-matched 

tumors and PDXs, which displayed genomic and transcriptomic fidelity to their respective 

tumors. While maintaining the mutational landscape displayed in their matched primary 

tumors, these PDXs also captured the molecular and genomic diversity of OCSCC at the 

cohort level. Our study also reports a larger OCSCC PDX repository (n = 63), which 

includes the subset (n = 16) with comprehensive molecular annotation reported here, that 

will serve as a platform for evaluating novel therapeutic approaches as well as deepen our 

understanding of the genomic and transcriptomic parallels between tumors and PDXs.

RESULTS

Generation of Xenografts

In 2013, we initiated a PDX study for OCSCC across 114 patients from three cohorts: 

treatment-naive primary OCSCC patients undergoing standard-of-care primary resection (n 

= 84), patients enrolled in a neoadjuvant trametinib clinical trial (ClinicalTrials.gov: 

NCT01553851; n = 20) (Uppaluri et al., 2017), and patients enrolled in a neoadjuvant 

pembrolizumab clinical trial (ClinicalTrials.gov: NCT02296684; n = 10, data not published). 

PDXs were attempted from treatment-naive tumor samples from all patients (n = 114), post-

treatment surgical resections from patients enrolled in the trametinib clinical trial (n = 20) or 
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the pembrolizumab clinical trial (n = 10), and patients with relapsed disease (n = 3). Overall, 

establishment of passage 0 (P0)-generation xenografts was successful in 63 tumor samples, 

including 45 of 114 (39.4%) treatment-naive, 10 of 20 (50%) post-trametinib treated, 5 of 10 

(50%) post-pembrolizumab treated, and 3 relapse (Tables 1 and S1). PDXs were harvested 

once the tumor size reached 2 cm3, with a median time to harvest of 85 days (range, 27–281 

days).

Because our goal was to develop a PDX repository for genomic and functional studies, we 

collected clinical and pathologic information only on samples that successfully engrafted as 

P0 PDXs. Demographics showed that 46 tumor specimens were from male patients and 17 

tumor specimens were from female patients (Tables 1 and S1). PDXs were successfully 

established for 3 stage I and II, 10 stage III, and 32 stage IV primary (treatment-naive) 

tumors. At time of biopsy or surgery, patients were 18–87 years of age (median, 63 years). 

In addition, the xenograft time to harvest, when used as a measure of how aggressively the 

xenograft grows, was not significantly different across tumor stages. Pathologic evaluation 

of the PDXs was consistent with squamous cell carcinoma histology (data not shown).

Genomic Analysis

Clinicopathological Summary of Sequenced Samples—We selected 16 PDXs 

(25% of the repository) for molecular annotation using whole-genome sequencing (WGS), 

whole-exome sequencing (WES), and/or transcriptome sequencing (RNA-seq). WES and 

RNA-seq were obtained for 16 case-matched tumors and P0 PDXs; WGS was obtained for 9 

matched tumors and PDXs (Tables 1 and S1). Of these 16 xenografts, 13 were derived from 

primary untreated tumors, 1 was derived from a relapse tumor, and 2 were derived from a 

paired primary and relapse tumor. The cohort of sequenced PDXs did not significantly differ 

from the larger cohort of established OCSCC PDXs with regard to stage, age, and gender. 

There was no significant difference in the xenograft time to harvest between the sequenced 

PDXs and the remainder of the cohort.

Mouse Contamination in Xenografts—Mouse cells were not sorted from PDX 

samples prior to nucleic acid isolation for sequencing. Xenograft purity was defined as the 

percentage of sequencing reads that specifically align to the human reference genome in 

comparison with the mouse reference genome. Mouse contamination was highest in WGS 

data (9.7%–55.6% mouse-specific reads), followed by RNA-seq (5.4%–39.7%) and finally 

exome data (0.7%–35%), reflecting the successful enrichment of human DNA by the 

hybridizationbased capture reagent (Figure S1). A negligible number of reads were 

classified as “both,” “neither,” or “ambiguous” on the basis of the level of certainty that 

reads map to either human genome, mouse genome, or neither. Reads classified as “mouse 

specific,” “both,” “neither,” or “ambiguous” were filtered out of the sequencing data, and all 

subsequent analysis was performed on the reads classified as “human specific.”

Sequencing Results—WGS median sequence coverage was 263 for PDXs, 753 for 

tumors, and 373 for normal samples. WES resulted in at least 203 coverage over an average 

of 91.5% of the targeted exome in PDXs, 96.6% in tumors, and 95.2% in normal samples 

and an average depth of 82.43 in PDXs, 81.23 in tumors, and 66.23 in normal samples. The 
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total number of reads generated by RNA-seq ranged from 89.5 million to 767 million, with 

an average of 391 million reads in tumor samples and 226 million reads in PDX samples. 

Metrics for PDXs correspond to human-specific reads, after competitive alignment with the 

mouse genome.

The Landscape of Somatic Mutations Is Conserved in Most OCSCC PDXs

Somatic alterations detected by WGS, WES, and/or RNA-seq were compared for the 16 

pairs of OCSCC PDXs and case-matched tumors. There were 2,414 non-silent coding 

single-nucleotide variants (SNVs) and small insertions and deletions (indels) detected in 14 

primary tumors (Table S2; Figure S2A). Of these, 1,929 (79.9%) were also identified in 

matched PDXs with sufficient coverage (203) and variant allele fraction (VAF; 5%). Our 

somatic validation pipeline subjects variant calling to additional filtering on the basis of 

sequencing coverage and read support. Variants were identified independently in tumors and 

PDXs, and then the union of these events was re-analyzed in both samples to detect and 

recover variants with low sequencing coverage and/or VAF. An additional 231 variants 

(9.6%) originally detected in primary tumors were accounted for in the PDXs. Overall, 

89.5% of all variants identified in primary tumors were also detected in their matched PDXs 

(Figures 1A and 1B). In the 2 relapse tumors, 220 non-silent SNVs and indels were 

identified; however, 119 (54.1%) were confirmed in matched PDXs, and only 19 (8.6%) 

were recovered by reducing sequencing depth and VAF filters. Overall, only 62.7% of 

variants detected in relapse tumors and their matched PDXs were shared (Figures 1A and 

1B).

PDXs were compared with their respective tumors on the basis of the percentage of tumor 

variants maintained in their respective PDXs and linear regression across the VAF 

distributions (Figure 1C). This analysis was restricted to variants that had at least 203 

coverage in both tumor and PDX samples. Twelve PDXs (75%) retained at least 90% of the 

variants detected in their respective tumors. Two of the remaining four tumors (patients 2 

and 6 primaries) had relatively higher correlation in VAF distribution (R2 = 0.788 and 0.697, 

respectively) of shared variants, the other two (patient 15 primary, patient 14 relapse) had the 

lowest correlation coefficients (R2 = 0.174 and 0.227, respectively) but also had much lower 

tumor cellularity in the tumor sample (less than 50%). Overall, the correlation in VAF 

distribution was lower in relapse cases (0.23–0.73; median, 0.48; n = 2) than primary cases 

(0.17–0.84; median, 0.65; n = 14). However, these aggregate metrics are reduced because of 

the cellularity of patient 14’s relapse tumor, which had the lowest tumor purity (~25%).

We next evaluated our PDX cohort for conservation of variants in previously described 

significantly mutated genes for the HNSCC TCGA (The Cancer Genome Atlas) cohort 

(Cancer Genome Atlas Network, 2015). There were 47 mutations identified across 12 of the 

genes described as significantly mutated genes from the TCGA HNSCC cohort (Cancer 

Genome Atlas Network, 2015), and 44 were detected in both tumors and PDXs across 16 

tumors (1–5 mutations per patient; median, 2). The reported cohort included mutations in 

TP53 (n = 12 primary, n = 2 relapse), NOTCH1 (n = 3 primary), KMT2D (n = 2 primary), 

HRAS (n = 2 primary), FAT1 (n = 2 primary), CDKN2A (n = 4 primary, n = 2 relapse), 

CASP8 (n = 3 primary, n = 1 relapse). Mutations were also detected in AJUBA, CUL3, 
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FBXW7, NSD1, and PIK3CA, each in only one primary sample. In 15 of these tumors, all 

putative driver mutations were preserved, while indels in FAT1 were observed in either the 

relapse tumor or PDX from patient 14. Despite variance in the correlation coefficient across 

the cohort, putative drivers that have been previously described in HNSCC were maintained 

(Table S2; Figure S2).

OCSCC PDXs Do Not Exhibit Rapid Accumulation of Mutations Post-engraftment

In order to evaluate whether mutations could have been acquired after engraftment, we 

identified variants in PDXs that were undetectable in the primary tumors. There were 149 

PDX-specific variants across the 14 primary PDXs, 76 (51%) of which were expressed in 

the RNA; there were 41 PDX-specific variants detected in 2 relapse PDXs, 20 (48.8%) of 

which were expressed in the RNA (Figure 1B). Of the 190 variants exclusively detected in 

PDXs, 4 (2.1%) had 0–20× coverage in their respective tumors, but the coverage of the 

genomic positions of PDX-specific variants in tumors (0–672×; median, 164×) was not 

significantly different from the coverage of these variants in PDXs (20–525×; median, 

88.53). Thirty-seven of the 190 variants (19.5%) were detected at ≤5% VAF in the PDX. 

However, to consider whether PDX-only mutations were acquired post-engraftment, we 

evaluated the clinical significance and potential implication in tumorigenesis. Of the 190 

PDX-only variants, only 2 were described as recurrently mutated in the TCGA cohort. Both 

variants were frameshift indels in FAT1 in the patient 14 relapse PDXs, present at 53% and 

61% VAF, respectively. Only one of these was expressed at the RNA level (32.3% VAF). It 

is important to note that the patient 14 relapse tumor had the lowest purity (~25%) and had 

the second lowest correlation coefficient in VAF distribution with its respective PDX.

Studies evaluating the genomic integrity of PDX models across tumor types have described 

the selective pressure and/or accumulation of mutations over several passages. In order to 

address this question of selective engraftment and pressure to acquire mutations via 

passaging, the parental xenograft (P0) generated from patient 13 was passaged twice in NSG 

mice. Three PDXs from the P2 generation were studied by WES. Of the 104 variants 

detected in the primary tumor, 90 (86%) were detected in the parental PDX. Out of the 90 

variants confirmed in P0, 85–87 (94%–97%) were subsequently detected in the P2 

generation PDXs (Table S2). There were 7 variants detected in the P0 PDX that were 

undetectable in the primary tumor, 6 of which were also detected in all three P2 PDXs. 

There were 11 variants detected in P2 PDXs that were not detected in either the primary 

tumor or the P0 PDX; 5 of these variants were present in all P2 PDXs (VAF = 4.44%–

27.78%). Six of these variants were specific to one or two of the P2 PDXs, all present at less 

than 10% VAF. However, overall, correlation across all variants remained 0.85–0.88 between 

all PDXs and the primary tumor.

Large and Focal Copy-Number Alterations Are Retained upon Engraftment

Absolute copy number was calculated by comparing either tumor or PDX data with matched 

normal data and evaluated on the basis of 10 kb windows across the genome. In order to 

evaluate whether copy-number alterations (CNAs) were conserved at the genome-wide 

scale, we calculated the correlation between all case-matched PDXs and tumors. The 

Pearson correlation coefficient between matched tumors and PDXs ranged from 0.3 to 0.97 

Campbell et al. Page 6

Cell Rep. Author manuscript; available in PMC 2019 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(median, 0.72; median, 0.08 for unmatched samples; Figure 2A). We found that correlation 

between samples was significantly higher in matched PDXs and tumors than in comparison 

with any other pair of samples (p = 2.88e-07; Figure 2B). There were six samples that had 

relatively low Pearson correlation coefficients (r < 0.60). Of these six samples, one (patient 

14, relapse, r = 0.561) had low tumor purity (25%). Two (patients 5 and 8) had very low 

correlation coefficients (r = 0.034 and r = 0.049, respectively). Interestingly, these two 

patients also had the highest mutational burdens (n = 445 and n = 327, respectively). Lack of 

correlation might again be attributable to lower cellularity and/or cases with large numbers 

of somatic alterations possibly indicative of increased genomic instability.

Recurrent CNAs included gains in chromosomes 8q (n = 7), 5p (n = 5), and 3q (n = 4) and 

losses in chromosomes 8p (n = 6) and 3p (n = 5) (Figure S2B), consistent with previous 

studies (Cancer Genome Atlas Network, 2015). We also evaluated genes known to be 

contained in focal CNAs (Figures 2C and S2C). We detected amplifications of CCND1 (n = 

7), EGFR (n = 4), FGFR1 (n = 1), KRAS (n = 2), and PIK3CA (n = 2) and loss of 

CDKN2A/ CDKN2B (n = 6) in tumors and their respective PDXs. In most cases, CNAs 

(segment mean > 3 for amplifications, segment mean < 1.5 for loss) were detected in both 

tumor and PDX. However, in a few cases, resolution of these copy-number changes was not 

obtained in tumors, because of low purity, but was detected in the PDX; for example, KRAS 
amplification in patient 1 (Figure S2C) and CDKN2A/B loss in patients 1 and 7 (Figure 2C).

RNA-Seq Analysis Reveals Tumor-Infiltrating Cell Populations

Mouse-specific reads were filtered in silico from the xenograft RNA samples before aligning 

reads to the human genome. Principal-component analysis (PCA) of matched tumor and 

xenograft gene expression revealed distinct stratification of PDXs and tumor samples 

(Figure 3A). Using a supervised analysis comparing matched tumors and PDXs, there were 

298 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology 

(GO) annotations that were significantly upregulated in tumor samples (p < 0.001), 28 

processes that were significantly downregulated in tumor samples (p < 0.001), and 14 

KEGG pathways that were differentially regulated within tumor and PDX samples (p < 

0.001; Table S3). The top 10 most significantly upregulated processes in tumor samples 

consisted of cellular processes specific to nontumor infiltrating cells, such as “leukocyte 

migration,” “adaptive immune response,” and “leukocyte chemotaxis” (Figure 3B). 

Pathways upregulated in PDXs included those related to keratinization and epidermal cell 

differentiation.

Independent of infiltrating cell populations, we predicted that PDXs would behave most 

similarly to their matched tumors compared with unmatched tumors. In order to address this 

question, we removed the top 1% of genes contributing to each principal component from 

the previous analysis. This removed the most prevalent genes associated with infiltrating cell 

populations in order to better evaluate genes associated with tumor-intrinsic biology (n = 

59,884 genes). Pearson correlation coefficients ranged from 0.47 to 0.97 (median, 0.87) for 

case-matched tumors and PDXs (Figure 4A). This was significantly greater than the 

correlations drawn between unmatched combinations of samples (0.29–0.97; median, 0.75; 

p = 1.69e-09; Figures 4B and 4C).
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PDXs Recapitulate the Molecular Heterogeneity of the Disease

Previous studies have described diverse molecular subtypes in HNSCC (Chung et al., 2004; 

Walter et al., 2013). The four HNSCC molecular subtypes described by Walter et al. (2013) 

were subsequently confirmed in the TCGA dataset—atypical (24%), basal (31%), classical 

(18%), and mesenchymal (27%)—on the basis of genes associated with each signature 

(Cancer Genome Atlas Network, 2015). Because of the genomic diversity observed in our 

sequenced PDX cohort, we hypothesized that our repository contained PDXs derived from 

tumors across these molecular subtypes. To test this, we built a random forest classifier to 

categorize our samples on the basis of the expression signatures and previously reported 

molecular subtypes described in the cohort of Walter et al. (2013) (Experimental 

Procedures).

Our classifier, built on 638 genes, successfully categorized 125 of 138 samples in the dataset 

of Walter et al. (2013), for an overall accuracy of 90.6% (Table S4). When applied to the 

TCGA HNSCC dataset, 243 of 277 samples (87.7%) were correctly predicted within their 

previously published molecular subtype, accurately classifying 62 of 68 atypical, 82 of 85 

basal, 40 of 49 classical, and 59 of 75 mesenchymal tumors (Figure 5). The most common 

incorrect classification involved identifying previously reported mesenchymal tumors as 

basal (15 of 75). When applied to the 16 OCSCC tumors in our study, 3 were predicted to be 

atypical (18.8%), 7 basal (43.8%), 2 classical (12.5%), and 4 mesenchymal (25%) (Table 

S4). Recently, HNSCC single-cell RNA sequencing characterized the “mesenchymal” 

expression signature as driven primarily by stromal infiltrate (Puram et al., 2017). Two 

subpopulations of cancer-associated fibroblasts (CAFs) contributed specific signatures, and 

we evaluated whether the CAF gene signature was upregulated in samples subtyped as 

“mesenchymal” from our classifier. CAF genes (n = 412) were queried across the published 

datasets (Walter et al., 2013, and TCGA) and our reported dataset (WUSM). Samples 

classified in the mesenchymal subtype displayed significantly increased relative expression 

in CAF-associated genes compared with the atypical (p < 0.05 in all datasets), basal (p < 

0.05 in all datasets), and classical subtypes (p < 0.01 in the Walter et al., 2013, and TCGA 

datasets).

PDX Parallels Clinical Response in a Trametinib “Co-clinical” Trial

Advantages of generating PDXs in coordination with clinical trials include the ability to 

functionally dissect patient treatment responses, as well as discovering and validating 

therapeutic mechanisms. Twenty-nine of the PDXs in this study were from patients in 

clinical trials, 10 of which are included in the sequenced cohort. As a validation of this 

approach and this PDX repository, we evaluated the efficacy of trametinib in the post-

treatment PDX generated from patient 2 at the time of surgical resection. This patient had a 

subjective clinical response with a downstaging of tumor from a clinical T3N1M0 OCSCC 

to pathologically staged T1N0 disease (Uppaluri et al., 2017). The patient later developed a 

local recurrence and lung metastasis and ultimately succumbed to this disease. We analyzed 

WES and RNA-seq data from untreated and post-trametinib treated PDX and primary tumor 

samples and WES from recurrence and lung metastasis biopsies.
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The treatment-naive tumor biopsy and matched PDX have been presented in this study along 

with the other primary tumors. WES detected 123 SNVs and indels in the primary tumor, 92 

of which were detected in its derived xenograft (Figure 6A). The post-treatment tumor 

sample had very low purity; only 20 of the 123 variants detected in the primary, untreated 

tumor were detected at less than 15% VAF (Table S2). However, in the PDX corresponding 

to the post-treatment tumor sample, 83 variants (67.5%) from the primary tumor were 

detected, as well as 14 new variants. A focal amplification of EGFR was observed in the 

primary tumor, pre- and post-treatment PDXs, the recurrent tumor, and, despite low purity, 

the metastasis sample (Figure 6B).

Because there appeared to be a clinical response in the 2 week “window” clinical trial, we 

asked whether a longer course of trametinib would result in clinical benefit using the PDX 

model. Cohorts of mice engrafted with patient 2’s post-treatment PDX were treated with an 

extended course of trametinib or vehicle (n = 7 each). While the vehicle-treated mice 

showed progressive tumor growth, trametinib treatment resulted in reduction in tumor size 

over the first 50 days of treatment, followed by outgrowth of all tumors (Figure 6C). Thus, 

this PDX model displays responses consistent with the clinical findings in the patient and 

illustrates that escape tumors can be further studied to define the basis of response and 

resistance.

DISCUSSION

The PDX cohort in this study was focused exclusively on OCSCC patients, capturing 

clinical, mutational, and gene expression subtyping of the disease defined by molecular 

annotation of 25% of the available repository. Future studies will involve further genomic 

and molecular annotation of the remaining repository (n = 47), with appropriate public 

accessibility to these data. By comparing the genomic landscape of our PDX cohort to 

previous studies, we show that we have successfully generated diverse genotypes that span 

the phenotypic heterogeneity characteristic of HNSCC. Known recurrently mutated genes 

(e.g., TP53, CASP8, CDKN2A) and CNAs of chromosomes 3, 5, and 8 were recurrently 

altered in our sequenced cohort and were confirmed in their matched PDXs. In addition, 

driver events, including canonical hotspot mutations and amplifications of known oncogenes 

(e.g., HRAS, PIK3CA) and inactivation and loss of tumor suppressor genes, were confirmed 

in matched PDXs.

Previous studies have concluded that effective xenoengraftment does not correlate with 

patient age or tumor stage, while others have described the difficulty in engraftment of 

tumors from patients with early-stage disease. We successfully established PDXs from five 

patients with stage I or II disease (8% of our overall cohort). However, because our focus 

was on developing a repository and we studied only successfully engrafted tumors, we 

cannot comment on overall correlations of staging and engraftment success.

In comparing our sequenced cohort with the previously described molecular subtypes of the 

disease, our PDXs were shown to be established from atypical (n = 3), basal (n = 7), 

classical (n = 2), and mesenchymal (n = 4) tumors. The molecular subtype classifier in this 

study was trained and validated on previously published tumor expression data and likely 
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includes tumor-infiltrating cell populations and microenvironmental factors of those tissues. 

We attempted to apply the classifier to the PDX RNA samples in addition to the tumor RNA 

samples, but only seven PDX samples (44%) were labeled with the same classification as 

their matched tumor. The random forest classifier labels samples by assigning a probability 

that a sample fits into a subtype, and these values were more marginal in PDX samples than 

in the tumor RNA samples. Discordant labels could also reflect issues in tumor purity. 

Future studies are necessary to describe how these molecular subtype classifications can be 

applied (or re-trained) to appropriately stratify large PDX cohorts. Recent studies using 

single-cell transcriptomics (scRNA-seq) have shown that the mesenchymal subtype of 

HNSCC is due primarily to infiltrating stromal cells, specifically CAFs (Puram et al., 2017). 

Without assessing our tumor samples at single-cell resolution, we cannot definitively 

attribute the mesenchymal signature in our classifier to non-tumor cell populations. 

However, we did observe significantly increased expression in these genes in samples 

classified as “mesenchymal” compared with other molecular subtypes. Future studies would 

benefit from additional scRNA-seq experiments to improve molecular subtyping of tumor-

intrinsic patterns in HNSCC, while accounting for stromal infiltration.

Although our sequenced cohort captures genomic alterations at the population level, this 

study also showed how effectively OCSCC PDXs individually recapitulate their respective 

tumors. This establishes the potential utility of our repository to explore mechanisms of 

targeted drug sensitivity and resistance for precision oncology applications. Concordance 

was described in terms of the maintenance of mutations and genomic alterations in PDXs. 

At the individual level, most xenografts clearly displayed strong conservation of these 

alterations with their matched tumors. Previous studies have described selective 

environmental pressures in PDXs across tumor types, observing subclonal outgrowth or the 

selective engraftment of a subpopulation of cells. However, in this study comprising PDXs 

specifically from the P0 generation, 89.5% of all variants detected in primary tumors were 

retained in their matched PDXs.

There were four PDXs that did not retain at least 90% of the variants detected in their 

respective tumors. However, two of these still had relatively high correlation in VAF 

distribution of shared variants (R2 = 0.697–0.788), and the other two tumors had low tumor 

cellularity, which led to lower correlation coefficients in paired samples. Technical and 

biological contributions to lower correlation include sampling noise in sequencing data, 

causing higher variance in the VAF distribution; tumor purity, reducing the sensitivity for 

detecting somatic mutations; and increased mutational burden, indicative of carcinogen-

induced tumors and genomic instability and resulting in increased subclonal and private 

mutations. It is possible that a more complex subclonal architecture could be resolved with 

increased sequencing depth, single-cell sequencing analysis, or further passaging to evaluate 

for subclonal selection. These additional experiments would account for differential 

engraftment of tumor cell subpopulations. Importantly, even in PDX-primary pairs with low 

correlation metrics, all mutations in putative driver genes were retained in the corresponding 

PDX in 15 cases.

The challenges contributing to low correlation metrics in mutational frequency (i.e., tumor 

purity, increased genomic instability, and lack of resolution of clonality) apply to copy-
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number detection as well. We observed concordance (Pearson correlation coefficient = 0.47–

0.97) in 13 cases and very low correlation values (0.02–0.05) for 3 samples. Two of these 

samples, patients 5 and 8, were the most highly mutated and displayed increased genomic 

instability. Single-cell resolution approaches may clarify whether CNAs created a selective 

advantage for engraftment.

Many PDX-specific mutations (55.3%) were missed in the tumor because of low sequencing 

coverage or were present at lower than 5% VAF in the xenograft. This indicates that either 

there was not enough coverage to identify the variant in the tumor, or it may have been 

acquired in a very small number of cells after engraftment. In addition, we evaluated WES 

from three P2 xenografts derived from one of our P0 xenografts, and only 11 total mutations 

were detected specifically in P2 xenografts, 5 of which were present at similar frequencies 

across the three P2 xenografts, suggesting that they may have been selected within the P1 

generation. Additional studies of a larger cohort of later passage PDXs is needed to 

confidently evaluate whether OCSCC PDXs generally retain the primary tumors’ genomic 

landscape through passages. However, our dataset does not overall exhibit aggressive 

mutational accumulation in early passages. In 15 of 16 cases, mutations in the all reported 

recurrently mutated genes were maintained. However, in the patient 14 relapse tumor, there 

were two mutations in FAT1 in the PDX and a tumor-specific FAT1 mutation. It would 

require more tumor sample or deeper sequencing in order to identify whether this mutation 

was present at lower frequencies in the tumor, because the purity of this tumor was about 

25%. Although we see concordance across drivers, this example emphasizes the known fact 

that selective pressure in the mice does sometimes fundamentally alter tumor biology, and 

identifying these underlying differences is important when using PDXs.

As expected, unsupervised approaches to gene expression analysis revealed the presence of 

non-tumor cells in bulk primary tumor RNA data. Supervised differential expression 

analysis directly comparing tumors with PDXs validated this observation, revealing the 

upregulation of cellular processes associated with non-tumor cells (e.g., leukocyte migration, 

and adaptive immune response). Downregulated pathways in tumors, on the other hand, 

included cellular processes such as keratinization and epidermal cell differentiation. This is 

likely indicative of tumor purity and non-tumor cell infiltration, because PDXs represent a 

purer tumor cell population derived from squamous cell carcinoma tissue. When genes 

associated with these cellular processes were removed, we found that PDXs behaved most 

similarly to their matched tumors. This is consistent with other studies focused on 

characterizing HNSCC PDXs, using proteomics and immunohistochemistry, that show 

conservation of oncogenic pathway activation and biomarker expression (Keysar et al., 

2013; Li et al., 2016).

This study presents the advantages of PDX models as a biological and translational platform 

for studying OCSCC. At the disease level, we see that the known molecular heterogeneity is 

captured within the described PDX cohort. More importantly, however, we validate the use 

of these models in a patientspecific context, demonstrating strong concordance between 

PDX and primary tumors and conservation of key putative driver events. We describe a 

patient (patient 2) who responded to trametinib in a neoadjuvant window clinical trial and 

show that treatment of the patient’s PDX with trametinib demonstrates a significant response 
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closely reflecting the clinical history. For this reason, we emphasize not only the PCT 

framework but also the integration of PDXs into a co-clinical trial approach. The time frame 

required to generate PDXs does not make it feasible to study a PDX during the course of 

patient diagnosis and treatment. However, by generating PDXs in conjunction with patients 

enrolled in these neoadjuvant trials, we can compare the course of tumorigenesis with 

clinical outcomes and retrospectively study mechanisms of drug response. Our repository 

contains PDXs derived from tumor samples at various stages and time points in disease, 

including 29 from patients enrolled in clinical trials. Future studies will further demonstrate 

utility of our PDX platform as a resource for biomarker discovery, novel combinations, and 

targeted therapies, as well as implementation for mechanistic studies.

EXPERIMENTAL PROCEDURES

Sample Acquisition

The tumor acquisition protocol, clinical trials, and correlative studies were all approved by 

the Washington University Human Research Protection Office and Animal Studies 

Committee, respectively. After informed consent, samples were obtained through two 

methods: (1) OCSCC patients undergoing surgical biopsy or resection were recruited as part 

of the Washington University tumor banking protocol (institutional review board [IRB]: 

201102323), or (2) patients were recruited for neoadjuvant clinical trials with either the 

MEK inhibitor trametinib (ClinicalTrials.gov: NCT01553851; IRB: 201205124) (Uppaluri 

et al., 2017) or pembrolizumab (ClinicalTrials.gov: NCT02296684; IRB: 201412118).

Xenoengraftment Procedures

Tumor biopsies were obtained from patients and maintained in sterile DMEM containing 

10% fetal calf serum (FCS) and 1% amphotericin. Biopsies were sectioned using razor 

blades into four separate pieces, one specifically for xenograft generation. Briefly, fresh 

tumor was minced into approximately 16 pieces, ranging from 2 to 8 mm3, and transferred 

on ice to the animal facility. Six- to 8-week-old NOD-scid ILRgnull (NSG) mice (The 

Jackson Laboratory) were anesthetized and shaved, and four small incisions were made, one 

on each quadrant of the flank. Tumor pieces were then saturated with Matrigel (Corning), 

and four pieces were transferred subcutaneously into each quadrant using sterile forceps. See 

Supplemental Experimental Procedures for further details on xenoengraftment, mouse 

maintenance, and treatment.

Sequencing and Data Analysis

Genomic DNA was isolated by the Siteman Cancer Center Tissue Processing Core using the 

DNeasy Blood and Tissue Kit (QIAGEN). Library construction and sequencing were 

performed as previously described, with a few exceptions described in the Supplemental 

Experimental Procedures (Griffith et al., 2015a). Total RNA was isolated by the Siteman 

Cancer Center Tissue Processing Core using QIAGEN RNeasy kits. Single-indexed RNA 

sequencing (RNA-seq) libraries were prepared using the Illumina TruSeq Stranded Total 

RNA kit with 500 ng of starting material according to the manufacturer’s recommendations. 

Sequencing was performed on either the Illumina HiSeq 2500 V4 1 TB platform (2 3 125 bp 

reads) or the Illumina HiSeq 4000 platform (2 3 150 bp reads).
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Removing Contaminant Mouse Reads from Xenograft Data

WGS, WES, and RNA-seq reads from xenografts were aligned competitively against the 

human reference genome (National Center for Biotechnology Information [NCBI] build 38, 

GRCh38) and the mouse reference genome (Genome Reference Consortium Mouse Build 

38, mm10) using the Xenome (version 1.0.0) software in order to filter mouse reads from 

human reads (Conway et al., 2012). Subsequent somatic variant detection was performed on 

data excluding the mouse-mapped reads.

Sequence Alignment and Somatic Event Detection

The Genome Modeling System (GMS) was used for all analysis, including the somatic 

variant detection and RNA-seq analysis (Griffith et al., 2015b). Briefly, WGS and WES data 

were processed through SpeedSeq version 0.1.0 (Chiang et al., 2015; Faust and Hall, 2014), 

which aligns reads using BWA-MEM version 0.7.10 (Li, 2013) to the human reference 

genome (NCBI build 38, GRCh38) and marks duplicates using SAMBLASTER version 

0.1.22 (Faust and Hall, 2014). RNA reads were aligned to GRCh38 using TopHat version 

2.0.8 (Trapnell et al., 2009). Somatic variants were predicted using several variant callers by 

comparing primary tumor or xenograft with matched normal pairs. SNVs and small indels 

were detected and annotated using the GMS transcript variant annotator against Ensembl 

version 74. See Supplemental Experimental Procedures for more details. All SNVs and 

indels were manually reviewed for removal of false positives according to standard 

procedures (Barnell et al., 2018). Somatic CNAs were detected by CopyCat version 0.1 

(https://github.com/chrisamiller/copyCat), and structural variations were predicted using 

Manta version 0.29.6 (Chen et al., 2016). Tumor purity was estimated by the mode of minor 

allele frequencies in regions of loss of heterozygosity (LOH), as previously described 

(Anagnostou et al., 2017). SciClone was used to assess the clonality of mutations present in 

copy neutral and non-LOH regions (Miller et al., 2014).

Gene Expression and Pathway Analysis

Gene expression levels were quantified using Cufflinks version 2.1.1(Trapnell et al., 2010) 

and HTSeq-count version 0.5.4p1 (Anders and Huber, 2010). Differential expression 

analysis was performed using the DESeq2 R package (Love et al., 2014) on gene raw counts 

generated using HTSeq, and gene expression pathway analysis was performed using the 

GAGE R package (Luo et al., 2009).

Analysis of Published Expression Data and Random Forest Classification

The microarray probe-level intensity files (containing log2-transformed, normexp 

background-corrected, LOESS-normalized values) from Walter et al. (2013) (GEO: 

GSE39366; n = 138) were gene median-normalized. Gene expression data (FPKM 

[fragments per kilobase of transcript per million mapped reads]) from the TCGA HNSCC 

cohort (n = 277) were log2-transformed and gene median-normalized (Cancer Genome Atlas 

Network, 2015). The randomForest R package version 4.6–12 was used to build a classifier 

using 638 Ensembl gene identifiers previously used to define the four molecular subtypes of 

HNSCC and trained on the dataset of Walter et al. (2013) (GEO: GSE39366) on the basis of 

their previously reported molecular subtypes. This classifier was subsequently validated on 

Campbell et al. Page 13

Cell Rep. Author manuscript; available in PMC 2019 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/chrisamiller/copyCat


the TCGA dataset and used to predict gene expression subtypes in the reported dataset 

(WUSM; n = 16). The infiltration of CAFs was interrogated by summarizing the expression 

of 412 CAF-associated genes within the three datasets (Walter et al., 2013, TCGA, and 

WUSM). For further details, see Supplemental Experimental Procedures.

Statistical Methods

Clinicopathological comparisons were conducted using chi-square tests or one-way ANOVA 

as appropriate. All statistics and data visualization were performed in R version 3.3.2. using 

the ggplot2 R package (version 2.2.1) (Wickham, 2009) and GenVisR version 1.8.0 

(Skidmore et al., 2016). Concordance of expression and CNA was determined using the 

Pearson correlation, and VAF distribution between PDXs and matched tumors was 

summarized using the coefficient of determination.

DATA AND SOFTWARE AVAILABILITY

The accession number for the sequencing data reported in this paper is database of 

Genotypes and Phenotypes (dbGaP): phs001623.v1.p1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• PDXs retain the genomic and transcriptomic profiles of matched primary 

OCSCC tumors

• Engraftment of PDXs is successful across expression and genomic subtypes 

of OCSCC

• PDXs generated in a “co-clinical trial” setting parallel patient trajectory

• PDXs serve as a translational platform for mechanistic drug discovery in 

OCSCC
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Figure 1. Mutations Are Overall Conserved in PDXs
(A) Venn diagram of all variants detected in primary or relapse tumors and their respective 

PDXs.

(B) Alluvial plots displaying variants detected in either “tumor,” PDX, or “both.” Variants 

are labeled “detected” if they have sufficient sequencing depth (203) and VAF (5%); “low 

coverage” or “low VAF” if they are detected but do not meet one of these filters; 

“undetected, low coverage” if they are undetected and have insufficient coverage; and 

“undetected” if the variant is undetected at a position with sufficient coverage.

(C) Scatterplots displaying the correlation between PDX DNA VAF and tumor DNA VAF. 

Samples are designated “R,” corresponding to “relapse” samples.Points are colored on the 

basis of which samples the variant was detected in; gray points indicate variants for which 

there was <203 coverage in either the tumor or PDX sample. The R2 value (of common 

points with at least 203 coverage in both samples) is represented by the red value in the 

lower right-hand corner of each plot. The linear regression line is indicated in red with 

boundaries showing the SD of points. The bar charts on the right of each plot indicate the 

proportion of common versus sample-specific variants, as well as those with less than 203 

coverage in either the tumor or matched xenograft sample (indicated in gray).

Refer to Figure S2 and Table S2 for further details.
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Figure 2. Copy-Number Alterations Are Concordant in Matched PDXs and Tumors
(A) Correlation matrix displaying the Pearson correlation coefficient (calculated on the basis 

of the absolute copy-number segment mean across 10 kb windows). Samples are sorted on 

the basis of unsupervised hierarchical clustering of the correlation coefficient. Red triangles 

correspond to matched tumors and PDXs.

(B). Density plot showing differences in correlation coefficient between case-matched 

tumors and PDXs (red) versus any other comparison (blue). A Wilcoxon test was performed, 

comparing the correlation between case-matched PDXs and unmatched or distinct pairs of 

samples (p = 1.09e-08).

(C) Genes commonly altered at the copy-number level in HNSCC were analyzed with 100 

kb windows on either ends of the gene. Red rectangles correspond to the genomic positions 

of the indicated gene. Point color corresponds to sample. Copy number is indicated by 

absolute copy number on the y axis, and only segments with median copy number > 3 or < 

1.5 are indicated by color (according to sample source).

Refer to Figure S2 for further details.
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Figure 3. Differential Expression Analysis Reveals Tumor-Infiltrating Cell Populations
(A) PCA clustering of PDX (xenome-filtered) and primary tumor RNA samples.

(B) Pathway analysis is summarized by bar charts showing the p value (lighter hue) and 

false discovery rate (FDR) q value (darker hue). Pathways are labeled along the y axis; the 

number of genes annotated within each pathway is indicated in parentheses.

Refer to Table S3 for further details.
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Figure 4. Correlation across the Transcriptome Is Highest in Matched Tumors and PDXs
(A) Correlation matrix displaying the Pearson correlation coefficient calculated across the 

gene expression of 59,884 genes (FPKM). This included the whole transcriptome with the 

exception of the top 1% of genes contributing to the principal components in Figure 3. Red 

triangles indicate tiles corresponding to case-matched tumors and PDXs.

(B) Density plot showing differences in correlation coefficient between case-matched tumors 

and PDXs (red) versus any other comparison (blue).

(C) A Wilcoxon test was used to compare the correlation between case-matched PDXs and 

unmatched or distinct pairs of samples.
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Figure 5. Varied HNSCC Molecular Subtypes Successfully Engraft as PDXs
This heatmap contains genes (rows) corresponding to a single gene out of the 638 gene 

signature defining the four molecular subtypes in HNSCC. Each column corresponds to a 

sample within each cohort. Fill color represents the gene median-centered (GMC) value of 

the respective gene expression within each dataset (relative expression). Four hundred 

twelve genes associated with cancer-associated fibroblasts (CAFs) defined by Puram et al. 

(2017) were summarized by the median GMC value of the 412 genes in the associated 

sample (denoted in CAF signature). Datasets shown include the Walter et al. (2013) dataset 

(used to build the classifier), the TCGA dataset, and the 16 tumor RNA samples obtained at 

Washington University School of Medicine reported in this study (WUSM). Values in 

“predict” indicate the molecular subtype predicted by the random forest classifier described. 

Values in “published” indicate the molecular subtype documented for each corresponding 

sample in the previously published datasets.

Refer to Table S4.
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Figure 6. Patient 2 PDX Parallels Clinical Response in a Trametinib “Co-clinical” Trial
(A) Variant allele frequency (VAF) of the y axis labels (right-hand side) and the x axis labels 

(across top) are indicated by each point. The upper triangle contains all variants, either 

detected in the primary tumor (dark blue) or detected in a subsequent sample (green). The 

lower triangle contains only variants detected in the primary tumor. Pearson correlation 

coefficient is indicated by the red value in the lower right-hand corner of each plot. Density 

plots along the diagonal indicate the VAF density in the corresponding sample.

(B) Absolute copy number is plotted along the y axis. Each point corresponds to the segment 

mean calculated across 10 kb (per sample) windows within the shown genomic coordinates. 

The EGFR locus is shown in red.

(C) Tumor growth comparison between vehicle-treated and trametinib-treated P2 xenografts.
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Table 1.

Clinical Summary of Patient Samples

Repository (n = 63) Sequenced Subset (n = 16)

Standard-of-care resection 34 (54%) 6 (38%)

Trametinib trial 22 (35%) 10 (63%)

Pembrolizumab trial 7 (11%) -

Treatment-naive 45 (71%) 14 (88%)

Post-treatment 15 (24%) -

Relapse 3 (5%) 2 (13%)

I 3 (5%) -

II 2 (3%) -

III 12 (19%) 3 (19%)

IV 45 (71%) 13 (81%)

Below 40 4 (6%) 2 (13%)

40–59 22 (35%) 6 (38%)

60–79 29 (46%) 7 (44%)

Over 80 8 (13%) 1 (6%)

Male 46 (73%) 12 (75%)

Female 17 (27%) 4 (25%)

Overall, 63 PDXs were generated from 53 patients. In some cases, multiple PDXs were derived from the same patient at various time points. 
Numbers (n) reflect number of xenografts associated. Refer to Table S1 for additional information
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