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Abstract
The Rho-associated coiled-coil containing kinases (ROCKs or Rho kinases) belong to the AGC (PKA/PKG/PKC) family of 
serine/threonine kinases and are major downstream effectors of small GTPase RhoA, a key regulator of actin-cytoskeleton 
reorganization. The ROCK family contains two members, ROCK1 and ROCK2, which share 65% overall identity and 92% 
identity in kinase domain. ROCK1 and ROCK2 were assumed to be functionally redundant, based largely on their major 
common activators, their high degree kinase domain homology, and study results from overexpression with kinase constructs 
or chemical inhibitors. ROCK signaling research has expanded to all areas of biology and medicine since its discovery 
in 1996. The rapid advance is befitting ROCK’s versatile functions in modulating various cell behavior, such as contrac-
tion, adhesion, migration, proliferation, polarity, cytokinesis, and differentiation. The rapid advance is noticeably driven 
by an extensive linking with clinical medicine, including cardiovascular abnormalities, aberrant immune responsive, and 
cancer development and metastasis. The rapid advance during the past decade is further powered by novel biotechnologies 
including CRISPR-Cas and single cell omics. Current consensus, derived mainly from gene targeting and RNA interfer-
ence approaches, is that the two ROCK isoforms have overlapping and distinct cellular, physiological and pathophysiology 
roles. In this review, we present an overview of the milestone discoveries in ROCK research. We then focus on the current 
understanding of ROCK signaling in embryonic development, current research status using knockout and knockin mouse 
models, and stem cell research.
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Abbreviations
ESCs  Embryonic stem cells
EOB  Eyelids open at birth
hESCs  Human embryonic stem cells
hiPSCs  Human induced pluripotent stem cells
KD  Kinase-dead
LIMK  LIM-kinases
miRNA  MicroRNAs
MEFs  Mouse embryonic fibroblasts
mESCs  Mouse embryonic stem cells
MHC  α-Myosin heavy chain
MSCs  Mesenchymal stem cells

MYPT1  Myosin binding subunit of myosin light chain 
phosphatase

MLC  Myosin light chain
Peri  Periostin
PH  Pleckstrin-homology
RBD  Rho-binding domain
siRNA  Short interfering RNA
SHED  Stem cells from human exfoliated deciduous 

teeth
UTR   Untranslated regions
UDSC  Urine-derived stem cells

Introduction

Rho kinases (Rho-associated coiled-coil-containing protein 
kinase, hereafter referred to as ROCKs) are major down-
stream effectors of the small GTPase RhoA (Ishizaki et al. 
1996; Leung et al. 1996; Matsui et al. 1996; Nakagawa et al. 
1996). The ROCK family contains two members, ROCK1 
(also called ROKβ or p160ROCK) and ROCK2 (also known 
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as ROKα), which share 65% overall identity in amino acid 
sequence and 92% identity in their kinase domains. Both 
kinases contain a catalytic kinase domain at the N-termi-
nus, followed by a central coiled-coil domain including a 
Rho-binding domain (RBD), and a carboxyl-terminal pleck-
strin-homology (PH) domain with an internal cysteine-rich 
domain. In humans and mice, both ROCK1 and ROCK2 
are ubiquitously expressed across tissues (Nakagawa et al. 
1996).

Over the past 25 years, the ROCK family has attracted 
significant attention as a promising therapeutic target for a 
wide spectra of human diseases, including cardiovascular 
diseases, pulmonary diseases, neurodegenerative diseases, 
metabolic disorders, ocular diseases, and cancers (Budzyn 
et al. 2006; Chrissobolis and Sobey 2006; Dai et al. 2018; 
Feng et al. 2016; Huang et al. 2015; Landry et al. 2020; 
Narumiya and Thumkeo 2018; Saadeldin et al. 2020; Shi 
and Wei 2007, 2013; Shimokawa 2020; Surma et al. 2011; 
Wei et al. 2016; Yu et al. 2020). Due to the high degree 
of amino acid sequence homology, some of the biological 
functions of ROCK1 and ROCK2 are therefore believed 
overlapping and compensatory, including actin cytoskeleton 
organization, smooth muscle cell contraction, cell prolifera-
tion, adhesion, migration, polarity, cytokinesis, differentia-
tion and survival in many cell types. However, they are not 
completely compensatory as over-activation of ROCK1 or 
ROCK2 in a disease state can cause pathological conse-
quence (Surma et al. 2011; Wong et al. 2009). Two relatively 
selective ROCK inhibitors, Y27632 (Uehata et al. 1997) and 
fasudil (Asano et al. 1989), have been widely used to dissect 
the roles of ROCK in cellular signaling. In animal disease 
models, a large body of data has supported that inhibition of 
ROCK has a promising application in disease therapy. Both 
Y27632 and fasudil bind to the kinase domain and inhibit 
ROCK1 and ROCK2 with similar potency (Breitenlechner 
et al. 2003; Davies et al. 2000; Ishizaki et al. 2000; Uehata 
et al. 1997). Due to their tremendous therapeutic potential, a 
significant number of ROCK inhibitors have been developed 
(Defert and Boland 2017; Feng and LoGrasso 2014; Feng 
et al. 2016). Nonetheless, fasudil remains the only systemic 
ROCK inhibitor used in humans for cerebral vasospasm after 
surgery of subarachnoid hemorrhage in Japan (Shibuya et al. 
1992) and has been tested in numerous clinical trials in other 
countries, with the majority of trials focusing on cardiovas-
cular diseases (Fukumoto et al. 2013; Shi and Wei 2013; 
Shibuya et al. 2005; Surma et al. 2011; Vicari et al. 2005).

Different from the well-established shared functions of 
ROCK isoforms, the distinct roles of ROCK1 and ROCK2 
are still not well understood (Dai et al. 2018; Feng et al. 
2016; Hartmann et al. 2015; Landry et al. 2020; Narumiya 
and Thumkeo 2018; Saadeldin et al. 2020; Shahbazi et al. 
2020; Shi and Wei 2007, 2013; Shi et al. 2011; Shimokawa 
2020; Surma et al. 2011; Wei et al. 2016; Yu et al. 2020; 

Zanin-Zhorov et al. 2016; Zhang et al. 2006). The specific 
disruption of each ROCK isoform by gene targeting in mice, 
using short interfering RNA (siRNA)-based gene silencing 
in cells and CRISPR gene editing provides growing evidence 
of distinct cellular, physiological and pathophysiological 
functions of the two isoforms. Introduction of KD025, the 
first highly selective ROCK2-isoform inhibitor (Boerma 
et al. 2008), allows novel exploration of its therapeutic 
potential in various vascular, immune and neuronal disorders 
(Akhter et al. 2018; Boerma et al. 2008; Flynn et al. 2016; 
Lee et al. 2014; Sadeghian et al. 2018; Sharma and Roy 
2020; Weiss et al. 2016; Zanin-Zhorov et al. 2014, 2016, 
2017). In this review, we will summarize the milestone dis-
coveries in ROCK research and the current understanding of 
ROCK signaling in embryonic development, update current 
discoveries from knockout and knockin mouse models, and 
stem cell research.

Milestone Discoveries in ROCK Research

Protein kinases play a vital regulatory role in nearly every 
aspect of cell biology through modifying protein phospho-
rylation status to influence numerous cell functions. The 
origin of protein kinase research traces back to the discov-
ery of ATP-dependent, divalent metal ion-dependent enzy-
matic activity in the mid-1950s by Fischer and Krebs (1955), 
which ultimately led to the discovery of the serine/threonine 
kinase phosphorylase b kinase. The discovery of the Rho 
GTPase family can be traced back to the mid-1980s when 
Rho was identified as key molecule for actin reorganization, 
from which Rho signaling research has been expanded to 
all areas of biology and medicine (Narumiya and Thumkeo 
2018). In the mid-1990s when ROCKs were recognized as 
the major effectors in Rho-induced actin reorganization, 
it was marked as a pivotal point in Rho signaling research 
(Fig. 1).

Discovery of ROCKs

In 1996, ROCK1 and ROCK2 were discovered by three inde-
pendent groups and originally called ROKβ/p160ROCK and 
ROKα, respectively (Ishizaki et al. 1996; Leung et al. 1996; 
Matsui et al. 1996; Nakagawa et al. 1996). The ROCK-medi-
ated signaling pathway was then identified in smooth muscle 
cells and connected to cardiovascular diseases with abnor-
mal smooth muscle contraction (Amano et al. 1996; Kawano 
et al. 1999; Kimura et al. 1996; Kureishi et al. 1997). Both 
isoforms were reported to phosphorylate the same major 
downstream substrates such as the myosin binding subu-
nit of myosin light chain phosphatase (MYPT1) (Amano 
et al. 1996; Kawano et al. 1999; Kimura et al. 1996), myosin 
light chain (MLC) (Amano et al. 1996; Kureishi et al. 1997), 
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LIM-kinases (LIMK) (Maekawa et al. 1999; Ohashi et al. 
2000; Sumi et al. 2001), thereby modulating actin cytoskel-
eton organization, stress fiber formation and cell contraction. 
By far, this signaling pathway remains the best character-
ized mechanisms for interpreting the roles of ROCKs in 
regulating actin cytoskeleton in many cell types: ROCKs 
promote actomyosin contractility through increasing MLC 
phosphorylation, and stabilize actin filaments through LIMK 
activation, resulting in cofilin phosphorylation and thereby 
inhibiting its actin-depolymerization activity.

These early ROCK studies support the paradigm that both 
ROCK isoforms are functionally redundant due to the high 
degree of amino acid sequence homology in their kinase 
domains, shared activators (Rho GTPases and lipid media-
tors) and substrates, and auto-inhibitory activity (Amano 
et al. 1999). In their inactive form, the carboxyl terminal PH 
domain and RBD of ROCK interact with the kinase domain, 
which forms an auto-inhibitory loop. The RBD localized 
in the coiled-coil domain interacts only with activated Rho 
GTPases including RhoA, RhoB and RhoC (Fujisawa et al. 
1996). The PH domain is believed to interact with lipid 
mediators such as arachidonic acid and sphingosylphos-
phorylcholine (Feng et al. 1999; Fu et al. 1998; Shirao et al. 
2002). In addition to the canonical substrates (MYPT1, 
MLC and LIMK), ROCKs share more than 30 immediate 
downstream substrates and novel ROCK substrates are con-
stantly being discovered (reviewed in: Amano et al. 2010; 
Shi and Wei 2007; Surma et al. 2011; Wei et al. 2016).

Development and Therapeutic Effects of ROCK 
Inhibitors

The efforts in drug discovery targeting on ROCKs were 
concentrated on the development of non-isoform selective 

ROCK inhibitors in the early period based on the assumption 
of functionally redundant isoforms. The most commonly 
used chemical inhibitors are fasudil (also named HA-1077) 
and Y27632 (Uehata et al. 1997). Fasudil was originally dis-
covered for inhibiting PKA and PKC (Asano et al. 1989), but 
was later identified to be more potent for inhibiting ROCKs 
(Davies et al. 2000; Uehata et al. 1997). Fasudil is also the 
only ROCK inhibitor used in humans systemically for the 
prevention and treatment of cerebral vasospasm after surgery 
in subarachnoid hemorrhagic patients in Japan (Shibuya 
et al. 1992). Hydroxyfasudil is the main metabolite of fas-
udil after oral administration, and H-1152P is another ana-
logue of fasudil, both of which are more potent than fasudil. 
Because these inhibitors target the ATP-dependent kinase 
domain of ROCK1 and ROCK2, they are non-isoform spe-
cific and also able to inhibit other serine/threonine kinases 
such as PKA and PKC at higher dosages (Bain et al. 2007; 
Davies et al. 2000).

ROCK inhibitors were initially investigated for therapeu-
tic potential in vascular diseases, such as cerebral vasos-
pasm, hypertension and coronary artery spasm (Sasaki 
et al. 2002; Shibuya et al. 2005; Suzuki et al. 2007; Uehata 
et al. 1997; Zhao et al. 2006), and gradually extended to 
metabolic, neurodegenerative and inflammatory diseases, 
etc. (Fukumoto and Shimokawa 2013; Huang et al. 2013; 
Knipe et al. 2015; Sawada and Liao 2014; Shi and Wei 2013; 
Watzlawick et al. 2014). Moreover, ROCK inhibition has 
been extended to cancer treatment during the recent decade 
(Morgan-Fisher et al. 2013; Shahbazi et al. 2020; Wei et al. 
2016). Due to general promising results of ROCK pan-inhi-
bition and increasing evidence challenging the old paradigm, 
considerable interest and efforts are devoted to the develop-
ment of more potent and isoform-selective ROCK inhibitors 
(Defert and Boland 2017; Feng and LoGrasso 2014; Feng 

Fig. 1  Milestone discoveries in 
ROCK research 25 years of ROCK research
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et al. 2016). Among these novel ROCK inhibitors, ripas-
udil (also named K-115), a close analogue of fasudil, was 
approved in Japan in 2014 for the treatment of glaucoma 
(Garnock-Jones 2014). It should be noted, inhibition of 
ROCKs can relax smooth muscle cells, ROCK pan-inhibi-
tors potentially trigger a rapid and pronounced drop in blood 
pressure upon systemic exposure (Defert and Boland 2017; 
Feng and LoGrasso 2014; Feng et al. 2016). In addition, a 
reversible decrease in lymphocyte counts is another poten-
tial adverse effect that may be caused by systemic exposure 
of ROCK pan-inhibitors (Shaw et al. 2014). Therefore, the 
unwanted systemic side effects of ROCK pan-inhibitors have 
so far hampered their clinical applications.

Unfortunately, due to the 65% similarly in overall amino 
acid sequence and 92% similarity in kinase domains, devel-
oping isoform-selective inhibitors is incredibly challenging. 
Therefore, isoform-selective inhibition of ROCKs without 
major side effects is considered a significant breakthrough 
for systemic applications. Notably, KD025 (also named 
SLx-2119) was published in 2008, and it is the first highly 
selective ROCK2-isoform inhibitor achieving a high isoform 
selectivity of > 200-fold for ROCK2 vs. ROCK1 (Boerma 
et al. 2008). Its therapeutic potential has been explored in 
fibrotic disease (Boerma et al. 2008), focal cerebral ischemia 
(Akhter et al. 2018; Lee et al. 2014; Sadeghian et al. 2018), 
and auto-immune disease (Flynn et al. 2016; Weiss et al. 
2016; Zanin-Zhorov and Blazar 2021; Zanin-Zhorov et al. 
2014, 2016, 2017). Interestingly, hypotensive phenotype was 
not observed when KD025 was tested in systemic applica-
tion (Lee et al. 2014). In contrast to the recent progress in 
the development of ROCK2-selective inhibitors, ROCK1 
inhibitors with > 50-fold selectivity for ROCK1 vs. ROCK2 
have not been reported although they are highly desired 
(Defert and Boland 2017; Feng and LoGrasso 2014; Feng 
et al. 2016).

ROCK Isoform Functions

In addition to the shared activators and substrates described 
above, a growing body of evidence confirms that both ROCK 
isoforms have distinct partners that interact with each other 
in individual cell types, which in turn can perform non-
redundant functions. ROCK1 is cleaved by caspase 3 at the 
cleavage site DETD1113 during apoptosis and this sequence 
for caspase 3 cleavage is conserved in human, rat and mouse, 
but is not present in ROCK2 (Coleman et al. 2001; Sebbagh 
et al. 2001). On the other hand, during cytotoxic lymphocyte 
granule-induced cell death, human ROCK2 can be cleaved 
by the proapoptotic protease granzyme B at IGLD1131 site, 
but this site is not present in ROCK1 (Sebbagh et al. 2005). 
Moreover, microRNAs (miRNAs) were found to be involved 
in regulating gene expression around the time of the dis-
covery of ROCKs (Lee et al. 1993; Wightman et al. 1993). 

Decades of research has identified numerous miRNAs that 
participate in regulating ROCK1 and ROCK2 expression 
and activity in cancer and normal cells (extensively reviewed 
in two recent articles: Uray et al. 2020; Wei et al. 2016). A 
miRNA is a small non-coding RNA that guides molecules 
modulating gene expression primarily by binding to the 3′ 
untranslated regions (UTR) of targeted messenger RNA, 
leading to mRNA degradation and decreased translational 
efficiency (Nilsen 2007). However, translation upregulation 
by miRNAs has been observed, depending on the target 
RNA sequence context, associated microribonucleopro-
teins and cellular conditions (Vasudevan 2012). Since the 
3′ UTRs of ROCK1 and ROCK2 are comprised of differ-
ent sets of miRNA-binding sites, their expressions can be 
regulated differently by miRNAs. For instance, ROCK1 was 
found to be a target of miR-143/145 in smooth muscle cells 
(Xin et al. 2009; Zhang et al. 2016), miR-124, miR-135a, 
miR-145, miR146a, miR-148a, miR-186, miR-340, miR-
584, and miR-1280 in cancer cells (Wei et al. 2016). On the 
other hand, ROCK2 was found to be a target of miR-34/449 
in multiciliated cells (Chevalier et al. 2015; Mercey et al. 
2016), miR-142-3p in lymphocytes (Liu et al. 2014), and 
miR-101, miR-124, miR-138, miR-139, and miR-200b/c in 
cancer cells (Wei et al. 2016). It is worth noting that some 
miRNAs target both ROCK1 and ROCK2, such as miR-124 
and miR135a in cancer cells (An et al. 2013; Kroiss et al. 
2015; Zheng et al. 2012).

The non-redundant function of each isoforms was 
emerged in recent years, which significantly improve the 
application of ROCK inhibition in medicine. The specific 
disruption of each ROCK isoform by gene targeting in 
mice, siRNA interference in cells and CRISPR gene edit-
ing provides more solid evidence revealing distinct cellular, 
physiological and pathophysiological functions of the two 
isoforms which can even oppose one another in special-
ized contexts. In non-tumor and tumor cells, ROCK1 and 
ROCK2 have been reported to have functional differences 
in regulating the actin cytoskeleton, adhesion, migration, 
proliferation and gene expression, but the underlying mecha-
nisms are not fully understood (reviewed in: Amano et al. 
2010; Shi and Wei 2007; Surma et al. 2011; Wei et al. 2016). 
Their functional differences can be explained by their vari-
ations in expression level, subcellular location, and inter-
action partners in diverse cell types (Amano et al. 2010; 
Shi and Wei 2007; Wei et al. 2016; Surma et al. 2011). For 
instance, a study of mouse tissues with ROCK isoform-
specific antibodies revealed that ROCK1 and ROCK2 have 
differential distribution and subcellular localization patterns 
in epithelial, muscle and neural tissues (Iizuka et al. 2012). 
Our observations of ROCK1- or ROCK2-deficient mouse 
embryonic fibroblasts (MEFs) suggest that ROCK1 plays 
a critical role in mediating stress-induced cell injury and 
death, and ROCK2 plays a pro-survival role in cell injury 
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(Shi et al. 2013a, b; Surma et al. 2014; Wei et al. 2015). In 
MEFs, only ROCK1 deficiency inhibits doxorubicin-induced 
disruption of central stress fibers and formation of cortical 
contractile rings leading to reduced cell detachment (Shi 
et al. 2013a, b; Surma et al. 2014; Wei et al. 2015). The 
anti-detachment effects of ROCK1 deficiency responding 
to this cytotoxic drug is mediated through reduced MLC 
phosphorylation besides preserved cofilin phosphorylation 
which lead to the reduced actomyosin contraction and pre-
served actin polymerization. It is interesting to note that the 
pro-survival characteristics of ROCK1 deficiency in MEFs 
is contrary to the anti-growth and pro-apoptotic character-
istics of ROCK1 deficiency in oncogene-bearing leukemic 
cells although it is also associated with reduced MLC phos-
phorylation (Mali et al. 2011). The differences in functional 
outcomes of ROCK1 deficiency in MEFs vs. leukemic 
cells are likely due to variations in anchorage-dependency, 
cytoskeleton organization and interacting partners in normal 
vs. tumor cells.

The concept of ROCK isoform-specific functions in 
pathophysiology is further supported by the studies in ani-
mal models with systemic or cell type-specific knockout 
mice. Global homozygous ROCK1–/– (Zhang et al. 2006) and 
heterozygous ROCK1+/– (Rikitake et al. 2005) mice show 
beneficial effects such as decreased cardiac fibrosis with-
out affecting pressure overload or angiotensin II-induced 
cardiac hypertrophy. In a gain-of-function mouse model, 
transgenic mice expressing constitutively active ROCK1 in 
cardiomyocytes develop fibrotic cardiomyopathy (Yang et al. 
2012). These studies support that ROCK1 is a key molecule 
in mediating apoptotic signaling in cardiomyocytes under 
pressure overload and in genetically induced cardiomyopa-
thy (Chang et al. 2006; Shi et al. 2008, 2010, 2011; Yue 
et al. 2014; Zhang et al. 2006). In addition, global ROCK1 
deletion or cardiomyocyte-specific ROCK1 deletion restores 
autophagic flux through reducing Beclin1 phosphorylation 
in doxorubicin cardiotoxicity (Shi et al. 2018). Collectively, 
these studies have provided strong evidence that ROCK1 is a 
vital player for pathologic cardiac fibrosis formation, cardio-
myocyte apoptosis and autophagy, but not for hypertrophy. 
On the other hand, global hemizygous ROCK2 deficient and 
cardiomyocyte-specific ROCK2-deficient mice were found 
to be resistant to pressure overload-induced cardiac hyper-
trophy and fibrosis formation, supporting that ROCK2 is 
important in mediating the cardiac hypertrophic response 
(Okamoto et al. 2013; Sunamura et al. 2018). However, 
there are also inconsistencies among the beneficial versus 
detrimental effects of single ROCK isoform knockouts due 
to the excessive compensation resulted from overactivation 
of the remaining isoform. A recent study reported that car-
diomyocyte-specific ROCK1 deficiency worsened pressure 
overload-induced cardiac dysfunction that is associated with 
compensatory up-regulation of ROCK2 (Sunamura et al. 

2018). On the other hand cardiomyocyte-specific ROCK2 
knockout caused compensatory ROCK1 overactivation 
resulting in increased cardiac fibrosis (Shi et al. 2019). 
To overcome the restraint from excessive compensation 
of remained isoform in the single ROCK isoform knock-
out models, we recently used cell type-specific inducible 
approach to delete both ROCK isoforms to investigate the 
short- and long-term effects in the absence of total ROCK 
activity in cardiomyocytes (Shi et al. 2019). It revealed 
that ROCKs are not required for maintaining sarcomeric 
cytoskeleton in adult cardiomyocytes, instead, they partici-
pate in the regulation of non-sarcomeric actin cytoskeleton 
organization, inhibit autophagy by promoting mammalian 
target of rapamycin activity and contribute to age-related 
cardiac fibrosis (Shi et al. 2019).

In addition to cardiac pathophysiology, studies using 
global homozygous ROCK1–/– mouse models supported 
multiple roles of ROCK1 in regulating both normal and 
abnormal hematopoiesis in different hematopoietic line-
ages through both actin-based and non-actin based down-
stream substrates, including maintaining the activation of 
tumor-suppressor genes (Gallo et al. 2012; Kapur et al. 2016; 
Mali et al. 2011, 2014; Vemula et al. 2010, 2012; Wen et al. 
2012). Particularly, ROCK1 plays either negative roles in 
regulating inflammatory and erythropoietic stress (Vemula 
et al. 2010, 2012), or positive roles in regulating the growth 
and survival of leukemic cells (Mali et al. 2011), and growth 
and maturation of mast cells (Kapur et al. 2016). In this 
regard, the role of ROCK2 in regulating both normal and 
abnormal hematopoiesis as well as downstream substrates 
in different hematopoietic lineages remains unanswered. The 
combination of in-depth analyses of cell type-specific double 
vs. single ROCK knockout mouse models are expected to 
provide valuable insights to the shared and distinct ROCK 
isoform functions in pathophysiology.

ROCKs Play Essential Roles in Various 
Embryonic Developmental Stages

Along with quickly growing research interest, many dis-
secting tools became available, comprising of chemical 
inhibitors, expression vectors, siRNA, transgenic mice, 
systemic and cell type-specific knockout animals. Conse-
quently, ROCK research has widely covered almost all bio-
logical systems and extensively involved in human diseases 
including cardiovascular diseases, pulmonary diseases, 
neurodegenerative diseases, metabolic disorders, ocular 
diseases, and cancers, etc. which are fascinating subjects 
of many recent reviews (Dai et al. 2018; Feng et al. 2016; 
Landry et al. 2020; Narumiya and Thumkeo 2018; Saadeldin 
et al. 2020; Shahbazi et al. 2020; Shi and Wei 2007, 2013; 
Shimokawa 2020; Surma et al. 2011; Wei et al. 2016; Yu 



 Archivum Immunologiae et Therapiae Experimentalis            (2022) 70:4 

1 3

    4  Page 6 of 22

et al. 2020). Here, we focus on the current status of ROCK 
research in development.

Overview

RhoA has important roles in many developmental processes 
and most of our knowledge of RhoA signaling function in 
mammalian development is from studies in cell type-spe-
cific RhoA knockout mice (Duquette and Lamarche-Vane 
2014; Narumiya and Thumkeo 2018; Pedersen and Brake-
busch 2012; Zhou and Zheng 2013). ROCK1 and ROCK2 
are major RhoA downstream effectors, mediating RhoA 
action on actomyosin bundle formation during develop-
ment (Narumiya and Thumkeo 2018). Both ROCK1 and 
ROCK2 are ubiquitously expressed in mouse embryos at 
every developmental stages (Duan et al. 2014; Kawagishi 
et al. 2004; Laeno et al. 2013; Saadeldin et al. 2020; Shimizu 
et al. 2005; Thumkeo et al. 2003; Wei et al. 2001). How-
ever, they have evidently distinct preferential expression 
patterns. We observed that ROCK1 is highly enriched in 
developing hearts and ROCK2 is ubiquitously expressed at 
stages E7.5–9.5 (Wei et al. 2001). In ROCK1–/– embryos 
which contain a knockin lacZ reporter gene, LacZ stain-
ing was detected in many locations throughout the embryo 
(E13.5–15.5), including the skin, heart, aorta, umbilical 
blood vessels, and dorsal root ganglia (Shimizu et al. 2005). 
In ROCK2–/– embryos with a knockin lacZ reporter gene, 
LacZ staining was also observed in many locations through-
out the embryo (E13.5), including the heart, liver, umbilical 
blood vessels, dorsal root ganglions, and the labyrinth layer 
of the placenta (Thumkeo et al. 2003).

Numerous studies, using ROCK knockout mice, or 
transgenic mice of tissue-specific expressing of ROCK 
dominant negative mutants (inhibiting kinase activity of 
both isoforms), or mouse and chick treated with ROCK 
pan-inhibitors (Y27632), and so on, have demonstrated that 
ROCK activity plays critical roles in early developmental 
stages including oocyte maturation, blastocyst formation and 
implantation (Alarcon and Marikawa 2018; Kawagishi et al. 
2004; Kono et al. 2014; Laeno et al. 2013; Marikawa and 
Alarcon 2019; Saadeldin et al. 2020). A recent review has 
provided detailed description on the localization of ROCKs 
and their functions in oocytes and preimplantation embryos 
in different species (Saadeldin et al. 2020). ROCK activity 
is also critical for embryonic stem cell (ESC) aggregation 
and differentiation (see below for more details), which are 
required for normal tissue morphogenesis including gas-
trulation and neurulation (Narumiya and Thumkeo 2018; 
Nishimura et al. 2012; Nishimura and Takeichi 2008; Wei 
et al. 2001), and cardiac morphogenesis including the move-
ment of second heart field cells, cardiomyocyte proliferation, 
endocardial cell differentiation and migration, and develop-
ment of cardiac conduction system (Ellawindy et al. 2015; 

Hildreth et al. 2009; Vicente-Steijn et al. 2017; Wei et al. 
2001, 2002, 2004; Zhao and Rivkees 2003, 2004). Moreover, 
ROCKs critical roles in development have been reported in 
vascular remodeling in the yolk sac (Kamijo et al. 2011), 
lung morphogenesis (McMurtry et al. 2003), brain morpho-
genesis and development of motor neurons (Kobayashi et al. 
2004, 2011; Lin et al. 2013; Zhou et al. 2009), placental 
development (Thumkeo et al. 2003, 2005), eyelid closure 
and body wall closure (Duess et al. 2016, 2020; Shimizu 
et al. 2005; Thumkeo et al. 2005).

Together, the significant involvement of ROCKs in 
vertebrate developmental processes is to promote actin 
cytoskeletal organization, actin fiber formation, actomyo-
sin contraction and actin dynamics through intra- and inter-
cellular spatial–temporal regulation of ROCKs/MYPT/MLC 
and ROCKs/LIMK/Cofilin pathways. These pathways are 
critical for cytokinesis, asymmetric cell division, formation 
of adherens junctions, apical-basal polarity of epithelial 
cells, tight junction permeability, cell proliferation, com-
paction, migration, differentiation and survival (Narumiya 
and Thumkeo 2018; Saadeldin et al. 2020), showing how 
ROCK exerts its actions to fit different biological functions. 
Similar roles of ROCK in tissue morphogenesis, particularly 
in planar cell polarity, were also observed in drosophila, 
caenorhabditis elegans, xenopus and zebrafish, all having 
a single ROCK ortholog, namely ROCK2 (Iida et al. 2020; 
Kim and Han 2005; Sidor et al. 2020; Tsankova et al. 2017; 
Wu and Herman 2006). With the advance in our understand-
ing on ROCK signaling during developmental processes, 
we selected several specific areas using knockout, knockin, 
and conditional knockout in mice as approaches to provide 
a detailed review of their current status.

Genetic Background Can Affect the Developmental 
Phenotypes and Survival Rates in Systemic ROCK1 
and ROCK2 Knockout Mice

Data from our laboratory and others revealed that the 
genetic background affects the developmental phenotypes 
and survival rate of ROCK1–/– embryos (Rikitake et al. 
2005; Shimizu et al. 2005; Zhang et al. 2006) (Table 1). 
ROCK1–/– mice in C57BL/6 genetic background were born 
at expected Mendelian ratios, but exhibited eyelids open at 
birth (EOB) and an omphalocele phenotype due to disor-
ganization of actin filaments in the epithelial cells of the 
eyelids and in the umbilical ring (Shimizu et al. 2005). 
The majority of ROCK1–/– mice (> 90%) die soon after 
birth due to organs protruding through an omphalocele, 
such as the liver and gut through the peritoneal cavity. In 
contrast, the mice in FVB background exhibit a different 
embryonic phenotype: EOB and omphalocele were absent, 
nevertheless, the ratio of ROCK1–/– mice was sub-Mende-
lian since 60% died in utero before E9.5 (Shi et al. 2011; 
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Zhang et al. 2006). The 40% survival rate was maintained 
in ROCK1–/– mice from E9.5 to adult stages suggesting that 
ROCK1 acts on an early stage of embryonic development 
prior to organogenesis in FVB background. The reason that 
genetic background (C57BL/6 vs. FVB) influences the peri-
natal and early embryonic phenotypes is unknown. In fact, 
ROCK1+/– and ROCK2+/– embryos in FVB background also 
presented partial premature lethality with 29.1% and 33.8% 
penetrance, respectively (Table 1). The developmental stages 
where ROCK1+/– and ROCK2+/– embryos died remain to be 
identified.

The developmental phenotypes of ROCK2–/– mice also 
depend on the genetic background (Table 1). ROCK2–/– mice 
in a mixed genetic background between 129/SvJ and 
C57BL/6 demonstrate embryonic lethality due to placental 
dysfunction from thrombus formation in the labyrinth layer 
of the placenta, and have intrauterine growth retardation 
and the majority of embryos (~ 80%) die from E13.5–E18.5 
(Thumkeo et al. 2003, 2005). When these ROCK2–/– mice 
were backcrossed into a C57BL/6 genetic background, they 
exhibit not only the placental phenotype but also perinatal 
EOB and omphalocele phenotype (Thumkeo et al. 2005), 
indicating that genetic background affects the EOB and 
omphalocele phenotype in ROCK2–/– mice.

Due to the high degree of penetrance, the viability of 
ROCK1–/– and ROCK2–/– mice in C57BL/6 background is 
extremely low. The shared perinatal EOB and omphalocele 

phenotypes in these mice suggest that they act function-
ally redundant in these closure processes through ROCKs/
MYPT/MLC pathway regulating the assembly of actin 
bundles essential for closure of eyelid and ventricular body 
wall in mouse embryos (Shimizu et al. 2005). Remark-
ably, deletion of LIMK2, a key downstream effector of 
ROCKs, also caused the EOB phenotype due to inhibi-
tion of keratinocyte migration during eyelid formation 
(Rice et al. 2012), supporting the contribution of ROCKs/
LIMK2/Cofilin pathway to this developmental process. 
On the other hand, the shared partial embryonic lethal-
ity of ROCK1–/–, ROCK1+/– and ROCK2+/– in FVB back-
ground also points that ROCK1 and ROCK2 have shared 
functions. A shared characteristic in ROCK1–/– and 
ROCK2–/– mice, regardless of their genetic background, 
is that they seem to develop normally, healthy and fer-
tile after surviving their intrauterine and perinatal period 
(Rikitake et al. 2005; Shimizu et al. 2005; Thumkeo et al. 
2003; Zhang et al. 2006), suggesting that each isoform 
is able to functionally compensate in vivo for the loss of 
the other during the remaining developmental processes. 
In addition, there is no compensatory up-regulation of 
the ROCK1 expression in ROCK2–/– mice and vice versa. 
Together, these genetic studies using ROCK1–/– and 
ROCK2–/– mice provide significant insights into the bio-
logical functions of ROCK1 and ROCK2 isoforms which 
appear to be largely redundant during development.

Table 1  Summary of developmental phenotype and survival rate of ROCK knockout or knockin mice

a We analyzed 54 offspring at the age of 3 weeks obtained by intercrossing ROCK1+/KD mice (17 ROCK1+/+, 37 ROCK1+/KD, 0 ROCK1KD/KD)
b We analyzed 51 offspring at the age of 3 weeks obtained by intercrossing ROCK2+/KD mice (16 ROCK2+/+, 35 ROCK2+/KD, 0 ROCK2KD/KD)
c We analyzed 61 offspring at the age of 3 weeks obtained by intercrossing ROCK1+/KD mice (32 ROCK1+/+, 29 ROCK1+/KD, 0 ROCK1KD/KD)
d We analyzed 258 offspring at the age of 3 weeks obtained by crossing ROCK1+/– mice with ROCK1+/+ (151 ROCK1+/+, 107 ROCK1+/–)
e We analyzed 64 offspring at the age of 3 weeks obtained by crossing ROCK1+/KD mice with ROCK1+/+ (44 ROCK1+/+, 20 ROCK1+/KD)
f We analyzed 118 offspring at the age of 3 weeks obtained by crossing ROCK2+/– mice with ROCK2+/+ (71 ROCK2+/+, 47 ROCK2+/–)
g We analyzed 54 offspring at the age of 3 weeks obtained by crossing ROCK2+/KD mice with ROCK2+/+ (40 ROCK2+/+, 14 ROCK2+/KD)

Genetic background Genotype Developmental phenotype and survival rate at weaning age References

C57BL/6 ROCK1–/–  > 90% perinatal lethal with EOB and ompalocele
3.5–10% survival to adulthood

Rikita et al. (2005), Shi et al. 
(2011), Shimizu et al. (2005)

ROCK1KD/KD  ~ 100% perinatal lethal with EOB and ompalocele Shi and Wei (unpublished results)a

ROCK2–/–  ~ 80% embryonic lethal from E13.5–E18.5 with placental defects
Survival embryos > 90% perinatal lethal with EOB and ompalocele
 < 1% survival to adulthood

Thumkeo et al. (2003, 2005)

ROCK2KD/KD  ~ 100% embryonic lethal Shi and Wei (unpublished results)b

FVB ROCK1–/–  ~ 60% embryonic lethal before E9.5, ~ 40% survival to adulthood Zhang et al. (2006)
ROCK1KD/KD  ~ 100% embryonic lethal Shi and Wei (unpublished results)c

ROCK1+/–  ~ 29.1% embryonic lethal, ~ 70.9% survival to adulthood Shi and Wei (unpublished results)d

ROCK1+/KD  ~ 54.5% embryonic lethal ~ 45.5% survival to adulthood Shi and Wei (unpublished results)e

ROCK2+/–  ~ 33.8% embryonic lethal, ~ 66.2% survival to adulthood Shi and Wei (unpublished results)f

ROCK2+/KD  ~ 65% embryonic lethal, ~ 35% survival to adulthood Shi and Wei (unpublished results)g
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Can ROCK1 and ROCK2 Kinase‑Dead Knockin Mice 
Phenocopy Knockout Mice?

ROCK isoform deletion removes both kinase-dependent and 
independent functions of the ROCK protein. To compare the 
effects of genetic deletion to those of genetic inactivation, 
we have analyzed the developmental phenotypes of ROCK 
isoform kinase-dead (KD) point-mutation knockin mice (Shi 
and Wei, unpublished results) (Fig. 2); mice were generated 
in the C57BL/6 background by Merck Research Laboratories 
(available through Taconic; Rock1—Model 12904—PM; 
Rock2—Model 12979—PM). Since the inactivated ROCK 
isoforms are still able to interact with their regulators such 
as RhoA and with downstream substrates, they can com-
petitively inhibit other RhoA effectors behaving as domi-
nant negatives. Viewed in this way, KD knockin mutation 
may not be functionally identical to null mutation. Molecu-
lar analyses indicate that the KD mutation in each isoform 
inactivates kinase activity, but has no detectable changes 
in protein expression (Wei et al. 2020) (Fig. 2H). However, 
when the heterozygous ROCK1+/KD mice were intercrossed, 
no viable ROCK1KD/KD mouse at birth was obtained. Simi-
larly, no viable ROCK2KD/KD mouse at birth was obtained 
when the heterozygous ROCK2+/KD mice were intercrossed 
(Table 1). The high premature death rate of ROCK1KD/KD 
and ROCK2KD/KD mice (~ 100%) in C57BL/6 background is 
similar to that of ROCK1–/– and ROCK2–/– mice (95–100%), 
suggest that ROCK isoform kinase inactivation in mice may 
recapitulate major developmental phenotypes of ROCK 
isoform deficient mice. To answer whether ROCK1KD/KD 
mice reproduce the developmental phenotypes reported in 
ROCK1–/– mice such as EOB and omphalocele, we analyzed 
the genotype distribution at birth. Findings showed that the 
number of the ROCK1KD/KD neonates (12 out of 51; 23.5%) 
is close to the expected Mendelian ratio (25%), but they all 
presented with EOB and omphalocele perinatal phenotype 
(Fig. 2B) and died within few hours after birth. These results 
support the notion that ROCK1-KD allele can phenocopy 
the perinatal phenotype of ROCK1-null allele in C57BL/6 
background.

The high premature mortality rates in both knockout and 
KD mice of C57BL/6 background make it difficult to evalu-
ate if KD alleles have dominant negative effects compared 
to the knockout allele. However, the partial lethality of 
ROCK1–/– (60%), ROCK1+/– (29.1%), and ROCK2+/– (33.8%) 
mice in FVB background have provided a well-defined sys-
tem for further evaluating the impact of KD mutation in 
ROCK1 or ROCK2 endogenous gene (Table 1). Following 
both ROCK1-KD and ROCK2-KD alleles were backcrossed 
into the FVB background (> 10 generations), ROCK1KD/KD 
mice show significantly increased mortality compared to 
ROCK1–/– mice (100% vs. 60%), suggesting that two cop-
ies of ROCK1-KD allele in ROCK1KD/KD mice produce 

dominant negative effects over the two preserved ROCK2 
alleles during early embryogenesis. In addition, ROCK1+/KD 
and ROCK2+/KD mice showed increased embryonic mor-
tality rates compared to ROCK1+/– (54.5% vs. 29.1%) and 
ROCK2+/– mice (65% vs. 33.8%), suggesting that one copy 
of ROCK1-KD or ROCK2-KD allele in ROCK1+/KD or 
ROCK2+/KD mice produce dominant negative effects over 
the preserved ROCK1 and ROCK2 alleles, further support-
ing the notion that the KD allele acts as a dominant negative 
during early embryogenesis in FVB background.

To summarize the genetic validation of the KD alleles 
in comparison with the null alleles, two main points reveal 
potential context-dependent KD allele functions: (1) KD-
allele is functional identical to the null-allele that is sup-
ported by the fact that ROCK1KD/KD mice reproduce peri-
natal lethal phenotypes of ROCK1–/– mice in C57BL/6 
background through suppressing ROCKs/MYPT/MLC 
and ROCKs/LIMK/Cofilin pathways in eye lid and umbili-
cal ring epithelial cells (Fig. 2I); (2) KD-allele produces 
dominant negative effects to wild-type alleles, which is sup-
ported by the fact that, in comparison among ROCK1–/–, 
ROCK1+/– and ROCK2+/– mice of FVB background, 
ROCK1KD/KD, ROCK1+/KD and ROCK2+/KD mice all showed 
increased embryonic mortality rates (Table 1).

What Can We Learn from the Deletion of Both 
ROCK1 and ROCK2 Isoforms in Various Mouse 
Developmental Stages?

To determine the impact of the complete removal of ROCK 
activity on the mouse development, we generated dou-
ble ROCK deletion mice via a series of cell type-specific 
Cre mice (Shi and Wei, unpublished results) (Table  2). 
Our first endeavor was to generate α-myosin heavy chain 
(MHC)-Cre/ROCK1f/f/ROCK2f/f mice characterized by 
cardiomyocyte-specific ROCK knockout via MHC-Cre 
(Agah et al. 1997) which shows a developmental stage-
specific expression of endogenous MHC: before birth it is 
expressed in the developing heart from E8.0 and largely 
restricted to the atrium; 2 days after birth, the expres-
sion is markedly up-regulated in the atrium and ventricle 
(Ng et al. 1991; Subramaniam et al. 1991). Both MHC-
Cre/ROCK1f/f/ROCK2+/f and MHC-Cre/ROCK1+/f/ROCK2f/f 
mice retaining one wild-type allele, either ROCK1 or 
ROCK2 gene, were viable up to 12 months of age, but 
no viable MHC-Cre/ROCK1f/f/ROCK2f/f mouse was 
obtained in postnatal pups through crossing MHC-
Cre/ROCK1f/f/ROCK2+/f or MHC-Cre/ROCK1+/f/ROCK2f/f 
mice with ROCK1f/f/ROCK2f/f mice. These results indi-
cate that complete removal of both ROCK1 and ROCK2 
in cardiomyocytes leads to embryonic lethality, at least 
one copy of ROCK isoform genes is required in this cell 
type during cardiac development. Surprisingly, mice with 
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MHC-Cre-mediated cardiomyocyte-specific deletion of 
RhoA, the shared activator of ROCKs, can survive to adult-
hood without basal pathological phenotype (Lauriol et al. 
2014). Two probable explanations can help to understand 

the absence of requirement for RhoA in cardiomyocytes dur-
ing development: (1) ROCKs can also be activated by other 
Rho family members, for instance RhoB and RhoC (Fuji-
sawa et al. 1996), therefor ROCK activity is not completely 
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Fig. 2  Characterization of ROCK1 or ROCK2 KD knockin mice. 
A Molecular structure of ROCK1 and ROCK2. Lysine (Lys or K) 
105 in ROCK1 catalytic kinase domain or Lysine121 in ROCK2, 
required for ATP binding, is exchanged for Alanine (Ala or A) in 
ROCK1 or ROCK2 KD knockin mice. PH pleckstrin-homology. B–G 
ROCK1KD/KD mice reproduce the perinatal phenotype of ROCK1–/– 
mice in C57BL/6 background. B Left side view of a dead ROCK1–/– 
neonate, with left eye open (C) and umbilical region open (D). E Right 

side view of a live ROCK1KD/KD neonate, with right eye open (F) and 
umbilical region open (G). H Representative image of Western blot 
performed with ROCK1+/KD and ROCK2+/KD MEFs. One ROCK1-KD 
allele achieves reduction of p-MLC level, but has no inhibitory effect 
on ROCK2 activity monitored by p-ROCK2(Ser1366). One ROCK2-
KD allele achieves reduction of p-ROCK2 and p-MLC. *p < 0.05 vs. 
WT cells under same condition. I Simplified scheme depicting the 
actions of ROCKs in eye lid and umbilical ring epithelial cells
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abolished in the RhoA knockout cardiomyocytes; (2) since 
only one out of four copies of ROCK isoform genes is 
required for normal cardiac morphogenesis, RhoA dele-
tion is not sufficient to reduce ROCK activity below the 
threshold.

In addition,  we generated Per iostin (Per i)-
Cre/ROCK1f/f/ROCK2f/f mice to make constitutive fibro-
blast-specific knockout via Peri-Cre (Table 2). Periostin, a 
matricellular protein, is initially detected in cardiac fibro-
blasts at E10.0 as well as the nascent endocardial cushions, 
and is robustly induced in activated fibroblasts (myofibro-
blasts) in response to stress in adult hearts (Kaur et al. 2016; 
Oka et al. 2007; Snider et al. 2009). Both Peri-Cre/ROCK1f/f/
ROCK2+/f and Peri-Cre/ROCK1+/f/ROCK2f/f mice retain-
ing one wild-type allele, either ROCK1 or ROCK2 gene, 
were viable up to 12 months of age, but no viable Peri-
Cre/ROCK1f/f/ROCK2f/f mouse was obtained in postnatal 
pups through crossing Peri-Cre/ROCK1f/f/ROCK2+/f or 
Peri-Cre/ROCK1+/f/ROCK2f/f mice with ROCK1f/f/ROCK2f/f 
mice. The results indicate that removal of both ROCK1 and 
ROCK2 in periostin expressing cells during development 
will result in embryonic lethality as we observed in MHC 
expressing cells, therefore indicating one copy of ROCK iso-
form genes is required in this cell type during development.

Beyond MHC-Cre and Peri-Cre, we endeavored 
to generate Tie2-Cre/ROCK1f/f/ROCK2f/f, Nkx2.5-
Cre/ROCK1f//f/ROCK2f/f, and Wnt1-Cre/ROCK1f//f/ROCK2f/f 
mice through the same breeding strategy as described 
above (Table 2). In Tie2-Cre mice, Tie2 promoter drives 

Cre expression specifically in endothelial cells from E7.5 
throughout development to adulthood (Kisanuki et al. 2001). 
Nkx2.5-Cre provides Cre-mediated recombination initially 
in the cardiac progenitor cells that form the cardiac crescent 
at E7.5, and continues throughout development in cardio-
myocytes (Moses et al. 2001). Wnt1-Cre is active from E8.0 
in the neural plate prior to the emigration of the neural crest, 
which contributes to a variety of developmental processes 
including craniofacial structure and cardiac outflow tract for-
mation (Jiang et al. 2000). In brief, no viable double ROCK 
deficient mouse was obtained from these crossings, indi-
cating that complete removal of both ROCK1 and ROCK2 
in these Tie2, Nkx2.5, and Wnt1 expressing cells will lead 
to embryonic lethality. It is worthy to note, compared to 
MHC-Cre- and Peri-Cre-mediated removal of ROCK1 
and ROCK2, in Tie2-Cre, Nkx2.5-Cre, and Wnt1-Cre 
involved breeders, no viable homo-heterozygous ROCK1f/f/
ROCK2+/f or ROCK1+/f/ROCK2f/f mouse was obtained in 
postnatal pups, indicating that two copies of ROCK iso-
form genes are required in the Tie2, Nkx2.5, and Wnt1 
expressing cells during development. The early embryonic 
lethality caused by homo-heterozygous ROCK deficiency 
in endothelial cells in Tie2-Cre/ROCK1f/f/ROCK2+/f and 
Tie2-CreROCK1+/f/ROCK2f/f mice is consistent with the 
previous observations showing that the homo-heterozygous 
ROCK1–/–/ROCK2+/– or ROCK1+/-/ROCK2-/- mice die in 
utero during E9.5–12.5 due to defective vascular remodeling 
in the yolk sac, and that both ROCK isoforms are expressed 
in endothelial cells in the yolk sac at E9.5 (Kamijo et al. 

Table 2  Viability of cell type-
specific ROCK1 and/or ROCK2 
knockout mice at weaning ages 
in C57BL/6 background

a We crossed MHC-Cre/ROCK1f/f/ROCK2+/f or MHC-Cre/ROCK1+/f/ROCK2f/f mice with 
ROCK1f/f/ROCK2f/f mice, no viable MHC-Cre/ROCK1f/f/ROCK2f/f mouse was obtained after screening 
over 200 mice after birth (Shi and Wei, unpublished results)
b We crossed Peri-Cre/ROCK1f/f/ROCK2+/f or Peri-Cre/ROCK1+/f/ROCK2f/f mice with ROCK1f/f/ROCK2f/f 
mice, no viable Peri-Cre/ROCK1f/f/ROCK2f/f mouse was obtained after screening over 100 mice after birth 
(Shi and Wei, unpublished results)
c We crossed Tie2-Cre/ROCK1+/f/ROCK2+/f with ROCK1f/f/ROCK2f/f mice, no viable Tie2-
Cre/ROCK1f/f/ROCK2+/f, Tie2-Cre/ROCK1+/f/ROCK2f/f or Tie2-Cre/ROCK1f/f/ROCK2f/f mouse was 
obtained after screening over 100 mice after birth (Shi and Wei, unpublished results)
d We crossed Nkx2.5-Cre/ROCK1+//f/ROCK2+/f mice with ROCK1f/f/ROCK2f/f mice, no viable Nkx2.5-
Cre/ROCK1f/f/ROCK2+/f, Nkx2.5-Cre/ROCK1+/f/ROCK2f/f or Nxk2.5-Cre/ROCK1f/f/ROCK2f/f mouse was 
obtained after screening over 100 mice after birth (Shi and Wei, unpublished results)
e We crossed Wnt1-Cre/ROCK1+/f/ROCK2+/f mice with ROCK1f/f/ROCK2f/f mice, no viable Wnt1-
Cre/ROCK1f/f/ROCK2+/f, Wnt1-Cre/ROCK1+/f/ROCK2f/f or Wnt1-Cre/ROCK1f/f/ROCK2f/f mouse was 
obtained after screening over 100 mice after birth (Shi and Wei, unpublished results)

Cell type-specific Cre ROCK1f/f ROCK2f/f ROCK1+/f 
ROCK2+/f

ROCK1+/f 
ROCK2f/f

ROCK1f/f 
ROCK2+/f

ROCK1f/f 
ROCK2f/f

Cardiomyocyte (MHC) Viable Viable Viable Viable Viable Noa

Fibroblasts (Peri) Viable Viable Viable Viable Viable Nob

Endothelial (Tie2) Viable Viable Viable Noc Noc Noc

Endocardial and cardio-
myocyte (Nkx2.5)

Viable Viable Viable Nod Nod Nod

Neural crest (Wnt1) Viable Viable Viable Noe Noe Noe
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2011). In addition, the early embryonic lethality caused by 
homo-heterozygous ROCK deficiency in neural crest cells 
in Wnt1-Cre/ROCK1f/f/ROCK2+/f and Wnt1-CreROCK1+/f/
ROCK2f/f mice is consistent with an early study reporting 
that Wnt1-Cre mediated expression of a ROCK dominant 
negative mutant caused severe craniofacial malformation 
and severe cardiac outflow malformation in mouse embryos 
(Phillips et al. 2012).

The findings from above described studies on five con-
stitutive deletion of both ROCK1 and ROCK2 by cell type-
specific expressed Cre have shown that either removal of 
four copies of ROCK isoform genes in all these cell types 
or three out of four copies in some of these cell types will 
lead to embryonic lethality. These observations support 
an essential role of ROCK activity after the onset of Cre 
expression from E7.5 (Tie2, Nkx2.5), E8.0 (Wnt1, MHC), 
and E10.0 (Peri) in these specific cell types during devel-
opment. The early embryonic lethality of cell type-specific 
double ROCK knockout mice, together with the embry-
onic and perinatal phenotypes of systemic single or double 
ROCK1 and ROCK2 knockout mice, support the notion that 
the copy number requirement of ROCK isoform genes is 
dependent on the cell type, genetic background and devel-
opmental stage (Table 3). Moreover, homo-homozygous 
ROCK1–/–/ROCK2–/– mice die in utero from E3.5 to E9.5 
(Kamijo et  al. 2011) supporting the notion that global 
ROCK activity critically contributes to embryogenesis 
from E3.5, earlier than the cell type-specific ROCK activity. 
To bypass the critical developmental stages while achiev-
ing global or cell type-specific double ROCK deletion, the 

inducible approach via inducible Cre recombinase, e.g. 
through tamoxifen or interferon, is an appropriate approach 
for double ROCK knockout. We have achieved double 
ROCK isoform deletion in cardiomyocytes (Shi et al. 2019) 
using tamoxifen-inducible MHC-Cre (Sohal et al. 2001), in 
stress-activated fibroblasts using tamoxifen-inducible Peri-
Cre (Kanisicak et al. 2016; Khalil et al. 2017) and in blood 
cells using interferon-inducible Mx-Cre (Kuhn et al. 1995). 
These mice are viable after inducible deletion of double 
ROCK isoforms (Shi et al., unpublished results).

In addition to bypassing the embryonic development 
stages where at least one or two copies of ROCK isoform 
genes in specific cell types is required, the approach through 
inducible Cre-mediated deletion of double ROCK isoforms 
is useful for precisely delineating the roles of ROCKs in 
postnatal tissue development and in the initiation and pro-
gression of diseases. Regarding postnatal heart development, 
data from our laboratory and others have revealed that there 
is a functionally intact caspase-dependent death machinery 
in neonatal hearts that is rapidly silenced within the first 3 
weeks of postnatal time window (Madden et al. 2007; Shi 
et al. 2012), indicating that neonatal hearts are more suscep-
tible to cardiotoxicity induced by chemotherapeutic agents 
or to genetically induced cardiomyopathy. ROCK1 defi-
ciency exhibited cardio-protection in various injury mod-
els (Chang et al. 2006; Shi et al. 2008, 2010, 2011, 2018; 
Yue et al. 2014; Zhang et al. 2006) including those neonatal 
hearts affected by genetic cardiomyopathy due to the robust 
upregulation of MHC promoter-mediated transgene expres-
sion (Shi et al. 2008, 2010; Yang et al. 2012). It will be of 

Table 3  Summary of copy number requirement of ROCK isoform genes associated with cell types and developmental stages

a See Table 2
b See Table 1

Required 
copy

Cell type Genotype Lethal stage References

0 Cardiomyocytes Inducible MHC-Cre/ROCK1f/f/ROCK2f/f Not lethal Shi et al. (2019)
1 Cardiomyocytes MHC-Cre/ROCK1f/f/ROCK2f/f After E8.0 Shi and Wei (unpublished results)a

Fibroblasts Peri-Cre/ROCK1f/f/ROCK2f/f After E10.0 Shi and Wei (unpublished results)a

Unknown ROCK1–/–/ROCK2–/– E3.5 – 9.5 Kamijo et al. (2011)
2 Endothelial cells Tie2-Cre/ROCK1+/f/ROCK2f/f; Tie2-

Cre/ROCK1f/f/ROCK2+/f
After E7.5 Shi and Wei (unpublished results)a

ROCK1+/–/ROCK2–/–; ROCK1–/–/ROCK2+/– E9.5 – 12.5 Kamijo et al. (2011)
Cardiac progenitors Nkx2.5-Cre/ROCK1+/f/ROCK2f/f; Nkx2.5-

Cre/ROCK1f/f/ROCK2+/f
After E7.5 Shi and Wei (unpublished results)a

Neural plate Wnt1-Cre/ROCK1+/f/ROCK2f/f; Wnt1-
Cre/ROCK1f/f/ROCK2+/f

After E8.0 Shi and Wei (unpublished results)a

3 Eye lid and umbili-
cal ring epithelial 
cells

ROCK1–/– (C57); ROCK1+/–/ROCK2+/– (C57); 
ROCK2–/– (C57)

Perinatal Rikita et al. (2005), Shimizu et al. (2005), Shi 
et al. (2011), Thumkeo et al. (2005)

4 Unknown ROCK1+/– (FVB); ROCK2+/– (FVB) Before E9.5 Zhang et al. (2006); Shi and Wei (unpublished 
results)b
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interest to assess the impact of double ROCK isoform dele-
tion on postnatal heart maturation window and on cardiac 
apoptosis induced by chemotherapeutic agents in immature 
hearts.

It is fascinating to understand the different functions of 
ROCKs in early developmental, postnatal developmental and 
mature heart stages, especially in disease conditions of adult 
life. Three major differences are interesting: (1) both ROCK 
isoforms act functionally redundant in many developmental 
processes, for instance in the closure processes of eye lid 
and umbilical ring (Fig. 2), but they exhibit distinct roles in 
many circumstances of adult pathophysiology; (2) the gene 
copy number requirement can be developmental stage- and 
cell type-dependent, for instance at least one copy is required 
in cardiomyocytes of developing heart for normal cardiac 
morphogenesis, but their complete deletion is cardiopro-
tective at least during aging (Table 3); (3) ROCK isoform 
expression can be differently regulated, for instance there 
is no compensatory up-regulation of the ROCK2 expres-
sion in ROCK1–/– mice during embryonic development, but 
up-regulation of ROCK2 was observed in ROCK1-deficient 
cardiomyocytes in adult heart (Shi et al. 2019).

ROCKs Play Critical Roles in Stem Cell 
Renewal and Differentiation

In addition to the critical roles of ROCKs in embryonic 
morphogenesis, a rapid growing research area related to 
ROCKs in development is stem cell development covering 
embryonic stem cell patterning, cell lineage commitment of 
mesenchymal stem cells (MSCs), therapeutic applications of 
stem cells derived from adult tissues with self-renewal and 
multi or pluripotent abilities, and the extensively applica-
tions of ROCK inhibitors in stem cell culture systems, for 
instance conditional reprogramming.

Conditional Reprogramming

There has been a strong push to expand primary culture of 
mammalian cells including stem cells for a broad spectrum 
of applications, specifically in disease modeling, drug dis-
covery and evaluation, regenerative medicine and precision 
medicine. Conditional reprogramming technology involves 
co-culture of irradiated mouse fibroblast feeder cells and 
digested primary normal or pathogenic epithelial cells 
in the presence of the ROCK inhibitors (Y-27632). This 
changes the external culture environment to allow cells 
to acquire stem-like characteristics, e.g., capable of long-
term expansion in vitro, while retain their ability to fully 
differentiate (Chapman et al. 2014; Liu et al. 2012, 2017; 
Wu et al. 2020). Both ROCK inhibitors and feeder cells 
are essential for long-term expansion of primary cells. 

However, only feeder cells or ROCK inhibitors cannot sup-
port a long-term expansion of primary cells that become 
senescent after a few passages (Wu et al. 2020). Compared 
to other techniques aimed at expanding stem-like cells and 
maintaining their pluripotency, conditional reprogram-
ming is easy to operate in the laboratory, maintain cell 
genome stability while keeping differentiation potential, 
and avoid genomic manipulation as well as caused ethi-
cal issue. Thus, benefit from conditional reprogramming, 
primary epithelial cells derived from almost all primary 
tissue samples (e.g., adult and embryonic) can be cultured 
and expanded. ROCK inhibitors have been broadly used 
for primary cells in vitro achieving conditional reprogram-
ming. The underlying mechanisms responsible for this 
phenomenon include increased cell cycle progression and 
suppressed senescence (Chapman et al. 2014; Ligaba et al. 
2015), blockade of actomyosin hypercontraction-, Myc- or 
p53-mediated apoptosis (Dakic et al. 2016; Koyanagi et al. 
2008; Kurosawa 2012; Mondal et al. 2018; Ohgushi et al. 
2010; Watanabe et al. 2007), suppression of NOTCH-, 
WNT5A- or TGFβ/SMAD-induced differentiation (Ligaba 
et al. 2015; Santos et al. 2010; Yugawa et al. 2013), main-
tenance of stem-like properties through up-regulation of 
related stem cell makers (Suprynowicz et al. 2012, 2017), 
and promotion of cell-extracellular matrix and cell–cell 
communication (Reynolds et al. 2016).

Inhibition of ROCK Activity Can Augment Stem Cell 
Renewal

Prior to the application of conditional reprogramming 
technology, ROCK inhibition was initially found able to 
facilitate the in vitro growth of pluripotent human ESCs 
(hESCs) due to inhibiting dissociation-induced apoptosis 
via blockage of ROCK/MLC regulated actomyosin con-
traction (Koyanagi et al. 2008; Kurosawa 2012; Ohgushi 
et al. 2010; Watanabe et al. 2007). ROCK inhibitors not 
only protect hESCs from apoptosis during culturing but 
also increase recovery and colony formation after freeze-
thawing from a cryopreserved sample (Baharvand et al. 
2010; Claassen et al. 2009; So et al. 2020). ROCK inhibi-
tors can keep hESCs and human-induced pluripotent 
stem cells (hiPSCs) undifferentiated in culture and induce 
metabolic changes in these cells (Vernardis et al. 2017). 
Therefore, supplementing cell culture with ROCK inhibi-
tors has been proven to be a simple, efficient, and versatile 
approach for the development of new protocols of hiPSC 
culture on a large scale (Rivera et al. 2020), transportation/
shipment of various types of stem cells (Ye et al. 2020), 
improvement of derivation methods for mouse ESCs 
(mESCs) (Zhang et al. 2012) and for handling porcine 
ESCs and PSCs (Baek et al. 2019).
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Stem Cell Differentiation and Therapeutic 
Applications

Human PSCs, including hESCs and hiPSCs, have the abil-
ity for self-renewal and differentiation into any somatic cell 
making them significant in both translational research of 
regenerative medicine and potential therapeutic applications. 
ROCK inhibitors were proven to not only protect hESCs 
through inhibiting dissociation-induced apoptosis during 
culture as mentioned above, but also increase survival of 
hESC-derived cardiomyocytes after dissociation, therefore 
allowing production of specialized cell types for the gen-
eration of disease models and for cell replacement therapy 
(Braam et al. 2010). Among all types of adult stem cells, 
multipotent MSCs are of great interest to cell-based thera-
pies because of their easy isolation and high proliferative rate 
in vitro. Inhibition of ROCK in human bone marrow-derived 
MSCs facilitates their differentiation into keratinocyte-like 
cells, and promotes the proliferation and survival of human 
primary keratinocytes, which can be beneficial for patients 
with burns, trauma, or disease (Li et al. 2015). Furthermore, 
ROCK inhibitors show benefits in maintaining multilay-
ered proliferation of confluent human bone marrow-derived 
MSCs and their potency to differentiate into osteoblast and 
adipocyte lineages, which could be useful in periodontal tis-
sue regeneration (Nakamura et al. 2014). ROCK inhibition 
reduces stress induced by mechanotransduction of human 
bone marrow-derived MSCs, the latter can increase secretion 
and blood concentration of stanniocalcin-1, and support cell 
survival and angiogenesis (Zonderland et al. 2020). Manipu-
lation of human umbilical cord MSCs with ROCK inhibitors 
improved viability and transfection efficiency, and enhanced 
the utility of differentiation and reprogramming of the cells, 
which is beneficial for tissue engineering applications (Mel-
lott et al. 2014). Urine-derived stem cells (UDSC) in humans 
are considered as desirable sources for cell therapy because 
donor-specific UDSC are easily and non-invasively obtained 
and these cells can be reprogramed into hiPSCs. ROCK 
inhibitors, together with Matrigel and flavonoids could 
improve UDSC isolation, proliferation, and differentiation 
potency (Kim et al. 2020). Stem cells from human exfoliated 
deciduous teeth (SHED) are multipotent stem cells with neu-
ral crest cell origin. The addition of ROCK inhibitors in the 
culture medium could enhance the viability of SHED, and if 
treating the cells with the combination of ROCK inhibitors 
and Noggin, it would further synergistically promote their 
differentiation into neuron-like cells and provide a promis-
ing source of stem cells for neurodegenerative disease treat-
ment (Yang et al. 2020). The development of hiPSCs from 
fibroblasts of patients could offer a possibility of develop-
ing individualized treatment plans. ROCK inhibition up-
regulates nuclear receptor NR4A1 and promotes phenotypic 
rescue in neurons differentiated from hiPSCs derived from 

fibroblasts of patients with oligophrenin-1 loss of function. 
Oligophrenin-1 loss of function is responsible for X-linked 
intellectual disability, and ROCK inhibition research can be 
used to provide a model for this neural disease and its treat-
ment (Compagnucci et al. 2016).

In animal stem cell studies, inactivation of ROCK pro-
motes multipotent MSC differentiation into epithelial cells 
for airway repair/remodeling through the WNT (Wingless 
and Int-1) signaling factor LEF1 in a chronic asthma mouse 
model, therefore providing a novel therapeutic target for 
patients with asthma (Ke et al. 2019). A study performed in 
2D matrigel culture system supplemented of ROCK inhibi-
tors and VEGF-A has shown that mESC-derived Flk1+ mes-
odermal precursor cells produced endothelial cells at high 
purity, providing a potential strategy for therapeutic neovas-
cularization (Joo et al. 2012). Regarding neuronal differen-
tiation, suppression of ROCK promoted the differentiation 
of mESCs into neurons via activating phosphatidylinositol 
3-kinase signaling pathway (Kamishibahara et al. 2016). 
Furthermore, ROCK inhibition rescued neurogenesis of rat 
hippocampal neural stem cells cultured on stiff substrates 
through reducing stiffness-induced myosin contractility and 
nuclear translocation of angiomotin resulting in increased 
β-catenin activity (Kang et al. 2020). In contrast to their 
roles of promoting differentiation described above, ROCK 
inhibition also has roles in suppressing differentiation in 
other cell types. For example, the inhibition of ROCK sup-
pressed mechanical tension-induced osteogenic differen-
tiation of rat cranial sagittal suture MSCs, down-regulated 
TAZ expression and inhibited nuclear translocation that is 
involved in osteogenic differentiation (Li et al. 2020).

To study embryonic patterning, the addition of ROCK 
inhibitors in protocol allowed in vitro differentiating rat 
ESCs into embryoid bodies which further propagated and 
differentiated into three embryonic germ layers and func-
tional cardiomyocytes (Cao et al. 2011). In cultured hiPSCs, 
ROCK activity could regulate mesodermal spatial organiza-
tion and subsequent vascular fate of the cells which were 
differentiated into endothelial cells (low cytoskeletal tension 
and high cell–cell contact) vs. pericytes (high cytoskeletal 
tension and low cell–cell contact) and self-organized to 
form blood vessels (Smith et al. 2018). Moreover, studies 
employing CRISPR gene editing induced specific knock-
down of ROCK1 in subpopulations of hiPSC colonies within 
an otherwise homogeneous population of pluripotent cells. 
The resulting mosaic knockdown of ROCK1 triggered cel-
lular self-organization within colonies due to the cells lack-
ing ROCK1 moving to the periphery of the colonies while 
retaining an epithelial pluripotent phenotype, which supports 
that ROCK1 is a significant player in tissue development and 
cell organization processes (Libby et al. 2018, 2021).

Regarding cell lineage commitment, RhoA/ROCK-
mediated cell–cell and cell–matrix interactions have been 
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profoundly involved in osteogenesis, myogenesis, adipogene-
sis of progenitor cells and stem cells for both physiology and 
pathophysiology. For instance, in embryonic heart, ROCK 
inhibition could lead to fibrofatty replacement of cardiomyo-
cytes in the right ventricle of adult mice, but this event could 
not be detected after birth (Ellawindy et al. 2015). In line 
with this observation, ROCK inhibition primed embryonic 
cardiac progenitors to be ready to switch to the brown/beige 
adipocyte lineage in response to adipogenesis-inducing sig-
nals, supporting that RhoA/ROCK-mediated actin cytoskel-
eton dynamics control an active MRTF/SRF transcriptional 
program essential for cardiomyocyte identity during car-
diomyocyte differentiation (Dorn et al. 2018). In addition 
to the determination between cardiomyocyte and adipocyte 
lineages, ROCK activity is also involved in the determina-
tion between white and brown/beige adipocyte formation 
via control of MRTF/SRF transcriptional program in adult 
fat tissues (McDonald et al. 2015; Nobusue et al. 2014). We 
recently discovered that ROCK2 inhibition enhances beige 
adipogenesis of stromal-vascular cells and subcutaneous 
white adipose tissue in mice; the course is associated with 
increased thermogenic program in white and brown fat tis-
sue (Wei et al. 2020).

Cancer Stem Cells and Precision Medicine

Accumulating evidence supports the concept that ROCK 
plays vital roles in tumor development and progression 
through regulating many key cellular functions associated 
with malignancy, including tumorigenicity, tumor growth, 
metastasis, angiogenesis, tumor cell apoptosis/survival and 
chemoresistance. Since ROCK has emerged as a promis-
ing target for the development of novel anti-cancer drugs, 
the prospect of applying ROCK inhibition to delay and 
block tumorigenicity, tumor growth, tumor cell invasion 
and metastasis has been extensively evaluated (de Sousa 
et al. 2020; Shahbazi et al. 2020; Wei et al. 2016). Although 
ROCK activation is generally considered to be oncogenic, 
some studies show ROCK functions as a negative regula-
tor in cancer progression. The possibilities for the observed 
contradictory contributions of ROCK signaling to cancer 
progression include the complexities of cell context and 
microenvironment, potential compensatory up-regulation 
of ROCK isoform triggered by the inhibition of another 
isoform, and compensatory effects of other signaling path-
ways. A recent study has shown that while the loss of either 
ROCK1 or ROCK2 had no negative impact on tumorigenesis 
in mouse models of non-small cell lung cancer and mela-
noma, the loss of both isoforms blocked tumor formation 
owing to inhibiting cell cycle progression and tumorigenesis 
(Kumper et al. 2016). This approach through double ROCK 
isoform deletion can help future studies to further clarify 

the precise roles of ROCK isoforms affecting specific types 
of cancer processes.

Another potential explanation for contradictory contribu-
tions of ROCK signaling to cancer progression is relating to 
the pro-survival and proliferative effects of ROCK inhibition 
on cancer stem cells, dormant cells, and circulating tumor 
cells which are responsible for cancer cell dissemination and 
metastasis after ROCK inhibition (de Sousa et al. 2020; Wei 
et al. 2016). Cancer stem cells, also named tumor-initiating 
cells, represent a small subpopulation of cancer cells with 
self-renewable and multi or pluripotent abilities. ROCK 
inhibition increased adhesion of cancer stem cells from pri-
mary human glioblastoma to soft extracellular matrix lead-
ing to increased migration and tissue invasion (Wong et al. 
2015). In contrast, ROCK inhibition in stromal cells sur-
rounding cancer stem cells reduced stiffness of extracellular 
matrix leading to reduced stem cell adhesion to extracellular 
matrix and consequently reduced spreading, migration, and 
proliferation (Choi et al. 2015). Furthermore, ROCK inhi-
bition in dormant MCF-7 breast cancer cells disrupted cell 
junction, promoted cell proliferation, migration and inva-
sion associated with increased Rac GTPase-mediated sign-
aling activation (Yang and Kim 2014). Likewise, exposure 
of the circulating breast cancer cells to ROCK inhibitors 
destabilized the actin cortex and increased the formation 
of microtentacles which are microtubule-based structures 
and can enhance their reattachment efficacy to the vascula-
ture and accordingly, their metastatic potential (Bhandary 
et al. 2015). Hence, anticipated effects of ROCK inhibition 
relevant pro-survival and pro-extracellular matrix adhesive 
should be measured to avoid potential undesirable effects 
before ROCK inhibition as a therapeutic strategy in any type 
of cancer treatment.

Similar to the culture of stem cells of non-cancer origins, 
the inclusion of ROCK inhibitors has also become part of 
standard stem cell culture protocols for cancer stem cells 
(Castro et al. 2013; Lin et al. 2018; Ohata et al. 2012; Tilson 
et al. 2015). In addition to promoting survival, ROCK inhibi-
tors also increased proliferation of cancer stem cells (Cas-
tro et al. 2013), and enhanced stem-like phenotypes with 
increased expression of related stem cell markers (Ohata 
et al. 2012; Tilson et al. 2015). Furthermore, conditional 
reprogramming technology characterized by co-culture with 
ROCK inhibitors together with fibroblast feeder cells has 
been widely applied in the area of cancer research including 
establishment of individual patient originated cancer models 
and individualized treatment plans (Liu et al. 2012, 2020; 
Wu et al. 2020). Indeed, conditional reprogramming tech-
nology has been recognized as one of the key new technolo-
gies by National Cancer Institute precision oncology and 
included in human cancer model initiatives program (https:// 
ocg. cancer. gov/ progr ams/ hcmi/ resea rch). Conditional repro-
gramming allows for the enrichment of cancer cells from 

https://ocg.cancer.gov/programs/hcmi/research
https://ocg.cancer.gov/programs/hcmi/research
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urine (for bladder cancer), blood (for prostate cancer), pleu-
ral effusion (for non-small cell lung carcinoma), and from 
small biopsies and cryopreserved specimens of solid tumor 
tissues. This helps various biological assays including che-
mosensitivity testing for rapid screening of candidate drugs 
and developing individualized treatment plans (de Sousa 
et al. 2020; Liu et al. 2020; Palechor-Ceron et al. 2019; 
Wu et al. 2020). For example, conditional reprogramming 
helped to identify therapeutic strategies for a patient with 
recurrent respiratory papillomatosis with chemoresistant 
and progressive disease (Yuan et al. 2012), perform per-
sonalized drug sensitivity screening for tongue squamous 
cell carcinoma using patient-derived matched normal and 
tumor models (Palechor-Ceron et al. 2019) and for bladder 
cancer (Kettunen et al. 2019), and to identify novel effective 
drug combination therapeutic strategies for prostate cancer 
(Vondalova Blanarova et al. 2017) and non-small cell lung 
cancer (Crystal et al. 2014).

Future Directions

The ROCK activity contributes to versatile functions on the 
cell biology through its impacting on cytoskeletal-associated 
proteins. Accumulating evidence has shown that ROCK 
signaling has a vital role in normal embryonic develop-
ment, a period when the biological functions of ROCK1 
and ROCK2 isoforms appear to be largely redundant. There 
is rapidly increasing interest in employing ROCK inhibi-
tors in stem cell research. Supplementing cell culture with 
the first generation of ROCK inhibitors including Y27632 
and fasudil has already been included in most protocols. 
This approach has been proved to be simple and efficient 
in expanding stem cells from normal, tumor and other 
pathological origins, maintaining their pluripotency, and 
facilitating their differentiation into desired cell types. This 
approach provides a platform for a wide spectrum of appli-
cations including disease modeling, drug evaluation, drug 
discovery, regenerative medicine and precision medicine.

There is also increased agreement that ROCK1 and 
ROCK2 have non-redundant functions, and pan-inhibition 
can elicit undesirable biological effects. Most of currently 
available ROCK inhibitors being used in investigating the 
role of ROCK in development and stem cell research are 
still non-isoform selective. In recent years, nanoparticle 
carrier delivery therapeutics to target tissue or cells, which 
can reduce off-target effects of ROCK pan-inhibitors, have 
provided a promising outcome, especially in preclinical 
studies (Federico et al. 2020; Mietzner et al. 2020). Addi-
tionally, ROCK1 and ROCK2 expression and/or activity 
can be separately regulated by numerous factors that either 
positively or negatively modify ROCK catalytic activity 
and/or subcellular localization. A great effort is underway 

to elucidate inimitable roles of each ROCK isoform in var-
ious developmental stages. Regarding the redundant func-
tions, we observed through conditional knockout approach 
that the requirement for total ROCK activity during 
embryonic development is cell type dependent (Tables 2 
and 3). The approach provides an exclusive way to analyze 
in detail the requirement for total ROCK isoform gene 
copy number in different cell types and in various develop-
mental contexts. We anticipate that the innovative delivery 
strategies together with advanced knowledge of cell type-
specific roles of ROCKs will help to bring most desirable 
therapeutic applications for high-precision correction of 
specific cell type-related dysfunction/disease. Further-
more, the CRISPR gene editing technology offers a novel 
approach to analyze in detail the temporal and spatial roles 
of ROCK isoforms in early embryonic morphogenesis and 
lineage commitment. The applications of other cutting-
edge technologies such as high-resolution tissue imaging, 
global transcriptomics (Anderson et al. 2018; Misek et al. 
2020) and single cell omics will further enrich our knowl-
edge on ROCK signaling in biological systems and human 
diseases. Through detailed analyses of ROCK-regulated 
gene expression patterns at global and cellular levels in 
physiological and pathological status, these advanced 
approaches will uncover significant biomarkers or crucial 
molecules in ROCK-mediated pathogenesis. We look for-
ward to witnessing ROCK inhibition as a new therapeutic 
choice in future medicine.
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