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Developments in data science 
solutions for carnivore tooth pit 
classification
Lloyd A. Courtenay  1*, Darío Herranz‑Rodrigo2,3, Diego González‑Aguilera1 & 
José Yravedra  2,3

Competition for resources is a key question in the study of our early human evolution. From the first 
hominin groups, carnivores have played a fundamental role in the ecosystem. From this perspective, 
understanding the trophic pressure between hominins and carnivores can provide valuable insights 
into the context in which humans survived, interacted with their surroundings, and consequently 
evolved. While numerous techniques already exist for the detection of carnivore activity in 
archaeological and palaeontological sites, many of these techniques present important limitations. 
The present study builds on a number of advanced data science techniques to confront these issues, 
defining methods for the identification of the precise agents involved in carcass consumption and 
manipulation. For the purpose of this study, a large sample of 620 carnivore tooth pits is presented, 
including samples from bears, hyenas, jaguars, leopards, lions, wolves, foxes and African wild dogs. 
Using 3D modelling, geometric morphometrics, robust data modelling, and artificial intelligence 
algorithms, the present study obtains between 88 and 98% accuracy, with balanced overall evaluation 
metrics across all datasets. From this perspective, and when combined with other sources of 
taphonomic evidence, these results show that advanced data science techniques can be considered 
a valuable addition to the taphonomist’s toolkit for the identification of precise carnivore agents via 
tooth pit morphology.

Throughout history, humans and carnivores have been documented to have complex relationships1–4. From a 
more traditional perspective, competition for resources is the most documented4. Nevertheless, conflict between 
these taxonomic orders is also well known, especially in the context of dynamic shifts in who plays the role of 
predator and who plays the role of prey1,5–9. Among the many sites of global importance, interactions of these 
types have been documented across most continents, including notable cases from the Olduvai Gorge (Tanza-
nia)4,8, Thomas Quarry (Morocco)9, Schöningen (Germany)7,10, Zhoukoudian (China)11, and the classic sites of 
Makapansgat (South Africa)1. Moreover, in more recent periods collaboration between these two orders have 
also been recorded2.

From multiple perspectives, carnivore–hominin interactions have thus been a topic of great interest, in both 
the study of how humans survived and adapted, as well as the contexts in which this occurred. These types 
of analyses, however, have not been free of debate. In certain case studies, issues of equifinality have led ana-
lysts to propose problematic interpretations. The famous long bone fragment from Divje Babe (Slovenia) was 
originally interpreted as a 43 Ka Middle Palaeolithic flute. Nevertheless, subsequent analyses have discredited 
these finds and found the perforations to be product of carnivore bite damage12,13. Likewise, the sites of Sima 
de los Huesos (Atapuerca, Spain) and the Dinaledi Rock Chamber (South Africa), have been interpreted as the 
deliberate anthropic accumulations of human remains14,15. Needless to say, not all researchers agree with these 
conclusions5,16.

The discipline of taphonomy has frequently been at the forefront of these debates4. Taphonomy employs 
numerous tools for the detection, documentation, and consequent interpretation of carnivore and human activi-
ties involved in the formation of a site2,3. Nevertheless, diagnostic tools are frequently subjective, thus requiring 
a search for more empirical and accurate techniques in the identification and interpretation of Bone Surface 
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Modifications (BSM)17. This is especially relevant when considering techniques available for discerning of the 
precise carnivore agencies involved in site formation processes.

Geometric Morphometrics (GM) are a popular multivariate statistical tool for the analysis of morphological 
variance typically in biological systems18,19. Recent years, however, have seen an increase in GM applications 
outside of anatomy. Applications in taphonomy have yielded impressive results when using GM as a tool for 
morphological analyses and visualisation. From this perspective, multiple attempts have been made to use GM 
as a diagnostic tool in carnivore taphonomy8,20–25. With the inclusion of Machine Learning (ML) algorithms, data 
presented by Courtenay et al.20 present a promising advance for the integration of Artificial Intelligence (AI) and 
advanced Data Science techniques with GM. Nevertheless, considering the relatively small sample size, these 
results can also be considered optimistic. Likewise, in a recent study the original landmark model proposed24 was 
found to present important margins of error product of landmark quality. These observations infer that analyst 
experience condition the quality of results21.

Under this premise, the present study uses an updated version of the landmark model using semi-landmarks21, 
and a much larger sample size to expand on the current referential samples available for taphonomic analyses. 
These efforts aim to provide high quality data that can aid in the understanding of modern carnivore taxa that 
are frequently found across Eurasia, Africa and the Americas. Samples include three types of felids (Panthera 
leo, Panthera onca & Panthera pardus), three types of canids (Canis lupus, Vulpes vulpes & Lycaon pictus), the 
spotted hyena (Crocuta crocuta), and the brown bear (Ursus arctos), that have been frequently subject of study 
in Pleistocene research1,26–36. This larger sample allows us to conclude that > 90% separation of carnivore taxa is 
still possible, with possibilities for even higher classification rates in the future.

Results
Geometric morphometrics.  All samples are described by notable allometric patterns (Squared Residuals 
= 0.006, F = 4.1, Effect Size = 2.7, p = 0.005, Bayes Factor Bound (BFB) = 13.88 against H0 ), indicating tooth pit 
size to be an important conditioning factor in morphological variation. This is equally reflected when simply 
considering Centroid Size values for each of the carnivores (Fig. 1, Table S1), with suggestive to strongly indica-
tive differences detected across most species ( χ2 = [5.08, 85.03], p < 0.007 , BFB > 10.59). Exceptions to this 
include C. crocuta, L. pictus and P. onca when these taxa are compared together ( χ2 = [0.14, 1.21], p > 0.27, BFB 
< 1.04), as well as P. pardus when compared with C. lupus ( χ2 = 0.42, p = 0.51, BFB = 1.07 against Ha).

When considering multivariate morphological tendencies in form, general patterns reveal significant dif-
ferences throughout comparisons, with each of the taxonomic families being clearly separable (p ≈ 0.001, BFB 
≈ 53.25). While the statistical separation was weakest when comparing Canidae and Ursidae (p = 0.003, BFB 
= 21.11), as well as Ursidae and Hyaenidae (p = 0.006, BFB = 11.98), in both these cases differences remain of 
notable interest ( p < 0.05 ). From a similar perspective, species within the families Canidae and Felidae appear 
easily separable (p = 0.001, BFB = 53.25). When describing patterns of variation on a species-specific level, most 
carnivores present statistical differences (p ≈ 0.001, BFB ≈ 53.26, Table S2 & S3), nevertheless, exceptions to 
this can still be found. From this perspective, some degrees of equifinality are therefore still likely to exist when 

Figure 1.   Variations in Form and Shape across tooth pits made by different taxa. (a) Variations in mean shape-
size relationships (top-view used for general morphology and front-view for depth). (b) Boxplot diagrams 
representing centroid size distributions for each species (See Supplementary Table 1). (c) Mean landmark 
configurations for carnivore tooth pits using Delaunay 2.5D Triangulation algorithms for mesh visualisations. 
AfWD = Lycaon pictus. Figures created using the ggplot2 and scikit-learn Python and R libraries.
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comparing L. pictus, C. crocuta and P. onca (p > 0.8, BFB > 2.06 against Ha ), as well as when comparing C. crocuta 
and P. onca (p = 0.17, BFB = 1.22).

Exploring morphological variation through visualisations of mean landmark configurations reveal that the 
greatest differences appear when considering landmark displacements across the z-axis (Fig. 1). From this it can 
be seen that C. lupus tend to leave the most superficial traces, while P. leo leave some of the deepest and largest 
tooth pits of the entire sample. Interestingly, V. vulpes and L. pictus appear to leave very deep pits in relation to 
their size. Likewise, when considering variations across a horizontal plane (x and y axes), slight variations can 
be seen with some of the canids such as C. lupus and V. vulpes leaving more circular marks, while felids appear 
to leave more elongated pits (Fig. 1).

When analysing these central morphological tendencies in accordance with taxonomic groupings, very weak 
phylogenetic signals are detected, indicating other confounding variables, such as biomechanics, exert a much 
stronger influence on tooth pit formation than cuspid morphology (Effect Size = − 0.99, p = 0.81, BFB = 2.16 
against Ha . Fig. S1).

Unsupervised computational learning.  Dimensionality reduction of datasets through Principal Com-
ponents Analysis (PCA) produced high dimensional, non-homogeneously distributed and noisy datasets on 
all accounts. General analyses showed PCA in form space to produce a total of 90 Principal Component (PC) 
Scores, of which the first 6 PC Scores represent over 95% of the total sample variance. Analyses of optimal num-
ber of components observed 5 PC scores to be the most representative. Nevertheless high residuals were still 
noted across a number of these dimensions.

When preparing datasets for further processing, Isolation Forests (IF) proved effective for the elimination 
of anomalies across all 5 dimensions (Fig. 2). Nevertheless, a relatively high anomalous score threshold was 
needed for most anomaly detection tasks, considering how species like P. leo and C. lupus presented very high 
variability in comparison with other samples. This natural variability consequently produced a global increase 
of variance across all dimensions, frequently resulting in the adversarial effect of IFs over-classifying entire spe-
cies as anomalies due to their abnormally large morphological variations. Under this premise, anomaly score 
distributions were allowed a slight positive tail, with thresholds in the present study defined between 0.625 and 
0.700. Using these thresholds, IFs were seen to remove between 3 and 10 pits for each dataset, with the most 
extreme removal of 10 pits occurring in the European Taxa dataset. Nevertheless, upon inspection of anomaly 
score distributions (Top right panel; Fig. 2), it can be argued that IFs were still able to preserve the majority of 
natural variability, only eliminating the most extreme of cases. In light of this, IFs were only seen to remove at 
most 2.3% of the original sample.

Once datasets had been cleaned, data augmentation proved successful on all accounts with the generation of 
highly realistic synthetic data by both algorithms. Of the two algorithms tried and tested, Markov Chain Monte 
Carlo (MCMC, Fig. 3) algorithms appeared the fastest at generating new data with very high equivalency scores 
(Table 1). Experimentation found MCMCs to produce the most realistic data when sampling from robustly 
defined gaussian target distributions ( |d| = 0.004, p = 1.2e−57, BFB = 2.3e+54), as opposed to the skewed-normal 
( |d| = 0.06, p = 1.3e−05, BFB = 2515). This was especially evident when considering the skewed-normal had the 

Figure 2.   Anomaly detection results using Isolation Forests. Top Left Panel: Density of information within 
Principal Components Analysis. Top Right Panel: Distribution of Anomaly Scores; Vertical red line marks the 
acceptable threshold. Bottom Left Panel: Scatter plot heat map indicating the anomaly scores for each point. 
Bottom Right Panel: Final classifications of points as anomalies (True) or not (False). Figure created using the 
ggplot2 R library.
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tendency to exaggerate non-Gaussian elements, which may not be a true reflection of the population distribution 
(original skew = 0.18, augmented skew = 0.97).

From the perspective of generative neural networks, of the three Generative Adversarial Networks (GANs), 
Wasserstein Gradient-Penalty loss GANs (WGAN-GP) produced the best results ( |d| = 0.012, p = 2.4e−13, BFB 
= 5.3e+10). Nevertheless, while WGAN-GP proved successful on all datasets, the training of GAN models 
proved to be computationally expensive, with iterations taking ≈25,000 times longer than MCMC ( χ2 = 5.6, p 
= 0.018, BFB = 5.10).

For final data augmentation tasks both MCMC and WGAN-GP were used, with the best performing algo-
rithm being chosen to augment each dataset prior to supervised training (Tables 1, S4-7).

Supervised computational learning.  Both supervised models provided high accuracy in the classifica-
tion of carnivore taxa (Tables 2 & S8-12, Figs. 4, 5 and 6), in most cases producing >90% accuracy (Area Under 
Curve (AUC) > 0.94, F-Measure > 0.93, κ > 0.86). The only exception to this can be found in the case of the 
Pleistocene European Taxa dataset, which only produced >85% accuracy (AUC ≈ 0.90, F ≈ 0.89, κ ≈ 0.85). Upon 
analysing the overall performance of each dataset, the greatest results are obtained when differentiating between 
taxonomic families (Accuracy > 96%, AUC > 0.97, F > 0.97, κ > 0.92), as well as the specific species within these 
families (Table S11 & S12). This can be seen in the cases of the Canidae (Acc. > 97%, AUC > 0.98, F > 0.98, κ > 
0.95), and the Felidae datasets (Acc. > 96%, AUC > 0.97, F > 0.97, κ > 0.95).

When pooling many labels, especially with taxa from different families, overall classification rates tend to 
drop. Nevertheless, while classification rates may fall below 90% accuracy, miss-classification rates and the fre-
quency of Type I and Type II errors do not rise above 0.2 when considering overall performance (Fig. 4), resulting 
in very high AUC, Kappa and F scores as well. Under this premise, both Support Vector Machines (SVM) and 
Neural SVMs (NSVM) can be considered highly efficient classifiers of carnivore tooth marks, yet with greater 
performance when working with a smaller number of labels. Needless to say, when considering loss values, with 
the exception of the Pleistocene European dataset, both SVM and NSVM appear to be confident when making 
new predicitons (Fig. 6).

By considering model performance on individual samples (Tables S8-S12), differentiating between taxa 
appears to depend on the species being used for comparison. Under this premise, V. vulpes (Tables S8) and P. leo 
(Tables S9) appear to be the easiest of the Pleistocene European and African carnivores to identify (SVM Acc. = 
{95%, 95%} , NSVM Acc. = {94%, 96%} , respectively). On the scale of taxonomic families, L. pictus can be con-
sidered the easiest canid to identify (SVM Acc. = 98%, NSVM Acc. = 100%), while P. leo remains the felid with 
the highest classification rates (SVM Acc. = 96%, NSVM Acc. = 99%). Each of these observations are especially 

Figure 3.   Example of trace figures, target density and histograms of the augmented and original datasets as 
generated using Markov Chain Monte Carlo algorithms. Figure created using the ggplot2 R library.
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interesting considering these species have been associated with either the largest or the smallest centroid sizes 
respectively (Fig. 1, Table S1).

While P. pardus presents the lowest recorded individual classification rates across all datasets (NSVM Acc. = 
0.79, Table S8), this does not have a significant impact on overall model performance (Fig. 4). Even when con-
sidering the poorer classification rates presented by P. pardus, all algorithms achieve evaluation metrics above 

Table 1.   Examples of absolute difference ( |d| ), p-Values and Bayes Factor Bounds (BFB) obtained when 
assessing the robust equivalency of synthetic data and real data using Gradient Penalty Wasserstein Loss 
Generative Adversarial Networks (WGAN-GP) and Markov Chain Monte Carlo (MCMC) Algorithms for 
data augmentation of the African Taxa dataset. Time values reported represent the number of miliseconds per 
epoch or iteration of the algorithm.

Algorithm Animal Measure PC1 PC2 PC3 PC4 PC5 Time (Ms)

WGAN-GP

C. crocuta

|d| 0.007 0.011 0.016 0.115 0.037

p 4.9e−13 2.7e−09 6.8e−16 1.3e−08 8.9e−22 1311

BFB 2.6e+10 6.9e+06 1.5e+13 1.6e+06 8.5e+18

P. pardus

|d| 0.092 0.010 0.022 0.007 0.016

p 3.4e−18 3.6e−37 2.9e−32 1.5e−36 1.4e−36 1194

BFB 2.7e+15 1.2e+34 1.7e+29 3.0e+33 3.2e+33

L. pictus

|d| 0.034 0.009 0.046 0.001 0.004

p 1.2e−08 1.0e−12 1.4e−19 4.8e−33 4.0e−16 1296

BFB 1.7e+06 1.3e+10 6.1e+16 1.0e+30 2.6e+13

P. leo

|d| 0.097 0.005 0.008 0.043 0.003

p 6.3e−03 5.5e−10 5.8e−10 1.5e−08 1.6e−15 915

BFB 11.52 3.1e+07 3.0e+07 1.4e+06 6.7e+12

MCMC

C. crocuta

|d| 0.055 0.010 0.010 0.004 0.003

p 5.8e−13 4.3e−40 8.5e−73 6.0e−63 3.6e−62 0.048

BFB 2.3e+10 9.4e+36 2.6e+69 4.3e+59 7.2e+58

P. pardus

|d| 0.004 0.007 0.004 0.003 0.007

p 6.9e−29 4.8e−70 1.5e−104 2.8e−75 1.0e−85 0.048

BFB 8.2e+25 4.8e+66 1.0e+101 7.7e+71 1.9e+82

L . pictus

|d| 0.007 0.010 0.003 0.004 0.003

p 9.6e−12 3.3e−42 4.5e−83 1.7e−67 2.5e−57 0.047

BFB 1.5e+09 1.2e+39 4.3e+79 1.4e+64 1.1e+54

P. leo

|d| 0.023 0.010 0.002 0.004 0.001

p 1.1e−05 1.0e−32 3.4e−54 8.6e−39 1.5e−50 0.048

BFB 2.9e+03 5.0e+29 8.8e+50 4.9+e35 2.1e+47

Table 2.   Overall classification results obtained for all samples using Support Vector Machines (SVM) and 
Neural Support Vector Machines (NSVM). Reported values include; Accuracy (Acc.), Sensitivity (Sens.), 
Specificity (Spec.), Precision (Prec.), Recall (Rec.), Area Under Curve (AUC), F-Measure (F), Kappa ( κ ) and 
Loss. All evaluation metrics (with the exception of loss) are recorded as values between 0 and 1, with 1 being 
the highest obtainable value. Values reported over 0.8 are considered an acceptable threshold for powerful 
classification models. Loss considers values closer to 0 as the most confident models.

Sample Algorithm Acc. Sens. Spec. Prec. Rec. AUC​ F κ Loss

Pleistocene European Taxa
SVM 0.89 0.81 0.96 1.00 0.81 0.87 0.90 0.85 0.16

NSVM 0.88 0.91 0.95 0.88 0.91 0.94 0.88 0.85 0.26

African Taxa
SVM 0.93 0.89 0.96 1.00 0.89 0.94 0.94 0.86 0.09

NSVM 0.93 0.93 0.98 0.93 0.93 0.97 0.93 0.91 0.10

Taxonomic family
SVM 0.96 0.93 0.98 1.00 0.93 0.97 0.97 0.92 0.05

NSVM 0.97 0.96 0.99 0.96 0.96 0.98 0.97 0.96 0.06

Canidae
SVM 0.97 0.97 0.98 1.00 0.97 0.98 0.98 0.95 0.05

NSVM 0.98 0.98 0.99 0.98 0.98 0.99 0.98 0.97 0.01

Felidae
SVM 0.96 0.94 0.98 1.00 0.94 0.97 0.97 0.95 0.04

NSVM 0.97 0.97 0.99 0.97 0.97 0.98 0.97 0.96 0.01
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the acceptable 0.8 threshold. Likewise, a 97% to 99% accuracy has still been obtained when comparing P. pardus 
with other felids (Fig. 5), and a 92% to 93% accuracy when compared with other African species.

Although an element of equifinality is still present, as detected through inconclusive statistical differences in 
some tooth pit morphologies, both SVM and NSVM are still able to accurately differentiate between L. pictus 
and C. crocuta with over 90% success. Nevertheless, algorithm confidence when performing classifications on 
these species drops, as seen through a large increase in loss values (Table S9). This results in the overall rise in 
loss and decrease in other performance metrics when these two species are included in a dataset (Table 2, Fig. 6).

Observations comparing SVM with NSVM prove both algorithms to be equally powerful when discerning 
between carnivore taxa. While NSVM may be seen to have a slight advantage over SVM in some evaluation 
metrics (Fig. 4), SVM loss rates are generally lower (Fig. 6). Similiarly, NSVM can be seen in some datasets to 
have very low loss rates for some groups (e.g. Table S10, Canidae loss = 0.001), while especially high loss rates 
for others (e.g. Table S10, Hyaenidae loss = 0.19). In sum, both SVM and NSVM are valid options for carnivore 
differentiation, while choice of one or the other must be dependent on the specific case study at hand as well as 
the analyst’s needs.

When observing general performance in model loss (Fig. 6), algorithms produce powerful predictions, with 
very confident decision boundaries in many cases (Fig. 5).

Finally, when training algorithms without the use of data augmentation (Sup. Appendix 7), it can be seen 
how the average accuracy slightly drops, with SVM performing 4% worse on non-augmented datasets and 
NSVM performing 6% worse. While this change is minute, the greatest differences between augmented and 
non-augmented datasets can be found across loss values, with both SVM and NSVM loosing an average of 
10% confidence with each prediction made. As would be expected, algorithms also appear to perform worse on 
unbalanced datasets, with the Taxonomic Family dataset presenting F-Measure values 0.25 lower, especially in 
the case of NSVM (Sup. Appendix 7).

Discussion
In recent years, GM have been applied to a wide array of different applications outside of biology. Among these 
applications, these tools have shown promising results when applied to the study of BSMs8,20–25,37. While subse-
quent analyses have identified some issues with these techniques for carnivore BSM applications21, the present 
study has shown that high quality results are still realistically obtainable (Accuracy > 90 %, AUC > 0.8, κ > 0.8, 
Fig. 6). Likewise, the results reported here are supported by considerably larger sample sizes20,22,24.

Here we have shown how a number of different data science tools can be employed for GM analyses. From one 
perspective, unsupervised computational learning approaches were able to produce highly realistic augmented 

Figure 4.   Radar plots representing supervised classification results for each of the datasets. Evaluation 
metrics were calculated on test sets when using both Support Vector Machines (SVM) and Neural Support 
Vector Machines (NSVM). The blue line marking 0.8 across all graphs represents a standard threshold for the 
evaluation of good performance for each of the metrics used. Figure created using the amCharts4 JavaScript 
library.
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datasets, using both neural network based approaches38–41, as well as Bayesian Inference Engines42–45. While the 
use of Graphics Processing Units (GPUs) are likely to speed up GAN performance, MCMC can still be consid-
ered the fastest approach to modelling these datasets with exceptional synthetic-data quality. From a Bayesian 
perspective, considering how the use of Gaussian distributions is usually seen as a “crude approximation” to the 
problem solving questions at hand45, most of the times this also allows models greater generalization capabili-
ties. In addition, this theoretically reduces chance of overfitting supervised models on one particular skewed 
distribution that may not be a true reflection of the population distribution (Sup. Appendix 4). Moreover, to 
ensure the present study does not fall into the trap of over-generalising the Gaussian nature of the population, 
the precise definitions of our target probability distributions were robustly defined41,46,47.

Figure 5.   Example of tooth pit classifications using Neural Support Vector Machines (NSVM). The select tooth 
pits were chosen randomly and excluded from the training data so as to avoid bias. NSVMs were then trained 
on the remaining data and used to classify the present tooth marks, taking note of the algorithms confidence 
when making predictions. 3D visualisations were created using MeshLab.
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From the perspective of supervised learning, the present study reveals the capabilities of computational learn-
ing algorithms for the differentiation of carnivore taxa based on the morphology of carnivore tooth pits. Firstly, 
prior augmentation of each dataset provided both algorithms with enough information to learn from, obtaining 
above average accuracy when used to classify the original samples. While the present datasets are unable to reach 
the 100% accuracy reported originally using SVMs20, this is likely due to the use of bootstrapping in the original 
study41. Here, more robust data augmentation techniques produced completely new synthetic data from which 
to learn from, providing a more general overview of the target domain. Under this premise, while 100% accu-
racy was not obtained, our reported >90% can be considered much more reliable. From a similar perspective, 
while the changes to the original landmark model have shown a reduction in inter-analyst error by 164µm21, the 
inclusion of semi-landmark patches has been observed to substantially increase the dimensionality of these GM 
datasets. In light of this, the new datasets are likely to be harder to model from. Needless to say, considering the 
increased precision of the landmark model, alongside more robust augmentation techniques, it can be argued 
that the present results are not only more reliable, but also worth the slight drop in accuracy.

Despite the increase in landmark model complexity, both Radial kernel functions and Laplacian fourier 
mappings were able to provide SVMs with an appropriate transformed feature space to learn from. Neverthe-
less, both SVM and NSVM have their advantages and disadvantages. NSVM, for example, can be considered a 
complex model, with the additional requirement of fine tuning a neural network architecture for feature map-
pings. NSVM thus presents a large number of parameters and hyperparametrs that have to be adjusted by both 
the analyst and the model itself. SVM, on the other hand, has the distinct advantage of being easier to tune and 
train, yet, when using Bayesian algorithms for SVM hyperparameter optimization, training time can increase 
significantly (Table S13), while NSVMs still perform better on some datasets.

From the perspective of combining supervised and unsupervised learning approaches, the present study can 
be considered another example of how powerful data augmentation can be for improving classification model 
performance. Data augmentation is a very popular technique in computer vision, nevertheless, not all of these 
algorithms are readily applicable to numeric data of this type48. Here augmentation has been shown to not only 
improve the accuracy of most models (Tables 2, S8-S12 & S23-S28, Supplementary Appendix 7), but also improve 
the generalization capabilities of both SVMs and NSVMs41,49. This is mostly seen through the decrease in loss 
values across taxa (Tables S8-S12 & S23-S28), thus supporting observations made by Courtenay and González-
Aguilera41 when applied to other GM datasets of palaeoanthropological and primatological origin. Similarly, 
the impact dataset imbalance has on algorithm performance is clearly evident, as seen through great drops in 

Figure 6.   Top Panel: Radar plot summarising and comparing performance of the best computational learning 
models for each of the datasets. Bottom panel: Line graph representing the mean reported loss for both Support 
Vector Machines (SVM) and Neural Support Vector Machines (NSVM) on each of the datasets. Figure created 
using the amCharts4 JavaScript library.
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precision, recall and F values (Supplementary Appendix 6, Tables S8-S12 & S23-S28). In light of each of these 
observations, it can be seen how data augmentation can be a valuable tool for archaeological and palaeontological 
applications41, especially in cases where obtaining large sample sizes is difficult.

In the general context of new technologies applied to the field of taphonomy, it can be noted how the inclusion 
of some carnivore species within the samples have created notable statistical noise. This can be seen through drops 
in performance when increasing the number of target labels used in classification (e.g. the Pleistocene European 
Taxa dataset). From this perspective, it is important to point out that highly sophisticated techniques are not the 
all-encompassing solution that many analysts are looking for. When considering how carnivores can usually 
be described by the type2,3,30, ratio27,34,36,50 and size of bite damage51–53, alongside the location54–56 and extent of 
damage57, it can be seen how modelling carnivore behaviour should also take into account a wide range of dif-
ferent factors beyond BSMs. While neither one of these techniques can exclusively answer these questions, when 
combined, taphonomists currently have a very powerful toolkit at their disposal for discerning precise carnivore 
intervention. From a similar perspective, techniques in remote sensing, photogrammetry and microscopy also 
provide distinct advantages for the collection of different types of data, supported in many cases by the use of 
high resolution metric data37,58–60. Likewise, the use of computational learning has also proven a useful diagnostic 
tool for the analysis of fracture plane patterns61, obtaining high classification rates when applied to archaeological 
samples as well62. From another perspective, computer vision applications can also be considered an interesting 
development in the field of taphonomy63. In sum, and wherever possible, rather than commingling multiple spe-
cies together into one large group, prior processes of elimination based on general taphonomic evidence should 
be performed in order to remove the least likely animals to have intervened. Algorithms will then be much easier 
to train, obtaining state of the art classification rates.

“Occam’s Razor” suggests that a more complex model is not always a better one. As seen here, without the 
use of large kernel machines, SVMs are equally likely to produce high level results. Likewise, while GANs are 
powerful non-parametric generative models, Bayesian inference is still a valuable tool for distribution model-
ling, as seen through better and faster performance in some of the reported cases. From this perspective, data 
science applications and AI can be considered both a very promising field of research, as well as a complex and 
challenging “pandoras box” of algorithms which analysts must take into consideration before planning a study. 
Nevertheless, and in combination with multiple other sources of data, advanced data science techniques can be 
considered a significant contribution to a taphonomist’s arsenal.

Material and methods
Sample.  A total of 620 carnivore tooth pits were included in the present study. These samples included tooth 
marks produced by;

•	 Brown Bears (Ursus arctos, Ursidae, 69 pits)
•	 Spotted Hyenas (Crocuta crocuta, Hyaenidae, 86 pits)
•	 Wolves (Canis lupus, Canidae, 80 pits)
•	 African Wild Dogs (Lycaon pictus, Canidae, 89 pits)
•	 Foxes (Vulpes vulpes, Canidae, 53 pits)
•	 Jaguars (Panthera onca, Felidae, 77 pits)
•	 Leopards (Panthera pardus, Felidae, 84 pits)
•	 Lions (Panthera leo, Felidae, 82 pits)

Samples originated from a number of different sources, including animals kept in parks as well as wild animals. 
Samples obtained from wild animals included those produced by foxes as well as wolves. The only sample contain-
ing both wild and captive animals was the wolf sample. Preliminary data from these tooth pits revealed animals 
in captivity to have highly equivalent tooth pit morphologies to wild animals ( |d| = 0.125, p = 9.0e−14, BFB = 
1.4e+11), while tooth scores revealed otherwise ( |d| = 0.152, p = 0.99, BFB = 3.7e+01 against Ha ). Under this 
premise, and so as to avoid the influence of confounding variables that go beyond the scope of the present study, 
tooth scores were excluded from the present samples and are under current investigation (data in preperation). 
Nevertheless, other research have shown tooth pits to be more informative than tooth scores when considering 
morphology20,23.

When working with tooth mark morphologies, preference is usually given to marks found on long bone 
diaphyses. This is preferred considering how diaphyses are denser than epiphyses, and are thus more likely to 
survive during carnivore feeding. Nevertheless, when working with captive or semi-captive animals, controlling 
the bones that carnivores are fed is not always possible. This is due to the rules and regulations established by the 
institution where these animals are kept64. While this was not an issue for the majority of the animals used within 
the present study, in the case of P. pardus, animals were only fed ribs in articulation with other axial elements. 
In light of this, a careful evaluation on the effects this may have on the analogy of our samples was performed 
(Supplementary Appendix 2). These reflections concluded that in order to maintain a plausible analogy with 
tooth marks produced by other animals on diaphyses, tooth marks could only be used if found on the shaft of 
bovine ribs closest to the tuburcle, coinciding with the posterior and posterior-lateral portions of the rib, and 
farthest away from the costochondral junction65. This area of the rib corresponds to label RI3 described by Lam 
et al.65. Moreover, with a reported average cortical thickness of 2.3mm (± 0.13 mm) and Bone Mineral Density 
of 4490kg/m3[213.5, 334.6]66, bovine ribs are frequently employed in most bone simulation experiments used in 
agricultural as well as general surgical sciences. Finally, considering the grease, muscle and fat content of typi-
cal domestic bovine individuals67, alongside the general size of P. pardus teeth, it was concluded that the use of 
rib elements for this sample was the closest possible analogy to the tooth marks collected from other animals.
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Carnivores were fed a number of different sized animals, also dependent in most cases on the regulations 
established by the institution where these animals are kept64. Nevertheless, recent research has found statistical 
similarities between tooth marks found on different animals25, with the greatest differences occurring between 
large and small sized animals. Needless to say, considering the typical size of prey some of these carnivores 
typically consume, this factor was not considered of notable importance for the present study25 (Supplementary 
Appendix 1).

For the purpose of comparisons, animals were split into 5 groups according to ecosystem as well as taxonomic 
family. From an ecological perspective, two datasets were defined; (1) the Pleistocene European Taxa dataset con-
taining U. arctos, V. vulpes, C. crocuta, P. pardus, P. leo and C. lupus; and (2) the African Taxa dataset containing 
C. crocuta, P. pardus, L. pictus and P. leo. When considering taxonomic groupings, animals were separated into 
3 groups, including; (1) the Canidae dataset, including V. vulpes, L. pictus and C. lupus; (2) the Felidae dataset, 
including P. pardus, P. onca and P. leo; and (3) a general Taxonomic Family dataset, including all Canidae in the 
same group, all Felidae in the same group, followed by Hyaenidae and Ursidae. Some complementary details on 
each of these carnivores have been included in Supplementary Appendix 1.

All experiments involving carnivores were performed in accordance with the relevant ethical guidelines as 
set forth by park keepers and general park regulations. No animals were sacrificed specifically for the purpose 
of these experiments. Likewise, carnivores were not manipulated or handled at any point during the collection 
of samples. Collection of chewed bones were performed directly by park staff and assisted by one of the authors 
(JY). The present study followed the guidelines set forth by ARRIVE (https://​arriv​eguid​elines.​org/) wherever 
necessary. No licenses or permits were required in order to perform these experiments. Finally, in the case of 
animals in parks, bone samples were provided by the park according to normal feeding protocols. More details 
can be consulted in the Extended Samples section of the supplementary files.

3D modelling and landmark digitisation.  Digital reconstructions of tooth marks were performed using 
Structured Light Surface Scanning (SLSS)68. The equipment used in the present study was the DAVID SLS-2 
Structured Light Surface Scanner located in the C.A.I. Archaeometry and Archaeological Analysis lab of the 
Complutense University of Madrid (Spain). This equipment consists of a DAVID USB CMOS Monochrome 
2-Megapixel camera and ACER K11 LED projector. Both the camera and the projector were connected to a 
portable ASUS X550VX personal laptop (8 GB RAM, Intel® CoreTM i5 6300HQ CPU (2.3 GHz), NVIDIA GTX 
950 GPU) via USB and HDMI respectively. The DAVID’s Laser Scanner Professional Edition software is stored 
in a USB Flash Drive. Equipment were calibrated using a 15 mm markerboard, using additional macro lenses 
attached to both the projector and the camera in order to obtain optimal resolution at this scale. Once calibrated 
the DAVID SLS-2 produces a point cloud density of up to 1.2 million points which can be exported for further 
processing via external software.

The landmark configuration used for this study consists of a total of 30 landmarks (LMs)21; 5 fixed Type II 
landmarks18 and a 5× 5 patch of semilandmarks69 (Fig. S2). Of the 5 fixed landmarks, LM1 and LM2 mark the 
maximal length (l) of each pit. For the correct orientation of the pit, LM1 can be considered to be the point along 
the maximum length furthest away from the perpendicular axis marking the maximum width (w). LM2 would 
therefore be the point closest to said perpendicular axis (see variables d1 and d2 in Fig. S2 for clarification). LM3 
and LM4 mark the extremities of the perpendicular axis (w) with LM3 being the left-most extremity and LM4 
being the right-most extremity. LM5 is the deepest point of the pit. The semilandmark patch is then positioned 
over the entirety of the pit, so as to capture the internal morphology of the mark.

Landmark collection was performed using the free Landmark Editor software (v.3.0.0.6.) by a single expe-
rienced analyst. Inter-analyst experiments prior to landmark collection revealed the landmark model to have 
a robustly defined human-induced margin of error of 0.14 ± 0.09 mm (Median ± Square Root of the Biweight 
Midvariance). Detailed explanations as well as an instructional video on how to place both landmarks and sem-
ilandmarks can be consulted in the Supplementary Appendix and main text of Courtenay et al.21.

Geometric morphometrics.  Once collected, landmarks were formatted as morphologika files and 
imported into the R free software environment (v.3.5.3, https://​www.r-​proje​ct.​org/). Initial processing of these 
files consisted in the orthogonal tangent projection into a new normalized feature space. This process, frequently 
referred to as Generalized Procrustes Analysis (GPA), is a valuable tool that allows for the direct comparison 
of landmark configurations18,19,70. GPA utilises different superimposition procedures (translation, rotation and 
scaling) to quantify minute displacements of individual landmarks in space71. This in turn facilitates the com-
parison of landmark configurations, as well as hypothesis testing, using multivariate statistical analyses. Never-
theless, considering observations made by Courtenay et al.20,21,25 revealed tooth mark size to be an important 
conditioning factor in their morphology, prior analyses in allometry were also performed72. From this perspec-
tive, allometric analyses first considered the calculation of centroid sizes across all individuals; the square root of 
the sum of squared distances of all landmarks of an object from their centroid18. These calculations were then fol-
lowed by multiple regressions to assess the significance of shape-size relationships. For regression, the logarithm 
of centroid sizes were used. In cases where shape-size relationships proved significant, final superimposition 
procedures were performed excluding the scaling step of GPA (form).

In addition to these analyses, preliminary tests were performed to check for the strength of phylogenetic 
signals73. This was used as a means of testing whether groups of carnivores produced similar tooth pits to other 
members of the same taxonomic family. For details on the phylogenies used during these tests, consult Fig. S1 
and Supplementary Appendix 1.

For the visualisation of morphological trends and variations, Thin Plate Splines (TPS) and central morpho-
logical tendencies were calculated19,71. From each of these mean landmark configurations, for ease of pattern 

https://arriveguidelines.org/
https://www.r-project.org/
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visualisation across so many landmarks, final calculations were performed using Delaunay 2.5D Triangulation 
algorithms74 creating visual meshes of these configurations in Python (v.3.7.4, https://​www.​python.​org/).

Once normalised, landmark coordinates were processed using dimensionality reduction via Principal Com-
ponents Analyses (PCA). In order to identify the optimal number of Principal Component Scores (PC Scores) 
that best represented morphological variance, permutation tests were performed calculating the observed vari-
ance explained by each PC with the permuted variance over 50 randomized iterations75. Multivariate Analysis 
of Variance (MANOVA) tests were then performed on these select PCs to assess the significance of multivariate 
morphological variance among samples.

Geometric Morphometric applications were programmed in the R programming language (Sup. Appendix 8).

Robust statistics.  While GPA is known to normalize data76, this does not always hold true. Under this 
premise, caution must be taken when performing statistical analyses on these datasets. Taking this into consid-
eration, prior to all hypothesis testing, normality tests were also performed. These included Shapiro tests and 
the inspection of Quantile–Quantile graphs. In cases where normality was detected, univariate hypothesis tests 
were performed using traditional parametric Analysis of Variance (ANOVA). For multivariate tests, such as 
MANOVA, calculations were derived using the Hotelling-Lawley test-statistic. When normality was rejected, 
robust alternatives to each of these tests were chosen. In the case of univariate testing, the Kruskal–Wallis non-
parametric rank test was prefered, while for MANOVA calculations, Wilk’s Lambda was used.

Finally, in light of some of the recommendations presented by The American Statistical Association (ASA), as 
debated in Volume 73, Issue Sup1 of The American Statistician77,78, the present study considers p-values of > 2σ 
from the mean to indicate only suggestive support for the alternative hypothesis ( Ha ). p > 0.005 , or where 
possible, 3σ was therefore used as a threshold to conclude that Ha is “significant”. In addition, Bayes Factor Bound 
(BFB) values (Eq. 1) have also been included alongside all corresponding p-Values79. Unless stated otherwise, 
BFBs are reported as the odds in favor of the alternative hypothesis (BFB:1). More details on BFB, Bayes Fac-
tors and the p > 3σ threshold have been included in Supplementary Appendix 3. General BFB calibrations in 
accordance with Benjamin and Berger’s Recommendation 0.379, as well as False Positive Risk values according 
to Colquhoun’s proposals80, have also been included in Table S20 of Supplementary Appendix 3.

All statistical applications were programmed in the R programming language (Sup. Appendix 8).

Computational learning.  Computational Learning employed in this study consisted of two main types 
of algorithm; Unsupervised and Supervised algorithms. The concept of “learning” in AI refers primarily to the 
creation of algorithms that are able to extract patterns from raw data (i.e. “learn”), based on their “experience” 
through the construction of mathematical functions38,81. The basis of all AI learning activities include the com-
bination of multiple components, including; linear algebra, calculus, probability theory and statistics. From this, 
algorithms can create complex mathematical functions using many simpler concepts as building blocks38. Here 
we use the term “Computational Learning” to refer to a very large group of sub-disciplines and sub-sub-disci-
plines within AI. Deep Learning and Machine Learning are terms frequently used (and often debated), however, 
many more branches and types of learning exist. Under this premise, and so as to avoid complication, the present 
study has chosen to summarise these algorithms using the term “Computational”.

Similar to the concepts of Deep and Machine Learning, many different types of supervision exist. The terms 
supervised and unsupervised refer to the way raw data is fed into the algorithm. In most literature, data will 
be referred to via the algebraic symbol x, whether this be a vector, scalar or matrix. The objective of algorithms 
are to find patterns among a group of x. In an unsupervised context, x is directly fed into the algorithm without 
further explanation. Algorithms are then forced to search for patterns that best explain the data. In the case of 
supervised contexts, x is associated with a label or target usually denominated as y. Here the algorithm will try 
and find the best means of mapping x to y. From a statistical perspective, this can be explained as p

(

y|x
)

 . In sum, 
unsupervised algorithms are typically used for clustering tasks, dimensionality reduction or anomaly detection, 
while supervised learning is typically associated with classification tasks or regression.

The workflow used in the present study begins with dimensionality reduction, as explained earlier with the 
use of PCA. While preliminary experiments were performed using non-linear dimensionality reduction algo-
rithms, such as t-distributed Stochastic Neighbor Embedding (t-SNE)82 and Uniform Manifold Approximation 
and Projection (UMAP)83, PCA was found to be the most consistent across all datasets, a point which should be 
developed in detailed further research. Once dimensionality reduction had been performed, and prior to any 
advanced computational modelling, datasets were cleaned using unsupervised Isolation Forests (IFs)84. Once 
anomalies had been removed, data augmentation was performed using two different unsupervised approaches; 
Generative Adversarial Networks (GANs)38–41 and Markov Chain Monte Carlo (MCMC) sampling44. Data aug-
mentation was performed for two primary reasons; (1) the simulation of larger datasets to ensure supervised 
algorithms have enough information to train from, and (2) to balance datasets so each sample has the same size. 
Both MCMCs and GANs were trialed and tested using robust statistics to evaluate quality of augmented data41. 
Once the best model had been determined, each of the datasets were augmented so they had a total sample size 
of n = 100 . In the case of the Taxonomic Family dataset, augmentation was performed until all samples had the 
same size as the largest sample.

Once augmented, samples were used for the training of supervised classification models. Two classifica-
tion models were tried and tested; Support Vector Machines (SVM)85 and Neural Support Vector Machines 
(NSVM)86,87. NSVMs are an extension of SVM using Neural Networks (NNs)38 as feature extractors, in 

(1)BFB =
1

−e p log(p)
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substituting the kernel functions typically used in SVMs. Hyperparameter optimization for both SVMs and 
NSVMs were performed using Bayesian Optimization Algorithms (BOAs)88.

Supervised computational applications were performed in both the R and Python programming languages 
(Sup. Appendix 8). For full details on both unsupervised and supervised computational algorithms, consult the 
Extended Methods section of the Supplementary Materials.

Evaluation of supervised learning algorithms took into account a wide array of different popular evaluation 
metrics in machine and deep learning. These included; Accuracy, Sensitivity, Specificity, Precision, Recall, Area 
Under the receiver operator characteristic Curve (AUC), the F-Measure (also known as the F1 Score), Cohen’s 
Kappa ( κ ) statistic, and model Loss. Each of these metrics, with the exception of loss, are calculated using confu-
sion matrices, measuring the ratio of correctly classified individuals (True Positive & True Negative) as well as 
miss-classified individuals (False Positive & False Negative). For more details see Supplementary Appendix 6.

Accuracy is simply reported as either a decimal [0, 1] or a percentage. Accuracy is a metric often misinter-
preted, as explained in Supplementary Appendix 6, and should always be considered in combination with other 
values, such as Sensitivity or Specificity. Both Sensitivity and Specificity are values reported as decimals [0, 1] , 
and are used to evaluate the proportion of correct classifications and miss-classifications. AUC values are derived 
from receiver operator characteristic curves, a method used to balance and graphically represent the rate of cor-
rectly and incorrectly classified individuals. The closest the curve gets to reaching the top left corner of the graph, 
the better the classifier, while diagonal lines in the graph represent a random classifier (poor model). In order 
to quantify the curvature of the graph, the area under the curve can be calculated (AUC), with AUC = 1 being 
a perfect classifier and AUC = 0.5 being a random classifier. The κ statistic is a measure of observer reliability, 
usually employed to test the agreement between two systems. When applied to confusion matrix evaluations, κ 
can be used to assess the probability that a model will produce an output ŷ that coincides with the real output y. 
κ values typically range between [0, 1] , with κ = 1 meaning perfect agreement, κ = 0 being random agreement, 
and κ = 0.8 typically used as a threshold to define a near-perfect or perfect algorithm.

While in the authors’ opinion, AUC, Sensitivity and Specificity values are the most reliable evaluation metrics 
for studies of this type (Supp. Appendix 6), for ease of comparison with other papers or authors who choose to 
use other metrics, we have also included Precision, Recall and F-Measure values. Precision and Recall values 
play a similar role to sensitivity and specificity, with recall being equivalent to sensitivity, and precision being the 
calculation of the number of correct positive predictions made. Precision and Recall, however, differ from their 
counterparts in being more robust to imbalance in datasets. F-Measures are a combined evaluation of these two 
measures. For more details consult Supplementary Appendix 6.

Loss metrics were reported using the Mean Squared Error (Eq. 2);

Loss values are interpreted considering values closest to 0 as an indicator of greater confidence when using 
the model to make new predictions.

Final evaluation metrics were reported when using algorithms to classify only the original samples, without 
augmented data. Augmented data was, therefore, solely used for training and validation. Finally, so as to assess 
the impact data augmentation has on supervised learning algorithms, algorithms were also trained on the raw 
data. This was performed using 70% of the raw data for training, while the remaining 30% was used as a test set.

Data availability
All the relevant data and code used for the present study have been made readily available online via the cor-
responding author’s GitHub page: https://​github.​com/​LACou​rtenay/​Carni​vore_​Tooth_​Pit_​Class​ifica​tion. Any 
queries or issues regarding data or code should be directed to L.A. Courtenay (ladc1995@gmail.com).
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