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Transferring the brain computer interface (BCI) from laboratory condition to meet the real world application needs BCI to be
applied asynchronously without any time constraint. High level of dynamism in the electroencephalogram (EEG) signal reasons
us to look toward evolutionary algorithm (EA). Motivated by these two facts, in this work a hybrid GA-PSO based 𝐾-means
clustering technique has been used to distinguish two class motor imagery (MI) tasks. The proposed hybrid GA-PSO based 𝐾-
means clustering is found to outperform genetic algorithm (GA) and particle swarm optimization (PSO) based𝐾-means clustering
techniques in terms of both accuracy and execution time.The lesser execution time of hybrid GA-PSO technique makes it suitable
for real time BCI application. Time frequency representation (TFR) techniques have been used to extract the feature of the signal
under investigation. TFRs based features are extracted and relying on the concept of event related synchronization (ERD) and
desynchronization (ERD) feature vector is formed.

1. Introduction

A brain-computer interface (BCI) is a system that translates
human thoughts into an action via a control signal. Electroen-
cephalogram (EEG) is the most widely used biological signal
used for operating a BCI system since it has relatively short
time constants and offers relatively high temporal resolution
among noninvasive methods [1–3]. Numerous works over
the past few decades have revealed that EEG signal recorded
from the scalp are basis for BCIs [4]. Recently, development
of brain-controlled devices have received a great attention
because of their ability to bring mobility back to people with
devastating neuromuscular disorder and improve the quality
of their life [5]. Rapid increase in the volume and pace of
BCI research is a result of concern and effort of the BCI
groups to provide better opportunity to people who are in
“locked in state” because of neuromuscular disorders. This
has further increased due to the advancement in technology
and allied fields of BCI [6, 7]. A BCI system is considered

the most advanced neurofeedback system available [8–10].
Transferring the BCI from laboratory condition to real world
application needs BCI to be applied asynchronously without
any time constraint [11]. To achieve the same, ongoing brain
activities are analyzed continuously irrespective of state, that
is, control or noncontrol. An asynchronous BCI system is
independent of the cue based manner [12].

Asynchronous scheme of BCI system being independent
of cue depends on clustering for classification problem. Clus-
tering techniques have been extensively used for classifying
EEG signals [13]. Initial approach to develop asynchronous
system was presented in late 1990s [8, 14]. High level of
dynamism in the EEG signal reasons us to look toward the
technique, which could address complexities such as dyna-
mism and uncertainty. Evolutionary algorithms (EA), which
are known to solve complex engineering problems, have been
widely applied in BCI research in different aspects such as
feature selection [15–17] and dimension reduction [16, 18].
Genetic algorithm (GA), particle swarm optimization (PSO),
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ant colony optimization (ACO) are EA methods which have
attracted wide attention because of self-learning and popula-
tion based search capabilities [16]. In this work, we have used
GA, PSO, and hybrid GA-PSO based 𝐾-means clustering to
distinguish two class motor imagery (MI) tasks. These EA
based techniques have been used to select the initial cluster
centres for𝐾-means clustering. The hemispheric asymmetry
reflected for the MI based task is exploited to differentiate
the specific tasks using 𝐾-means clustering based on GA,
PSO, and hybrid GA-PSO optimization techniques. Time-
frequency representation (TFR) based features are extracted
and relying on the concept of event related synchroniza-
tion (ERS) and event related desynchronization (ERD) [19–
24] feature vector is formed. We have used asynchronous
approach of BCI to classify MI based two class tasks recorded
in synchronous approach of BCI.The feature vector extracted
using TFR constitutes the data population, which is classified
using hybrid GA-PSO based 𝐾-means clustering along with
GA and PSO based 𝐾-means clustering. To the best of the
knowledge of the author’s, hybrid GA-PSO based technique
has not been used in classification of two classes MI tasks.

The next section deals with the methodology used with
emphasis on experimental setup and various signal process-
ing techniques used in this experiment. Paradigm of the
experiment and extraction of spectral information from the
recorded EEG signal are explained briefly. Section 3 presents
the results of different optimization based 𝐾-means in terms
of accuracy and speed of convergence in addition to compa-
rison with the conventional𝐾-means clustering. Finally con-
clusion and discussions are presented in Section 4.

2. Materials and Methods

Nine right-handed subjects (20–28 years, all males) are invo-
lved in this experiment. All the subjects were novice to
the BCI systems and had no previous experience with
any biomedical signal recording. Before the experiment, it is
confirmed that all subjects are physically andmentally fit and
had no prior medical history of any neurological disorder.
All the subjects are given briefing of the work and tasks that
they are supposed to perform. Subjects are informed that exp-
eriment involves noninvasive method and it has no adverse
effect on the subjects in any form. Prior written consent is
taken for the recording adhering to the ethical guidelines for
biomedical research involving human research mentioned in
[25]. Figure 1 displays the recording setup for the undertaken
experiment.

A paradigm is prepared for two types of motor imag-
ination tasks along with rest state. The duration of single
paradigm operation (trial) was twelve seconds in which the
subjects are asked to stay in the relaxed state for the first
six seconds. At the sixth second alerting beep sound is used.
After one second of the beep sound, a cue for 1.25 seconds
is set during which subjects are instructed to imagine a
movement of the left- or right-hands in accordance with the
arrow direction, which is set to appear on the screen kept at
a distance of about two feet from the subject. Subjects are
instructed to apply just enough effort/force so that they could
experience an imagination of moving left- or right-hands

Figure 1: Recording setup for the BCI experiment.

without any real movement. Duration of cue is chosen as
1.25 seconds in accordance with the protocol mentioned in
[15, 26, 27]. Particular cue appeared randomly in order to
eliminate any chance of predicting the preceding cue. For
every subject two sessions of recordings are planned. Every
session is planned for eight runs. Each run comprised twenty
trials with different task, that is, imagination of left and right
arms along with state of rest.Thus each run consists of twenty
left and twenty right imagination trials.

2.1. Signal Recording. In the experiment, six channels bipolar
recording are done, that is, three for motor cortex area
(using three bipolar channels C3, C4, and Cz) and rest three
channels are used to detect unwanted movement and to
eliminate portions of recordings so as to reduce the influence
of physiological noise. Electrooculogram (EOG) is recorded
bipolarly in referential manner using three electrodes, one
placed medially above and two placed laterally below the
left and right eyes, respectively. In addition to this EMG is
recorded from the 𝑚 extensor digitorum communis of the
right and left arms as mentioned in [27], to detect unwanted
movements, if there any during recording. For recording
EMG and EOG gold plated electrodes are used and EEG
signal is recorded using EEG cap with 21 Ag electrodes.
All signals, including three channel EEG signals, EOG, and
two channels of EMG, are sampled at 500Hz. To filter out
mains hum from the 50Hz power line a notch filter is used.
Signals recorded from all six channels are grouped into
three categories as right imagery, left imagery, and rest state
producing eighteen sets of one-dimensional data.

2.2. Signal Processing. These data are further grouped as per
trial and run producing twelve sets of three-dimensional data
of size 625 × 10 × 8 corresponding to left and right imagery
tasks for each channel and six sets of three-dimensional data
of size 3000 × 20 × 8 corresponding to rest state for each
channel. This size is as per trial duration of 1.25 seconds
for imagery tasks with sampling frequency of 500Hz, thus
resulting in 625 data points in one trial, which is also chosen
as epoch length. In every session, there are eight runs, each
consisting of ten right and ten left imagery tasks. For the
rest state, duration of six seconds with sampling frequency
of 500Hz agrees with the size for the data corresponding to
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rest state. Considering every rest state as a task, twenty sets of
rest task are obtained for each session. Eighteen sets of three-
dimensional data (𝑙 × 𝑚 × 𝑛) where 𝑙, 𝑚, and 𝑛 represent
numbers of data points per epoch, trial number, and run,
respectively, constituting the time domain dataset. Signal is
further filtered using band pass filtered in the range of 0.5–
30Hz. For every task, that is, left imagery, right imagery, and
state of rest for C3, C4, and Cz, two sets of data are prepared
one having spectral content in range of 7–14Hz and the other
in the range of 17–26Hz. Buttorworth filter with order six is
selected to filter the signal vector of length 625 points at a
time. All eighteen sets of three-dimensional data mentioned
above are filtered producing thirty-six sets of filtered data of
appropriate size. Filtered signal is feed to feature extractor
which invokes eleven features extracting techniques for two
different bands of signal thus resulting in a total of twenty-two
features. Features are extracted for 𝜇 and ß bands of C3 for left
imagery tasks, C3 for right imagery tasks, C4 for left tasks,
and C4 for right imagery tasks. These features are computed
using different algorithms of time frequency representations.
Details of these techniques are mentioned in [15, 28].

The TFR features used in classification of MI based tasks
in this experiment are listed in Table 1. After computing
different features in order to form feature vector, absolute
value of features is computed. For extracting features, a data
vector of length 1.25 second is taken with sampling frequency
of 500Hz. This is also chosen as epoch length and for every
processing, a signal vector of 625 points is used at a time. We
have used data corresponding to C3 and C4 channels for task
discrimination as used in [29]. Figure 2 shows Born Jordan
feature computed for arbitrary trials. These features have
been computed using time frequency toolbox of MATLAB
[24]. Maximum value of the absolute value of feature value
(TFRs) obtained for every epoch of data for various features
is determined.Thenmean value is computed for every trial of
each type of tasks. Further concept of ERS and ERD is used in
forming feature vector as mentioned in [15, 26] which states
that there is ERS of the 𝜇 rhythm on the contralateral side
and a slight ERS in the central ß rhythm on the ipsilateral
hemisphere. This hemispheric asymmetry reflected in the
EEGs is exploited to differentiate the task desirably. To exploit
the concept of hemispheric asymmetry with regard to 𝜇 and ß
bands, we combined feature matrix obtained with respect to
𝜇 and ß bands to form a pattern, which is likely to inherit the
property of ERS and ERD as mentioned in [15]. This resulted
in a feature matrix of dimension 160 × 22 where there are
twenty-two features using two bands of signal with eleven
different features for eighty each of the two classes for every
session. In our present workwe used two sessions at a time for
purpose of classifications.Thus a composite feature matrix of
dimension 320 × 22 is obtained. Different techniques of TFR
are extensively used in the area of BCI [15, 30–39].

2.3. Clustering. Clustering of a data population involves
grouping of abstract unlabelled patterns into groups called
clusters such that patterns in same cluster are similar to each
other and dissimilar to patterns from other clusters. An unla-
belled set of sample patterns comprising a population is given
as input to a clustering algorithm, which partitions the input

Table 1: Features used for classification with their type.

Type Feature
Linear time frequency
processing Short time Fourier transform

Bilinear time frequency
processing (Cohen’s
class)

Born Jordan
Choi-Williams distribution
Pseudo-Wigner-Ville distribution
Smoothed pseudo-Wigner-Ville
distribution
Wigner-Ville distribution
Zhaos-Atlas-Marks distribution

Bilinear time frequency
processing (Affine class)

Unitary Bertrand distribution
D-Flandrin distribution
Scalogram for Morlet wavelet
Smoothed pseudo-Affine-Wigner
distribution

patterns into groups called clusters and labels the samples
accordingly [13].

The most widely used clustering algorithm, that is, 𝐾-
means algorithm, takes 𝐾 as input and partitions dataset of
𝑁 objects into K clusters, where 𝐾 < 𝑁. Cluster similarity
is measured with respect to the dissimilarity between a data
point and mean value of the patterns (centroid) in cluster. In
general, square-error criterion is used as criterion function,
given as

𝐷 =

𝐾

∑

𝑗=1

∑

𝑝∈𝐶𝑗


𝑚
𝑗
− 𝑝



2

, (1)

where𝐷 is sum of square-error for all patterns in dataset,𝑚
𝑗

is mean of pattern in 𝑗th cluster 𝐶
𝑗
, and 𝑝 represents pattern

or point in cluster 𝐶
𝑗
.

Starting with a set of randomly selected cluster centres,
the centres are iteratively updated with aim of minimizing
criterion function, 𝐷. In other words 𝐾-means can also be
viewed as optimization strategy, which searches for appro-
priate cluster centre so as to minimize criterion function, 𝐷
given by (1), based on initial cluster centres given as input to
the 𝐾-means. Conventional 𝐾-means is very sensitive to the
initial selected centers. Several methods have been reported
in literature to solve the cluster centre initialization (CCI)
problem. The limitations of conventional 𝐾-means are as
follows.

(i) Objective function of 𝐾-means, as given by (1), is
convex [40]; hence it may contain local minima. Con-
sequently, there is possibility of convergence to the
local minima.

(ii) Using conventional 𝐾-means algorithm we are not
able to determine global solution to the problem; that
is, clustering as output of 𝐾-means is highly depen-
dent on initial cluster centres and hence gives local
solutions to clustering problem [40–42].

To avoid premature convergence to the local optimal point,
in the present work,𝐾-means algorithm has been formulated
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Figure 2: Continued.
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Figure 2: (a) Born Jordan feature for ß band in C3 channel for arbitrary trial corresponding to right task. (b) Born Jordan feature for ß band
in C4 channel for arbitrary trial corresponding to right task. (c) Born Jordan feature for 𝜇 band in C4 channel for arbitrary trial corresponding
to left task. (d) Born Jordan feature for 𝜇 band in C4 channel for arbitrary trial corresponding to right task.

as a global optimization problem in the present work.
Approaches for solving the optimization problem can be
broadly classified into two groups, that is, gradient based and
population based evolutionary approach. Though gradient
based methods quickly converge to an optimal solution, it
fails for nondifferentiable or discontinuous problems. It is not
applicable even if the objective function is not completely
known due to limited knowledge, which is very likely for
real time applications. In this context, EA based optimization
technique has been found to be quite effective formultimodal
objective functions. High level of dynamism in EEG signal
requires techniques that could address complexities such as
dynamism and uncertainty. In this work we have used three
EA based approaches, that is, PSO, GA, and hybrid GA-PSO,
to select the initial centres. Both PSO and GA have their
own advantages and limitations. PSO and GA are initialized
with a group of a randomly generated population and have
fitness values to evaluate the population. They update the
population and search for the optimum solutions. In contrary
to GA, PSO does not have genetic operators like crossover
and mutation. In PSO, particles update themselves with their
internal velocity and they also have memory (all particles
remember their previous best position). The information
sharingmechanism in PSO andGA is also significantly differ-
ent [43]. In GAs, chromosomes share information with each
other. So the whole population moves towards an optimal
area as a group. In PSO, only global best particle gives out
the information to others and hence it follows one way
information sharingmechanism. In PSO all the particles tend
to converge to the best solution faster in comparison with
GA. Angeline compared betweenGAs and PSOs and has sug-
gested in [44] that a hybrid of the standard GA and PSO
models could furnish better result.Motivated by this, a hybrid

GA-PSO based clustering algorithm has been proposed,
which combines standard position and update rules of PSO
with operators of genetic algorithm: selection, crossover, and
mutation as mentioned in [45]. The tuning parameters of
both the optimization and the clustering technique are selec-
ted based on a series of pilot runs to determine the best
possible values for higher classification accuracy.

2.4. Swarm Representation. In order to use PSO to solve clus-
tering problem each individual particle position represents
𝐾 cluster centres consisting of 𝑁 ∗ 𝐾 real numbers in a
𝐾 × 𝑁 matrix, where first row represents first cluster centre
and second represents second cluster centre, and so on.

2.5. Swarm Initialization. In this step each particle swarm
encoded with cluster centre is initialized by randomly choos-
ing 𝐾 data points. Each particle is represented by 𝐾 × 𝑁

matrix. This process is repeated 𝑃 times, where 𝑃 is number
of particles.

2.6. Fitness Computation. Each particle in consideration is
given as input to 𝐾-means and each point 𝑝

𝑖
in the data set

is assigned to its nearest cluster 𝐶
𝑗
with 𝑚

𝑖
as centre. Then a

new cluster mean is obtained to get new cluster centre which
then replaces the particle in consideration.

Using the above newly obtained cluster centre fitness of
the particle is calculated using (1).

2.7. Update 𝑃
𝑏𝑒𝑠𝑡

and 𝐺
𝑏𝑒𝑠𝑡

. In this step, each particle updates
its personal best position denoted by 𝑃best. and the associated
fitness value. 𝑃best contains each individual particle’s best
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position seen up to the current generation. It is updated as
follows.

(i) For each particle

(a) compare particle’s current fitness value with fit-
ness value of 𝑃best;

(b) if current fitness value is better than fitness value
of 𝑃best, then set 𝑃best value equal to the current
position of particle and the update the fitness
value associated with it equal to particle current
fitness value;

(c) otherwise, do nothing.

Updation𝐺best involves positioning of particle with best posi-
tion seen up to current generation. In the first generation of
PSO,𝐺best and associated fitness are equal to the position and
fitness of particle with best fitness value. In the subsequent
generations, 𝐺best is updated as follows.

(i) For each particle in swarm

(a) compare the fitness value of𝑃best with the fitness
value 𝐺best;

(b) if fitness value of 𝑃best is better than the fitness
of 𝐺best, then set 𝐺best to 𝑃best and fitness value
of 𝐺best is equal to fitness value of 𝑃best;

(c) otherwise, do nothing.

2.8. Position and Velocity Update. Half of the worst perform-
ing particles (let them be called 𝑃

2
) are eliminated on basis of

their fitness. Remaining half of best performing particles (let
them be called 𝑃

1
) undergo position and velocity update as in

standard PSO, given by (2).

V (𝑡 + 1) = 𝑤 × V (𝑡) + 𝑐
1
× (𝑝 (𝑡) − 𝑥 (𝑡)) + 𝑐

2
× (𝑔 (𝑡) − 𝑥 (𝑡))

𝑥 (𝑡 + 1) = 𝑥 (𝑡) + V (𝑡 + 1) ,

(2)

where 𝑥(𝑡), 𝑥(𝑡 + 1) is the position of the particle at iteration
𝑡 and 𝑡 + 1, respectively. 𝑝(𝑡) is the personal best (𝑃best)
position of the particle 𝑥(𝑡) found so far. 𝑔(𝑡) is the global
best (𝐺best) position of the any of the particle found so far. V(𝑡)
is the velocity of the particle 𝑥(𝑡) to update its position. 𝑤(𝑡)

represents confidence in its ownmovement or inertial weight.
𝑐
1
is a constant called cognitive parameter. 𝑐

2
is a constant

called social parameter. 𝑤(𝑡) varies with iterations according
to equation given below:

𝑤 (𝑡) =
max iterartions − 𝑡

max iterartions
. (3)

2.9. Selection. Remaining half, that is, 𝑃/2 particles, are gen-
erated fromparticles that have undergone position and veloc-
ity updating using appropriate selection techniques. In this
work we have used tournament selection strategy for repro-
duction or forming the mating pool. In tournament selection
“𝑚” individuals are randomly selected from the population,
where “𝑚” is called tournament size. The individual with

best fitness among “𝑚” individuals is selected into mating
pool. Advantage of tournament selection over roulette wheel
selection is that it does not depend on negative fitness values
and whether a problem is a maximization or minimization
problem unlike roulette wheel selection. Also it is not fully
biased towards fittest individual in population as in the case
of Roulette wheel selection.

2.10. Crossover and Mutation. The particles generated in
above step using tournament selection go through velocity
propelled averaged crossover (VPAC) [45] and mutation.
In VPAC, two child particles are produced such that their
position is between their parents but is accelerated away from
their current direction (by adding negative velocity). VPAC
crossover is able to create necessary diversity in particles
to make searching process more effective. New children are
obtained based on

𝑐
1 (𝑥) =

𝑝
1 (𝑥) + 𝑝

2 (𝑥)

2
− 𝜃
1
× 𝑝
1 (V) ,

𝑐
2 (𝑥) =

𝑝
1 (𝑥) + 𝑝

2 (𝑥)

2
− 𝜃
2
× 𝑝
2 (V) ,

(4)

where 𝑐
1
(𝑥) and 𝑐

2
(𝑥) are positions of child 1 and child 2,

respectively, 𝑝
1
(𝑥) and 𝑝

1
(𝑥) are positions of parent 1 and

parent 2, respectively, V
1
(𝑥) and V

2
(𝑥) are velocities of parent 1

and parent 2, respectively, 𝜃
1
and 𝜃
2
are uniformly distributed

random numbers between 0 and 1, and child particle retains
their parents velocity; that is, 𝑐

1
(V) = 𝑝

1
(V) and 𝑐

2
(V) = 𝑝

2
(V).

Then particles, after going through velocity propelled
averaged crossover, undergo mutation as described in [46].
In this step each chromosome undergoes mutation with fixed
small probability, 𝜇

𝑚
. For mutating a chromosome, whose

clustering metric is𝑀, a number 𝜕 in the range (−𝑅 to +𝑅) is
generated with uniform distribution, where 𝑅 is calculated as
follows:

𝑅 =

{

{

{

𝑀 − 𝑀max
𝑀max − 𝑀min

, if 𝑀max > 𝑀,

1, if 𝑀max = 𝑀min,
(5)

where 𝑀min and 𝑀max are the minimum and maximum
values of the clustering metric, respectively, in the current
population. If theminimum andmaximum values of the data
set along the 𝑖th dimension (𝑖 = 1, 2, . . . , 𝑛) are 𝑥𝑖min and 𝑥

𝑖

max,
respectively, and the position to be mutated is 𝑖th dimension
of a cluster with value, 𝑥𝑖, then after mutation value becomes

𝑥
𝑖
+ 𝜕 × (𝑥

𝑖

max − 𝑥
𝑖
) if 𝜕 > 0,

𝑥
𝑖
+ 𝜕 × (𝑥

𝑖
− 𝑥
𝑖

min) otherwise.
(6)

This scheme of mutation provides perturbation in a maxi-
mum range to strings either when they have the largest value
of 𝑀 in the population (i.e., 𝑀 = 𝑀max) or when all the
strings have the same value of the clustering metric (i.e.,𝑀 =

𝑀min − 𝑀max). On the other hand, the best string(s) in the
population (i.e., the one with 𝑀 = 𝑀min) is not perturbed
at all in the current generation. Moreover, the perturbation is
such that themutated centres still lie within the bounds of the
data points.
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Table 2: Classification performance against different K-means based clustering.

Subject 𝐾-means GA based 𝐾-means PSO based𝐾-means GA-PSO based
𝐾-means

Subject 1
Average (%) 57.19 58.32 59.48 60.42
Standard deviation 3.271 0.229 1.484 0.137

Subject 2
Average (%) 58.75 66.08 66.81 67.46
Standard deviation 2.734 0.435 0.218 0.105

Subject 3
Average (%) 62.50 63.89 64.60 65.25
Standard deviation 4.872 0.295 0.177 0.746

Subject 4
Average (%) 50.62 58.18 61.18 61.38
Standard deviation 3.979 0.518 2.771 0.660

Subject 5
Average (%) 56.87 58.18 60.33 59.60
Standard deviation 2.794 1.107 2.989 1.714

Subject 6
Average (%) 57.19 58.50 60.28 57.37
Std. deviation 5.552 0.868 5.148 1.782

Subject 7
Average (%) 53.44 58.29 59.96 60.82
Standard deviation 4.492 1.271 1.427 1.410

Subject 8
Average (%) 54.06 58.32 58.62 59.00
Standard deviation 2.686 0.220 0.705 0.826

Subject 9
Average (%) 50.62 55.01 55.88 57.40
Standard deviation 2.794 2.561 2.371 1.736

2.11. Termination Criteria. The process of fitness computa-
tion, updating of personal best, global best, velocity and posi-
tion, and crossover and mutation repeated for maximum
number of iterations. Position of global best particle at the
last iteration gives solution to the clustering problem.

3. Results

The appropriateness of the proposed hybrid evolutionary
technique in classifying two classMI tasks has been evaluated
in this section.The objective functions of GA based𝐾-means
clustering algorithm, PSO based 𝐾-means clustering, and
GA-PSO based𝐾-means clustering algorithm were modified
to give misclassification as output for the optimization prob-
lem. The formulation of the objective function in terms of
classification accuracy allows using the optimization based
𝐾-means clustering for maximizing classification accuracy.
The class information is not used for clustering but for
obtaining the solution of the optimization problem.The class
information is further used to test the performance of the
clustering result.Thedata sets for each subjectwere separately

evaluated using the evolutionary algorithms and conven-
tional 𝐾-means clustering. Keeping population size as 1000,
algorithms were executed for 100 iterations. For GA based𝐾-
means classifier algorithm crossover probability, 𝜇

𝑐
= 0.65,

and mutation probability, 𝜇
𝑚
= 0.08, were taken. For PSO

based 𝐾-means clustering algorithm cognitive parameter,
𝑐
1
= 1.49, and social parameter, 𝑐

2
=1.49, and inertial weight

according to (3) were taken. For GA-PSO based 𝐾-means
classifier algorithm parameters crossover probability, 𝜇

𝑐
=

0.65, mutation probability, 𝜇
𝑚
= 0.08, cognitive parameter,

𝑐
1
= 1.49, social parameter, 𝑐

2
= 1.49, and inertial weight

according to (3) were taken. Above parameters are selected
by hit and trial method.

Table 2 shows the results for performance of GA based𝐾-
means classifier algorithm, PSO based𝐾-means classifier and
GA-PSO based 𝐾-means classifier algorithm based on accu-
racy obtained on test set for each of nine subjects. Figure 3
shows the variation of misclassification (%) with number
of iterations for an arbitrary subject. It can be seen that the
hybrid technique not only achieves a higher classification
but also achieves the same with lesser iterations. The lesser
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Figure 3: (a) Variation in misclassification (%) with iterations for GA-PSO based 𝐾-means clustering for different subjects. (b) Variation
in misclassification (%) with iterations for GA based 𝐾-means clustering for different subjects. (c) Variation in misclassification (%) with
iterations for PSO based 𝐾-means clustering for different subjects.

execution time of the hybrid technique makes it suitable for
real time BCI application, where imagery signal needs to be
classified at a very fast rate. Further we used statistical test on
the results to test the significance of the result. Table 3 indi-
cates the average ranking of clustering algorithms based on
the Friedman’s test and Table 4 shows various statistical
values from Friedman and Iman-Davenport tests indicating
rejection of null hypothesis. The rejection of null hypothesis
indicates similarity in the superiority of the proposed hybrid
GA-PSO method over other techniques, across all the sub-
jects.

4. Conclusion and Discussions

It can be observed from Table 2 that except for subject 5
and subject 6 GA-PSO based 𝐾-means classifier algorithm

is able to outperform or is comparable in terms of average
accuracy values obtained for 100 executions of each algo-
rithm. The performance of proposed clustering algorithm
may further increase if it is executed for more number of
iterations and with greater size population. The hybrid GA-
PSO algorithm has been used to search cluster centres in
the search space such that criterion function, 𝐷, given by
(1), is minimized. The knowledge that the mean of points
belonging to same cluster represents the cluster centre has
been used for improving the search capability of optimiza-
tion based clustering method. Floating point representation
has been adopted to represent candidate solutions (in GA
candidate solutions are known as chromosomes and in
PSO they are known as particles), since it is found to
be more appropriate and natural for encoding the cluster
centres. It can be observed from results that GA-PSO based
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Table 3: Average ranking of clustering algorithms based on Friedman’s test with a critical value: 𝑋(0.05, 3) = 7.814733.

Algorithms 𝐾-means GA based 𝐾-means PSO based𝐾-means Hybrid GA-PSO
based 𝐾-means

Ranking 4 2.89 1.78 1.33

Table 4: Friedman and Iman-Davenport statistical tests.

Method Statistical value 𝑃 value Hypothesis
Friedman 23.13333 3.79 × 10−5 Rejected
Iman-Davenport 47.8621 <0.00001 Rejected

𝐾-means clustering algorithm performs better or at least
gives comparable performance with GA based 𝐾-means
clustering algorithm and PSO based 𝐾-means clustering
algorithm. Figure 3 displays the convergence characteristics
of the three optimization based clustering algorithms for
all the three cases. It is clear that the hybrid technique
(Figure 3(a)) is able to converge to the final solution quite
early (lesser iterations and computational time) as compared
to the isolated GA (Figure 3(b)) and PSO (Figure 3(c)) based
techniques. Thus the hybrid technique not only achieves a
higher classification but also achieves the same with lesser
iterations. For validation of the GA-PSO based 𝐾-means
clustering, statistical analysis is also performed along with
the experimental analysis. A statistical analysis is performed
to demonstrate the significant differences among the results
obtained using the different algorithms. To prove the same,
Friedman and Iman-Davenport statistical tests are carried
out. The nonparametric statistical test allows checking the
significance and repeatability of the results. In other words,
Table 2 indicates the average ranking of clustering algorithms
based on Friedman’s test using sum of intracluster distance
(average) parameter and the critical value obtained for
Friedman test 𝑋 (0.05, 3) is 7.814733. The 𝑃 values computed
by the Friedman test and the Iman-Davenport test are given
in Table 4, both of these tests reject the null hypothesis and
support the presence of significant differences among the
performance of all clustering algorithms used in this work.

Basically MI based BCIs are composed of two stages: fea-
ture extraction and feature classification [47, 48]. The ability
to analyze EEG is limited by methods that require stationary
epochs of data. Stationary time-series techniques such as
Fourier transform for feature extraction cannot be used for
EEG signal; hence joint time-frequency analysis is required
[30]. TFR is based on the principle of extracting energy distri-
bution on time versus frequency. In this way different freque-
ncy components are localized at a good temporal resolution
[31]. TFRs can provide amplitude and phase spectra in both
frequency and time domain [49]. TFRs methods have been
proposed for EEG [30–32], electromyogram (EMG) [50], and
EGG [51] signal analysis. TFRs offer the ability to analyze
relatively long continuous segment of data even when dyna-
mics are rapidly changing. One approach to the accurate
analysis of nonstationary signal is to represent the signal
as a sum of waveforms with well-defined time frequency
properties. Time frequency techniques are further classified
into two classes, namely, linear and bilinear time frequency

representations. In our analysis we have used techniques from
both classes. Details of these techniques are mentioned in
[28]. For classifyingMI based task a hybridGA-PSObased𝐾-
means clustering algorithm has been used in this work along
with GA and PSO based𝐾-means clustering to compare and
hence to check its suitability in classification problems of MI
based task.Our result shows that combination ofGAandPSO
forming hybridGA-PSO based𝐾means clustering algorithm
almost outperforms both the GA and PSO based 𝐾-means
clustering algorithm. Enhanced performance achieved in
case of hybrid GA-PSO based 𝐾-means clustering can be
explained in terms of the benefit that PSO and GA facilitates.
The algorithm is designed such that GA facilitates a global
search and PSO facilitates a local search.The hybrid GA-PSO
approach merges the standard velocity and position update
rules of PSO with that of GA’s operations (i.e., selection,
crossover, and mutation) [45]. Data is likely to get affected
by level of degree of attention of the subject performing the
task and the changes in their concentration can affect the
result adversely. Therefore few sets of pretraining prior to
actual recording and ensuring that subject take sufficient rest
before the actual recording becomes essential. In this analysis
we have used fixed frequency band (i.e., 𝜇 and ß bands)
for every subject for ERD/ERS discrimination to reduce the
complexity of the system. Selecting varying 𝜇 and ß bands as
used in [15] is likely to give better result. Overall performance
will also depend on reliability and performance of other
techniques used such as data filtering, feature extraction, and
normalization.
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