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Abstract

Background: The per-protocol effect is the effect that would have been observed in a randomized trial had everybody
followed the protocol. Though obtaining a valid point estimate for the per-protocol effect requires assumptions that are
unverifiable and often implausible, lower and upper bounds for the per-protocol effect may be estimated under more
plausible assumptions. Strategies for obtaining bounds, known as “partial identification” methods, are especially promising
in randomized trials.

Results: We estimated bounds for the per-protocol effect of colorectal cancer screening in the Norwegian Colorectal
Cancer Prevention trial, a randomized trial of one-time sigmoidoscopy screening in 98,792 men and women aged 50–64
years. The screening was not available to the control arm, while approximately two thirds of individuals in the treatment
arm attended the screening. Study outcomes included colorectal cancer incidence and mortality over 10 years of follow-up.
Without any assumptions, the data alone provide little information about the size of the effect. Under the assumption that
randomization had no effect on the outcome except through screening, a point estimate for the risk
under no screening and bounds for the risk under screening are achievable. Thus, the 10-year risk difference for colorectal
cancer was estimated to be at least −0.6 % but less than 37.0 %. Bounds for the risk difference for colorectal cancer mortality
(–0.2 to 37.4 %) and all-cause mortality (–5.1 to 32.6 %) had similar widths. These bounds appear helpful in quantifying
the maximum possible effectiveness, but cannot rule out harm. By making further assumptions about the effect in the
subpopulation who would not attend screening regardless of their randomization arm, narrower bounds can be achieved.

Conclusions: Bounding the per-protocol effect under several sets of assumptions illuminates our reliance on unverifiable
assumptions, highlights the range of effect sizes we are most confident in, and can sometimes demonstrate whether to
expect certain subpopulations to receive more benefit or harm than others.

Trial registration: Clinicaltrials.gov identifier NCT00119912 (registered 6 July 2005)
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Background
Most randomized trials report the intention-to-treat
(ITT) effect as the primary, or only, measure of the
comparative effect of the studied interventions. A focus
on the ITT effect is attractive for several reasons [1, 2].
However, the ITT effect may not be the effect of interest

for patients and clinicians when there is a high rate of
non-compliance or when the rate of non-compliance in
the trial differs from that expected outside the trial set-
ting. In such circumstances, the per-protocol effect –
the effect that would have been observed had all trial
participants followed the trial protocol – may be of
greater interest [1, 2]. Unfortunately, when patient char-
acteristics associated with non-compliance are also re-
lated to patient outcomes, the naïve approach to
estimating this effect in a “per-protocol analysis” re-
stricted to those who follow the protocol in each arm of
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the trial will be biased. In these cases, identifying the
per-protocol effect in a randomized trial requires strong
assumptions (e.g., no unmeasured confounding) and
methods that are commonly used in the analysis of non-
randomized studies [2].
An alternative to estimating the per-protocol effect

under these strong assumptions is to estimate lower and
upper limits or “bounds” for the per-protocol effect under
weaker, but perhaps more realistic, assumptions [3–8].
While effect bounding, known as “partial identification of
the effect”, has been attempted in observational studies
(particular in the social sciences), it is rarely implemented
in randomized trials. This is surprising because partial
identification methods can capitalize on assumptions that
are expected to hold in many randomized trials.
Here we provide a guide to the use of partial identifica-

tion methods in randomized trials with dichotomous out-
comes and point interventions, i.e., interventions that are
not sustained over time. As an example, we demonstrate
the estimation of bounds for the per-protocol effect of
colorectal cancer (CRC) screening on the 10-year risk of
CRC incidence and death in the Norwegian Colorectal
Cancer Prevention (NORCCAP) trial.

Methods
The NORCCAP trial
The design, procedures, and primary findings of the
NORCCAP trial have been described elsewhere [9–11]. In
brief, 98,792 residents of the City of Oslo and of Telemark
County, Norway, who had no history of CRC and were
aged 55–64 years in 1998 or 50–54 years in 2000 were ran-
domly assigned to either treatment or control arms. Those
selected for the treatment arm were invited to CRC screen-
ing, including either a once-only flexible sigmoidoscopy or
a combination of once-only flexible sigmoidoscopy plus an
immunochemical fecal occult blood testing. Individuals
assigned to the control arm were not offered any interven-
tion. All participants who attended the screening provided
written informed consent, and the study was approved
by the Ethics Committee of South-East Norway and the
Norwegian Data Inspectorate. Primary study endpoints

pre-specified in the study protocol were CRC incidence and
mortality. Table 1 shows the 10-year risk of these outcomes
[10] by age group, randomization arm, and screening
intervention received. After standardization by age
group, the ITT 10-year risk differences (95 % confi-
dence interval) were −0.2 % (−0.4 %, −0.1 %) for CRC
incidence, −0.1 % (−0.1 %, 0.0 %) for CRC mortality,
and −0.2 % (−0.6 %, 0.2 %) for all-cause mortality.
Several features of this trial are relevant for our purposes.

First, CRC screening was not available in the trial commu-
nities for individuals not assigned to screening in the trial;
thus, nobody in the control arm received it. Second, the
treatment was a once-only screen (a point intervention);
thus, compliance in the screening arm is all-or-nothing.
Third, loss-to-follow-up was minimal; only 3 individuals
were not followed until they experienced a study endpoint,
emigration, or end of 10-year follow-up.

Overview of the analytic approach
The following sections describe the estimation of bounds
for the per-protocol effect of point interventions on di-
chotomous outcomes under increasingly stronger as-
sumptions. We begin with no assumptions (i.e., the data
alone), then assume the so-called “instrumental condi-
tions” described below, and then combine additional as-
sumptions with these instrumental conditions. Intuitively,
the more assumptions we make, the narrower the bounds
become, but of course this comes at a cost if our assump-
tions are ill-placed. Table 2 summarizes the assumptions.
To compute the bounds in the NORCCAP trial, we first

estimated bounds within age groups (50–54 years; 55–64
years) and then standardized these bounds. We begin by
estimating the bounds in the older age group only so
readers can check our calculations using the expressions
provided in the text and the summary data in Table 1.

Results
Bounding the per-protocol effect under no assumptions
The per-protocol risk difference can theoretically range
from −100 % (the treatment universally prevents the out-
come) to 100 % (the treatment universally causes the

Table 1 10-year risk of colorectal cancer (CRC), CRC mortality, and all-cause mortality by randomization arm and treatment received

Randomization arm Received treatment N CRC cases, N (%) Cases of CRC mortality, N (%) Cases of all-cause mortality, N (%)

Aged 50–54 years

No screeninga No screening 37,131 297 (0.8) 78 (0.2) 2245 (6.0)

Screening No screening 2811 18 (0.6) 7 (0.3) 260 (9.2)

Screening 4109 19 (0.5) 5 (0.1) 141 (3.4)

Aged 55–64 years

No screeninga No screening 41,089 593 (1.4) 180 (0.4) 4209 (10.2)

Screening No screening 4806 74 (1.5) 34 (0.7) 779 (16.2)

Screening 8846 97 (1.1) 17 (0.2) 592 (6.7)
aScreening was not available for individuals in the no-screening randomization arm
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outcome). However, the study data – without any assump-
tions – can be used to exclude parts of the theoretical range
of the per-protocol effect. To see this, consider that, for
every person in the study, we observe one of their two po-
tential or counterfactual outcomes: e.g., for those who were
screened, we see their outcome under screening, but do
not know what would have happened to them had they not
been screened (see illustration in Additional file 1: Table S1).
We can compute bounds for the per-protocol effect by
imputing the most extreme scenarios for the unobserved
counterfactual outcomes – e.g., for the upper bound, im-
agining that everybody who was screened would have ex-
perienced the outcome had they not been screened, and
that everybody who was not screened would have not
experienced the outcome had they been screened. Thus,
the per-protocol risk difference must lie within the
bounds (using probability notation):

LB ¼ Pr Y ¼ 1jX ¼ 1½ �−1ð Þ Pr X ¼ 1½ �
−Pr Y ¼ 1jX ¼ 0½ � Pr X ¼ 0½ �

UB ¼ Pr Y ¼ 1jX ¼ 1½ � Pr X ¼ 1½ �
þ 1−Pr Y ¼ 1jX ¼ 0½ �ð ÞPr X ¼ 0½ �;

where X is an indicator of treatment, Y is an indicator of
a dichotomous outcome of interest, and LB and UB

denote the lower and upper bounds, respectively. Ex-
pressions for the risk under each level of treatment, the
risk ratio, and a formal definition of the effect of interest
are provided in the Additional file 1.
The first block of Table 3 shows that these assumption-

free bounds for the 10-year risk difference in the NORC-
CAP trial are quite wide: e.g., from −10.0 to 90.0 % for
CRC incidence. In fact, these bounds will always cover the
null and necessarily have a width of 100 % for dichotom-
ous outcomes. In order to obtain narrower bounds for the
per-protocol effect we need to combine the data with
assumptions.

Bounding the per-protocol effect under the instrumental
conditions
The three instrumental conditions are often described
as follows: (1) the randomization indicator (which we
will denote Z) is associated with receiving treatment X;
(2) the randomization indicator Z causes the outcome
Y only through treatment X; and (3) the randomization
indicator Z and the outcome Y share no causes [3].
The first condition, sometimes referred to as the “rele-
vance” condition, can be checked in the data: e.g., in
the 55–64-year age group of the NORCCAP trial the
risk difference:

Table 2 Description of analytic assumptions

Conditionsa Description of condition Empirically verifiable
in a randomized trial?

When the condition may be reasonable

Relevance
(instrumental condition 1)b

Randomization indicator is
associated with treatment

Yes Expected to hold in randomized trials, and
is empirically verifiable

Exclusion restriction
(instrumental condition 2)b

Randomization indicator has
no effect on the outcome
except through treatment

No Expected to hold in double-blinded placebo-controlled
trials when double-blinding is successfully maintained
and there is no placebo effect; may be approximately
reasonable in other settings

Exchangeability
(instrumental condition 3)b

The effect of the randomization
indicator on the outcome is
not confounded

No Expected to hold by design if no loss to follow-up or
other forms of selection bias occur

Known feasible compliance
type distribution
(e.g., no “defiers”)

Specify the proportion of patients
that are “compliers,” “always-takers,”
“never-takers,” or “defiers”

No Compliance type distribution is identified in trials
where non-adherence only occurs in one arm (e.g.,
when treatment is not available to the placebo arm);
assuming zero or a minimal number of “defiers” may
be reasonable in other settings

Limits on the
unobserved compliance
type counterfactual risksc

Specify imposed limits on what
could happen to the “never-takers”
had they been treated and the
“always-takers” had they not been
treated

No Subject-matter dependent; imposed limits may be
more justifiable for rare outcomes

Additive effect
homogeneity

No additive effect modification
by randomization arm among the
treated and untreated

No Subject-matter dependent and generally not expected
to hold by design; may become more plausible in
analyses conditional on measured patient characteristics

Multiplicative effect
homogeneity

No multiplicative effect modification
by randomization arm among the
treated and untreated

No Subject-matter dependent and generally not expected
to hold by design; may become more plausible in
analyses conditional on measured patient characteristics

aBounds for the per-protocol effect presented in the current study rely on (1) no assumptions (data only); (2) the instrumental conditions; (3) the instrumental
conditions, a feasible known distribution of compliance types, and imposed limits on unobserved compliance type counterfactual risks; (4) the instrumental
conditions and additive effect homogeneity; and (5) the instrumental conditions and multiplicative effect homogeneity
bRelevance, exclusion restriction, and exchangeability are jointly referred to as the instrumental conditions
cIn the NORCCAP trial, there are no “always-takers” by design and, therefore, we only discuss this assumption type in the context of the “never-takers”
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Pr½X ¼ 1jZ ¼ 1�− Pr½X ¼ 1jZ ¼ 0� ¼ 0:65−0 ¼ 0:65:

Here, the F-statistic = 75626 and p value < 0.0001.
The third “exchangeability” condition is expected by

design in randomized trials. The second condition,
known as the exclusion restriction, is expected to hold
in double-blinded placebo-controlled randomized tri-
als in which double-blinding is successfully maintained
and there is no placebo effect, but may not hold in
other trials, like ours. For example, the exclusion

restriction would be violated if the invitation letter
alone prompted new awareness of CRC risk and risk
factors, and subjects in the screening arm adopted
preventive measures that they would not have adopted
had they been in the control arm. Although we can-
not prove conditions (2) and (3) hold in a given study,
it is sometimes possible to find empirical evidence re-
futing, i.e., falsifying, them [3].
Under the instrumental conditions, we can compute the

following bounds for the per-protocol risk difference:

Table 3 Lower and upper bounds for 10-year counterfactual risks and per-protocol effects among individuals 55–64 years old
(units = cases/100 persons for risks and risk differences)

CRC incidence CRC mortality All-cause mortality

Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound

No Assumptions

Risk under no screening 1.2 17.4 0.4 16.6 9.1 25.3

Risk under screening 0.2 84.0 0.03 83.9 1.1 84.9

Risk difference −17.2 82.8 −16.5 83.5 −24.2 75.8

Risk ratio 0.01 68.95 0.00 214.54 0.04 9.32

Instrumental conditions

Overall

Risk under no screeninga 1.4 0.4 10.2

Risk under screening 0.7 35.9 0.1 35.3 4.3 39.5

Risk difference −0.7 34.5 −0.3 34.9 −5.9 29.3

Risk ratio 0.49 24.88 0.28 80.64 0.42 3.86

Among the “never-takers” (35 %)b

Risk under no screeninga 1.5 0.7 16.2

Risk under screening 0.0 100.0 0.0 100.0 0.0 100.0

Risk difference −1.5 98.5 −0.7 99.3 −16.2 83.8

Risk ratio 0.00 64.95 0.00 141.35 0.00 6.17

Among the “compliers” (65 %)a,b

Risk under no screening 1.4 0.3 7.0

Risk under screening 1.1 0.2 6.7

Risk difference −0.3 −0.1 −0.3

Risk ratio 0.79 0.66 0.96

Instrumental conditions and additive effect homogeneitya

Risk under no screening 1.4 0.4 10.2

Risk under screening 1.1 0.3 9.9

Risk difference −0.3 −0.1 −0.3

Risk ratio 0.80 0.77 0.97

Instrumental conditions and multiplicative effect homogeneitya

Risk under no screening 1.4 0.4 10.2

Risk under screening 1.1 0.3 9.8

Risk difference −0.3 −0.1 −0.5

Risk ratio 0.79 0.66 0.96
aPoint identification is achieved under these conditions in the NORCCAP trial
bIn this particular study the distribution of compliance types is known given instrumental conditions. In other study designs, identifying the counterfactual risks
and treatment effects within compliance types requires an additional assumption of an assumed feasible distribution of compliance types
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UB ¼ min

1− Pr Y ¼ 0;X ¼ 1jZ ¼ 1½ � þ Pr Y ¼ 1;X ¼ 0jZ ¼ 0½ �;
1− Pr Y ¼ 0;X ¼ 1jZ ¼ 0½ � þ Pr Y ¼ 1;X ¼ 0jZ ¼ 1½ �;

−Pr Y ¼ 0;X ¼ 1jZ ¼ 0½ � þ Pr Y ¼ 0;X ¼ 1jZ ¼ 1½ � þ Pr Y ¼ 0;X ¼ 0jZ ¼ 1½ � þ Pr Y ¼ 1;X ¼ 1jZ ¼ 0½ � þ Pr Y ¼ 0;X ¼ 0jZ ¼ 0½ �;
−Pr Y ¼ 0;X ¼ 1jZ ¼ 1½ � þ Pr Y ¼ 0;X ¼ 1jZ ¼ 0½ � þ Pr Y ¼ 0;X ¼ 0jZ ¼ 0½ � þ Pr Y ¼ 1;X ¼ 1jZ ¼ 1½ � þ Pr Y ¼ 0;X ¼ 0jZ ¼ 1½ �;

Pr Y ¼ 1;X ¼ 1jZ ¼ 1½ � þ Pr Y ¼ 0;X ¼ 0jZ ¼ 1½ �;
Pr Y ¼ 1;X ¼ 1jZ ¼ 0½ � þ Pr Y ¼ 0;X ¼ 0jZ ¼ 0½ �;

−Pr Y ¼ 1;X ¼ 0jZ ¼ 1½ � þ Pr Y ¼ 1;X ¼ 1jZ ¼ 1½ � þ Pr Y ¼ 0;X ¼ 0jZ ¼ 1½ � þ Pr Y ¼ 1;X ¼ 1jZ ¼ 0½ � þ Pr Y ¼ 1;X ¼ 0jZ ¼ 0½ �;
− Pr Y ¼ 1;X ¼ 0jZ ¼ 0½ � þ Pr Y ¼ 1;X ¼ 1jZ ¼ 0½ � þ Pr Y ¼ 0;X ¼ 0jZ ¼ 0½ � þ Pr Y ¼ 1;X ¼ 1jZ ¼ 1½ � þ Pr Y ¼ 1;X ¼ 0jZ ¼ 1½ �

0
BBBBBBBBBB@

1
CCCCCCCCCCA

Related bounds have also been proposed under dif-
ferent interpretations of condition (3) [6, 8], but the
bounds presented here make use of the strongest
version of this condition expected to hold in ran-
domized trials. See Richardson and Robins [12] for
further discussion, including some intuition for these
complicated expressions. See Additional file 1 for
bounds for the (counterfactual) absolute risks under
each treatment.
The second block of Table 3 shows that the bounds

for the 10-year risk difference under the instrumental
conditions are quite wide in the NORCCAP trial. For
example, for CRC risk, the effect may fall anywhere
between –0.7 % and 34.5 %. Interestingly, we can ob-
tain a point estimate for the risk under no screening
(for CRC risk: 1.4 %) but, because there is non-
compliance in the screening arm, only bounds for the
risk under screening (for CRC risk: 0.7 to 35.9 %). The
wide bounds for the risk under screening drive the
wide bounds for the risk difference.

Bounding the per-protocol effect within compliance types
Under the instrumental conditions, we can describe pa-
tients in the study population as belonging to one of
four mutually-exclusive “compliance types” or “princi-
pal strata” [13–15]:

(1) “Always-takers,” those who would have always been
treated regardless of randomization

(2) “Never-takers,” those who would have always opted
out of treatment regardless of randomization

(3) “Compliers,” those who would have been treated
had they been randomized to receive treatment,
and would not have been treated had they been
randomized to the control arm

(4) “Defiers,” those who would not have been treated
had they been randomized to receive treatment, but
would have been treated had they been randomized
to the control arm

For many trials, it may be reasonable to assume there
are zero (or at least a small number of) “defiers.” If we
assume there are no “defiers” then we can identify the
proportion of our study population who are in each of
the other compliance types.
In the NORCCAP trial, there are no “always-takers” and

no “defiers” because the screening was not available to
those who were randomized to the control arm. There-
fore, under exchangeability of the randomization arms, 35
% of trial participants are “never-takers” (estimated by Pr
[X = 0|Z = 1]) and the other 65 % are “compliers”. For
each person in the treatment arm we know whether she is
a “complier” (if she did undergo screening) or a “never-
taker” (if she did not). In studies that have non-
compliance in both randomization arms, we will not know
with certainty any given subject’s compliance type.
Richardson and Robins [5] described bounds for the

counterfactual risks and treatment effects within compli-
ance types. In the special case when we (i) know there
are only “compliers” and “never-takers” and (ii) have no
empirical evidence against the instrumental conditions,
then the effect within the “never-takers” is bounded as
follows:

UB ¼ 1− Pr Y ¼ 1jX ¼ 0;Z ¼ 1½ �
LB ¼ −Pr Y ¼ 1jX ¼ 0;Z ¼ 1½ �:

Meanwhile, the effect in the “compliers” is point-
identified:

LB ¼ UB ¼ Pr Y ¼ 1jZ ¼ 1½ �− Pr Y ¼ 1jZ ¼ 0½ �
Pr X ¼ 1jZ ¼ 1½ �− Pr X ¼ 1jZ ¼ 0½ � :

Beyond the special case where (i) is expected by de-
sign, more general expressions have been described for
an assumed distribution of compliance types [5]. Note
that any assumed distribution needs to be feasible. For
example, in studies like the NORCCAP trial with non-
compliance in only one treatment arm, the only feasible

LB ¼ max

Pr Y ¼ 1;X ¼ 1jZ ¼ 1½ � þ Pr Y ¼ 0;X ¼ 0jZ ¼ 0½ �−1;
Pr Y ¼ 1;X ¼ 1jZ ¼ 0½ � þ Pr Y ¼ 0;X ¼ 0jZ ¼ 1½ �−1;

Pr Y ¼ 1;X ¼ 1jZ ¼ 0½ �−Pr Y ¼ 1;X ¼ 1jZ ¼ 1½ �−Pr Y ¼ 1;X ¼ 0jZ ¼ 1½ �−Pr Y ¼ 0;X ¼ 1jZ ¼ 0½ �−Pr Y ¼ 1;X ¼ 0jZ ¼ 0½ �;
Pr Y ¼ 1;X ¼ 1jZ ¼ 1½ �−Pr Y ¼ 1;X ¼ 1jZ ¼ 0½ �−Pr Y ¼ 1;X ¼ 0jZ ¼ 0½ �−Pr Y ¼ 0;X ¼ 1jZ ¼ 1½ �−Pr Y ¼ 1;X ¼ 0jZ ¼ 1½ �;

−Pr Y ¼ 0;X ¼ 1jZ ¼ 1½ �−Pr Y ¼ 1;X ¼ 0jZ ¼ 1½ �;
−Pr Y ¼ 0;X ¼ 1jZ ¼ 0½ �−Pr Y ¼ 1;X ¼ 0jZ ¼ 0½ �;

Pr Y ¼ 0;X ¼ 0jZ ¼ 1½ �−Pr Y ¼ 0;X ¼ 1jZ ¼ 1½ �−Pr Y ¼ 1;X ¼ 0jZ ¼ 1½ �−Pr Y ¼ 0;X ¼ 1jZ ¼ 0½ �−Pr Y ¼ 0;X ¼ 0jZ ¼ 0½ �;
Pr Y ¼ 0;X ¼ 0jZ ¼ 0½ �−Pr Y ¼ 0;X ¼ 1jZ ¼ 0½ �−Pr Y ¼ 1;X ¼ 0jZ ¼ 0½ �−Pr Y ¼ 0;X ¼ 1jZ ¼ 1½ �−Pr Y ¼ 0;X ¼ 0jZ ¼ 1½ �

0
BBBBBBBBBB@

1
CCCCCCCCCCA
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proportion of “defiers” is zero. In trials with non-
compliance in both treatment arms, the data may be
consistent with a range in the proportion of “defiers,”
and investigators may consider computing bounds for
the effects within compliance types under an assumed
proportion of “defiers” within that range.
The second block of Table 3 further presents bounds

for the counterfactual risks and per-protocol effect
within the “compliers” and the “never-takers.” (In the
NORCCAP trial, there is no evidence against the instru-
mental conditions, so we can use the expressions de-
scribed above.) For the “never-takers”, we can obtain a
point estimate for the risks under no screening, but we
have (by definition) no information on what would have
happened to them had we forced them to follow the
protocol in the screening arm and, therefore, been
screened. Therefore, we can only achieve wide bounds
for the per-protocol effect in the “never-takers” because
we have limited information in the data on what would
have happened to this subgroup had they followed the
protocol. For the “compliers”, we can obtain a point esti-
mate for the risks under screening and no screening,
and, therefore, we can also obtain a point estimate for
the per-protocol effect in the “compliers” [10], often re-
ferred to as a “local” average treatment effect [15]. In the
NORCCAP trial, the “compliers” are known to be those

who actually received the screening, and thus the effect
in the “compliers” is the effect in the screened.
The bounds in the NORCCAP trial using the instru-

mental conditions alone, described above, are a weighted
average of the bounds in the “never-takers” and the
point estimate in the “compliers”. In order to obtain nar-
rower bounds for the per-protocol effect in the study
population, we may combine the instrumental condi-
tions with restrictions on the upper bound of the risk
under screening in the “never-takers” (i.e., a counterfac-
tual risk in 35 % of the study population for which we
have no empirical information; Fig. 1) [5]. For example,
we might assume that the risk under screening in the
“never-takers” is actually not greater than their risk
under no screening. Under this assumption, the resulting
bounds do not include the null value: (−0.7 %, −0.2 %)
for CRC risk, (−0.3 %, −0.1 %) for CRC mortality, and
(−5.9 %, −0.2 %) for all-cause mortality. Though this as-
sumption is plausible for CRC risk and mortality, it may
not be for all-cause mortality, which could be more sus-
ceptible to unintended consequences of screening. A less
stringent restriction for all-cause mortality is that at
most, say, 50 % of the “never-takers” would have died
had they been screened. As seen in Fig. 1, this restriction
(x-axis = 0.5) would imply bounds that include the pos-
sibility of a null or positive risk difference. A sensitivity

Fig. 1 Bounds for the per-protocol 10-year risk difference when restricting the maximum value of the risk under screening in the “never-takers”,
aged 55–64 years. Gray area in nested plots indicates the area of detail presented in the outer plots
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analysis can be conducted under different hypothesized
risks under screening in the “never-takers”, or the full
range of possibilities could be presented as we do in the
insets in Fig. 1. For trials with non-compliance in both
treatment arms, similar sensitivity analyses could be
conducted under hypothesized risks under no treatment
in the “always-takers”.

Point identification of the per-protocol effect under the
instrumental conditions plus homogeneity
The bounds can also be narrowed by combining the in-
strumental conditions with assumptions that restrict ef-
fect heterogeneity. In fact, when the instrumental
conditions are combined with sufficiently strong homo-
geneity assumptions, a point estimate of the per-
protocol effect can be obtained [6, 7, 16]. Assuming (i)
no additive effect modification by the instrument among
the treated and the untreated leads to what is often
referred to as the standard instrumental variable (IV)
estimator:

Pr Y ¼ 1jZ ¼ 1½ �− Pr Y ¼ 1jZ ¼ 0½ �
Pr X ¼ 1jZ ¼ 1½ �− Pr X ¼ 1jZ ¼ 0½ � :

Assuming (ii) no multiplicative effect modification by
the instrument among the treated and the untreated
leads to a different estimator:

Pr Y ¼ 1jX ¼ 0½ �Pr X ¼ 0½ � exp ψð Þ−1ð Þ
þ Pr Y ¼ 1jX ¼ 1½ �Pr X ¼ 1½ � 1− exp −ψð Þð Þ;

where

exp −ψð Þ ¼ 1−
Pr Y ¼ 1jZ ¼ 1½ �− Pr Y ¼ 1jZ ¼ 0½ �

Pr Y ¼ 1jX ¼ 1;Z ¼ 1½ �Pr X ¼ 1jZ ¼ 1½ �
− Pr Y ¼ 1jX ¼ 1;Z ¼ 0½ �Pr X ¼ 1jZ ¼ 0½ �

:

In the NORCCAP trial, because we have only “com-
pliers” and “never-takers”, these assumptions could be
restated as equal effects in the “compliers” and “never-
takers” on the (i) additive or (ii) multiplicative scale.
Effect homogeneity assumptions may be implausible in
many trials, particularly if there are interactions between
patients’ treatment assignment and characteristics in
informing treatment choice [16].
The third and fourth blocks of Table 3 shows the point

estimates of the per-protocol risk difference under effect
homogeneity on the additive and multiplicative scale,
respectively. These assumptions will not hold in our
study if, for example, family history of cancers modifies
the effect of screening and patients in the screening arm
with no family history of cancers may be more likely to
forgo screening. The possibility for such modification is
also apparent when examining the baseline risks across
compliance types: the risk under no screening is lower in

the “compliers” than the “never-takers” which might indi-
cate the magnitude of the effects in the “compliers” and
“never-takers” could be very different. If family history
and other relevant patient characteristics were mea-
sured, it would be possible to relax the homogeneity as-
sumptions (and instrumental conditions) to hold
within levels of covariates and then present a point
estimate of the per-protocol effect within levels of the
covariates [6, 7, 16].

Bounds and point identification results for the per-protocol
effect, aged 50–64 years
Thus far, we have considered bounding the counterfactual
risks and the per-protocol effect among the 55–64-year
age group. We repeated these computations for subjects
aged 50–54 years (Additional file 1: Table S2). We then
standardized by age group to obtain the estimates pre-
sented in Additional file 1: Table S3; sex-stratified results
are presented in Additional file 1: Table S4. The final age-
standardized bounds for the per-protocol risk difference
and risk ratio estimated under each set of assumptions are
shown in Figs. 2 and 3. As demonstrated above with esti-
mating the effect among the 55–64-year age group, the
age-standardized bounds for the risk difference under the
instrumental conditions are relatively wide (e.g., the
risk difference for CRC incidence is between −0.6 %
and 37.0 %), while narrower bounds or even point
identification can be achieved by making additional
assumptions about the possible magnitude and direc-
tion of the effect in the “never-takers”.

Discussion
We have demonstrated how combining data with vari-
ous sets of assumptions helps to bound the per-protocol
effect of point interventions (i.e., interventions that are
not sustained over time) in randomized trials with di-
chotomous outcomes. In our application to a trial of
CRC screening, we showed how bounds for both the
per-protocol risk difference and risk ratio are achievable.
Our application illustrates three key benefits of an ap-
proach based on partial identification with progressively
stronger assumptions.
First, this approach illuminates our reliance on unveri-

fiable assumptions. In our trial, the wide bounds under
no assumptions make clear that we cannot learn much
at all about the effectiveness of screening without bring-
ing in prior knowledge about the study design or our
subject matter.
Second, this approach provides the range of effect

sizes we are most confident in under fairly reasonable
assumptions. In our trial we could estimate relatively
informative lower bounds that quantify the maximum
benefit of screening. For example, had everybody been
screened, at most we would expect CRC risk to decrease
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by 0.6 percentage points. This number provides a limit
for how much our ITT effect estimate (−0.2 %) might
underestimate the effectiveness under perfect adherence,
and a boundary that could be helpful in evaluating the
cost-effectiveness of screening or informing clinical or
policy decisions. We know less about the upper bound
(minimum effectiveness or even possible harm) of the
screening program without making more debatable as-
sumptions, but the type of analyses presented in Fig. 1
provides a template for discussing what level of assump-
tions may be reasonable and how much differing opin-
ions may lead to differing conclusions.
Third, this approach can demonstrate our confidence,

or lack thereof, in the effect sizes for certain subpopula-
tions [13–15]. In our trial, the estimates support the
benefit of CRC screening for nearly two thirds of the
study population (the “compliers”), and in this case we

can describe which individuals are included in this
group. In randomized trials with non-compliance in
both arms, we can only obtain a point estimate for the
effect in the “compliers” if we assume there are no “de-
fiers”. However, we would not know who the “compliers”
are and membership in this group may vary across stud-
ies. Because of this, the common practice of presenting
this subgroup effect alone is of questionable interest for
clinical or policy decision-making [17] as there is no ob-
vious way of applying the results of the study to that
particular subgroup. When presented alongside bounds
for the effect in the full study population, however, in-
vestigators may sometimes be able to discern whether
certain subpopulations are likely to receive more benefit
or harm than others. In trials with one-sided non-
compliance, like the NORCCAP trial, such practice
is sometimes actionable because we can describe the

Fig. 2 Age-standardized bounds (for ages 50–64) for the per-protocol 10-year risk difference under various sets of assumptions. Sets of assumptions
include: a No assumptions. b The instrumental conditions (relevance, exclusion restriction, and exchangeability). c The instrumental conditions plus an
assumed maximum risk under screening in the “never-takers” of 2 %, 1 %, and 40 % for the CRC incidence, CRC mortality, and all-cause mortality,
respectively. d The instrumental conditions plus an assumed maximum risk under screening in the “never-takers” of 1.5 %, 0.75 %, and 30 % for the
CRC incidence, CRC mortality, and all-cause mortality, respectively. e The instrumental conditions plus an assumed maximum risk under screening in
the “never-takers” of 1 %, 0.5 %, and 20 % for the CRC incidence, CRC mortality, and all-cause mortality, respectively. f The instrumental conditions plus
additive effect homogeneity. g The instrumental conditions plus multiplicative effect homogeneity. The dotted line indicates the intention-to-treat
effect
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subpopulation of “compliers” based on measured pre-
randomization characteristics.
Investigators considering employing these methods in

randomized trials with point interventions and dichotom-
ous outcomes should consider how features of their par-
ticular study design may affect which sets of assumptions
we describe in Table 2 are reasonable. The instrumental
conditions are expected to hold in placebo-controlled,
double-blinded randomized trials of point interventions
where there is no loss to follow-up, no placebo effect, and
double-blinding is successfully maintained, but the in-
strumental conditions are suspect in head-to-head
randomized trials and whenever double-blinding is
not successfully maintained or there is a possible pla-
cebo effect. The homogeneity conditions, on the other
hand, are not expected to hold based on any study
design feature and thus should be weighed judiciously

when applied to the analysis of any randomized trial.
A similar caveat applies to conditions about the dis-
tribution of or effects within compliance types when
there is non-compliance in both treatment arms [5].
Our discussion of bounding the per-protocol effect fo-

cused on dichotomous outcomes and point interven-
tions. Similar bounds under the instrumental conditions
can be identified for continuous outcomes if one as-
sumes the outcomes are finitely bounded [8], and the
point-identification expressions under effect homogen-
eity conditions can also be restated to apply to continu-
ous outcomes [6, 7, 16]. Because we can choose to
estimate cumulative risk up through any point in time in
follow-up, we could also extend these bounds to bound-
ing the survival curve for time-to-event outcomes [18].
Partial identification strategies can also be applied to tri-
als with substantial attrition by further incorporating

Fig. 3 Age-standardized bounds (for ages 50–64) for the per-protocol 10-year risk ratio under various sets of assumptions. Sets of assumptions
include: a No assumptions. b The instrumental conditions (relevance, exclusion restriction, and exchangeability). c The instrumental conditions
plus an assumed maximum risk under screening in the “never-takers” of 2 %, 1 %, and 40 % for the CRC incidence, CRC mortality, and all-cause
mortality, respectively. d The instrumental conditions plus an assumed maximum risk under screening in the “never-takers” of 1.5 %, 0.75 %, and
30 % for the CRC incidence, CRC mortality, and all-cause mortality, respectively. e The instrumental conditions plus an assumed maximum risk
under screening in the “never-takers” of 1 %, 0.5 %, and 20 % for the CRC incidence, CRC mortality, and all-cause mortality, respectively. f The
instrumental conditions plus additive effect homogeneity. g The instrumental conditions plus multiplicative effect homogeneity. The dotted line
indicates the intention-to-treat effect
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methods to account for selection bias, e.g., inverse prob-
ability weighting [19]. In trials that involve an interven-
tion sustained over time, accounting for non-adherence
can be more complicated as participants may discon-
tinue the intervention at different times during follow-
up and time-varying patient characteristics may inform
and be affected by these decisions. More research is
needed on how to generalize partial identification strat-
egies to such settings, although the point-identification
results can be expanded upon using structural nested
models under related homogeneity and instrumental
conditions [7, 20]. Finally, our example and discussion
has focused on identification, but there is a growing
body of literature on how to incorporate random variabil-
ity [21]. Specifically, there has been recent development in
methods for estimating confidence intervals around the
bounds [22–26] as well as estimating confidence intervals
for the partially identified treatment effect itself [27, 28].
Incorporating random variability into the presentation of
partial identification results in randomized trials is critical;
however, more research is needed as there is currently no
consensus in the statistical literature on – or readily avail-
able software for – the optimal approach.
The per-protocol effect is often of greater interest

than, or complementary with, the ITT effect [1, 2]. In
trials like the NORCCAP trial with essentially no loss to
follow-up, we can easily compute an unbiased estimate
for the ITT effect. However, the ITT effect quantifies
the effect of assignment to treatment. From a patient’s
perspective, deciding whether or not to take treatment
requires knowledge about the effect of the treatment
when received as intended rather than the effect of
merely being assigned to treatment [1, 2]. Further, the
ITT effect is study-specific because it depends on the
magnitude and type of observed adherence to the
intervention among study participants. That the per-
protocol effect is independent of the observed adher-
ence makes it interesting from a societal perspective
too. For example, were the screening made available
in the future to the Norwegian population, the actual
adherence to the intervention could be different from
that observed in the trial (not the least because the
trial itself contributed to establish the efficacy of
screening). As a result, the ITT effect from the trial
would be outdated as a tool for decision-making, e.g.,
for cost-effectiveness analyses. On the other hand, un-
biased estimates for the per-protocol effect, while po-
tentially more relevant for decision making, are not
achievable from the data alone: investigators need to
combine the data with assumptions based on the
study design and subject matter expertise. Historically,
this has deterred many investigators from estimating
the per-protocol effect as expert knowledge is, by def-
inition, provisional and fallible.

Conclusion
As we have demonstrated using data from the NOR-
CAPP trial, bounding the per-protocol effect under
several sets of assumptions provides investigators with a
middle ground between presenting a single value for the
per-protocol effect based on sometimes heroic assump-
tions versus avoiding estimating the per-protocol effect
altogether. This middle ground shifts the scientific debate
to what assumptions are most plausible and, therefore, to
what range of effect sizes we are most confident in.

Additional file

Additional file 1: Norwegian Colorectal Cancer Prevention trial
instrumental variable (NORCCAP IV) bounds trials submission
supplement. Supplemental tables and an appendix describing the
derivations for bounds not presented in the main text. (PDF 132 kb)
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