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ABSTRACT

Mouse embryo fibroblasts (MEFs) are convenient
sources for biochemical studies when cell number
in mouse embryos is limiting. To derive the imprint-
ing signature of MEFs and potentially detect
novel imprinted genes we performed strand- and
allele-specific RNA deep sequencing. We used
sequenom allelotyping in embryo and adult organs
to verify parental allele-specific expression. Thirty-
two known ubiquitously imprinted genes displayed
correct parental allele-specific transcripts in MEFs.
Our analysis did not reveal any novel imprinted
genes, but detected extended parental allele-
specific transcripts in several known imprinted
domains: maternal allele-specific transcripts down-
stream of Grb10 and downstream of Meg3, Rtl1as
and Rian in the Dlk1-Dio3 cluster, an imprinted
domain implicated in development and pluripotency.
We detected paternal allele-specific transcripts
downstream of Nespas, Peg3, Peg12 and Snurf/
Snrpn. These imprinted transcript extensions were
not unique to MEFs, but were also present in other
somatic cells. The 50 end points of the imprinted
transcript extensions did not carry opposing chro-
matin marks or parental allele-specific DNA methy-
lation, suggesting that their parental allele-specific
transcription is under the control of the extended
imprinted genes. Based on the imprinting signa-
ture of MEFs, these cells provide valid models for
understanding the biochemical aspects of genomic
imprinting.

INTRODUCTION

Imprinted genes exhibit allele-specific transcription de-
pending on parental origin of the chromosomes (1).
Imprinted genes play important roles in development,
and their monoallelic expression poses increased risk
upon their damage or loss (2). Apart from protein-
coding genes, imprinted long non-coding RNAs have im-
portant functions in regulating domain-wide imprinted ex-
pression (3–5) and imprinted small RNAs can modulate
the transcription of non-imprinted genes (6–9). Parental
allele-dependent expression of imprinted genes is ubiqui-
tous in most cases but can also be tissue-specific and may
depend on developmental stage (10). The number of im-
printed genes in different mammalian species is around
100 (11). Over 1300 imprinted genes were reported in the
mouse brain (12), but the validity of this finding is debated
(13–15). Mouse embryo fibroblasts (MEFs) are convenient
sources for biochemical studies. To assess the validity of
this model system for studying genomic imprinting and
potentially detect novel imprinted genes we derived
the imprinting signature of MEFs, generated from recip-
rocal mouse crosses, using strand- and allele-specific RNA
deep sequencing. We confirmed parental allele-specific
expression of 32 known ubiquitously imprinted genes,
detected extended allele-specific transcripts downstream
of 8 known imprinted genes, but did not find any novel
imprinted transcripts in MEFs.

MATERIALS AND METHODS

Generation of MEFs, mouse embryos and adult organs

JF1XOG2 (JXO) embryos were generated using the
inbred JF1/Ms inbred strain (purchased from The
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Jackson Laboratory) and the TgOG2 (16) transgenic line
(that has been maintained in our laboratory as a small
stock since 2002) as mother and father, respectively.
OG2XJF1 (OXJ) embryos were generated using the recip-
rocal mating. MEFs were derived from 13.5 dpc embryos
using standard procedures. Briefly, the head and internal
organs were removed from the embryo, and the remaining
carcass was dispersed to single cell suspension by Trypsin
digestion and trituration. The sex of the embryo was
determined by the morphology of the gonad, which is
clearly distinct at this stage. The cell suspension resulting
from each embryo was plated on a 15 cm tissue culture
dish and, after reaching confluence it was cryopreserved
in five vials per embryo. Passage 2 or 3 was used for the
RNA analysis. RNA was also prepared for allelotyping
from organs of adult (8 weeks old) male and female
mice resulting from JF1X129 and reciprocal 129XJF1
crosses from 129S1 and JF1 parental strains.

RNA isolation

RNA was isolated using RNA-Bee (Tel-Test Inc.). DNAse
I digestion was applied to remove DNA contamination.
Ten microgram of total RNA was treated with the
Ribominus kit (Life Technologies) to remove ribosomal
RNA contamination.

Deep sequencing

Sample preparation and deep sequencing was done from
one JXO and one OXJ MEF line according to Illumina
protocols with proper clean up between each step. Briefly,
first-strand synthesis was done using Superscript II reverse
transcriptase, dNTPs and the Illumina RNA seq library
preparation kit. The enzyme was inactivated, and the
dNTPs were removed. To enable strand-specific analysis,
the second strand cDNA was labeled with dUTP before
ligating the adapter. The second strand was synthesized
using Escherichia coli DNA polymerase I and dATP,
dGTP, dCTP, dUTP nucleotides in the presence of
E. coli ligase and RNase H. Ends were repaired using
‘End It Enzyme mix’, and dATP 30 overhangs were
created using Klenow exo- and then R2 adapters were
ligated to the double-stranded cDNA fragments. The
second strand was degraded using USERTM (Uracil-
Specific Excision Reagent) enzyme complex. Only the
first strand was used as PCR template for paired-end
deep sequencing. The read 1 sequences (F2R1 or R1F2)
represent the antisense strand, and the read 2 (F1R2 or
R2F1) sequences represent the sense strand of the RNA.
The single-stranded cDNA containing the adapter was
amplified by 15 cycles of PCR using two different index
primers. Reads resulting from the JXO cross MEF started
with the sequence ACTTGA (AC) and reads resulting
from the OXJ cross MEF started with the sequence CC
GTCC (CC). The two MEF samples were sequenced on
half a lane each of the Illumina sequencer.

Bioinformatics

Sequencing reads were aligned to the mm9 genome with
Tophat v1.2.0 using default parameters with ‘-g 10’ to
allow the reads to align to multiple loci. This is stricter

than the default setting but still ensures that alternative
exons are not excluded. Regions that are highly repetitive
(more than 10 copies in the genome) will not be detected
by this option. Aligned reads were used to generate pileup
for each base with Samtools v0.1.18. The pileup reads
were used to identify the single nucleotide polymorphisms
(SNPs) that are present in either AC or CC with �80%
alternative allele frequency (AF) and total coverage �10.
Only bases with quality score �13 were considered. The
reference allele and alternative alleles in either AC or CC
samples were then counted for these candidate SNPs, and
SNPs with �80% in both AC and CC were excluded. The
P-value and odds ratio were calculated using Fisher’s
exact test based on the coverage information of reference
and alternative alleles in AC and CC samples, and P-value
was adjusted by false discovery rate (FDR) method (17).
Final SNPs were selected if FDR �0.05, and the recip-
rocal sample has alternative AF �20%. The SNPs
were annotated with mm9 refseq database downloaded
05/05/12.

Verification of imprinted expression by sequenom
allelotyping

We designed multiplex sequenom allelotyping assays
using the SNPs derived from the deep sequencing
analysis, including known and putative imprinted genes.
Sequenom allelotyping was performed as we described
earlier (18) using cDNA from embryo and adult organs
and MEFs. The primer sequences are listed in
Supplementary Table S1.

RACE analysis

We used SMARTerTM RACE cDNA amplification kit
(Clontech) and primers 50-TGGGTGGATCGTACCTC
GGCCTAA-30 and 50-CCTGTGAAAAGCAAACTGA
GGCGAGA-30 to find the 30 end of Rian and potential
50 end of Rian extension, respectively. The 30 end of Rian
was correctly amplified, but no PCR product was obtained
from the 50 end of Rian extension. A 3-kb long PCR
product was obtained between Rian and Rian extension,
which was subcloned and verified by DNA sequencing.

Methylated CpG island recovery assay and
MIRA-SNuPE

The methylated fraction of sonicated genomic DNA from
MEFs was captured using recombinant MBD2b and
MBD3L1 proteins as described earlier (19). Parental
allele-specific CpG methylation was measured using multi-
plex single nucleotide extension (SNuPE) by sequenom
allelotyping assays (20). The primer sequences are listed
in Supplementary Table S1.

Chromatin immunoprecipitation and ChIP-chip

For chromatin immunoprecipitation, female and male
GFP-negative somatic cells were used. These were col-
lected by FACS from CF1XOG2 embryo gonads as
described previously (21) based on Pou5f1 promoter-
driven EGFP expression in germ cells but not in somatic
cells (16) using a MoFlo or Aria III flow cytometer. ChIP
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was performed as described previously (22,23). Chromatin
from 400 000 cells was used for one ChIP. Custom-
designed tiling arrays (110228_MM9_PS_ChIP),
manufactured by Roche/NimbleGen, were used for the
histone modification profile analysis. Amplified ChIP
DNA fractions were compared with amplified input
DNA. Data were extracted from scanned images by
using NimbleScan 2.3 extraction software (NimbleGen
Systems). Primary ChIP-chip data (22) had been deposited
to GEO database with SuperSeries accession number
GSE46954.

RESULTS

Deep sequencing of MEF RNA from reciprocal
mouse crosses

To characterize the imprinting signature of MEFs, we per-
formed allele-specific and strand-specific paired-end RNA
deep sequencing using Illumina deep sequencer. To
achieve high coverage of SNPs between the parental
alleles we mated female inbred JF1/Ms (JF1) mice with
male TgOG2 (OG2) transgenic mice (JXO cross), and by
switching the parents we generated the reciprocal (OXJ)
cross. The OG2 transgenic line was originally made by
injecting (CBA/CaJ�C57BL/6J)F2 zygotes and subse-
quent breeding to homozygosity for the GOF18�PE-
EGFP transgene (16). Both the CBA/CaJ and the
C57BL/6J inbred strains belong to the Mus musculus
domesticus subspecies. The genetically distinct JF1
inbred strain belongs to the M. musculus molossinus sub-
species (24) and provides over 15million SNPs compared
to the C57BL/6J reference genome (25). We prepared
RNA at early passage numbers (passage 2–3) from
female 13.5 dpc JXO and OXJ embryos for deep
sequencing.
Sequencing reads were aligned to the mm9 genome with

Tophat v1.2.0. We obtained 95 517 702 and 117 618 284
total reads resulting 76 712 608 (80.3%) and 86 369 632
(73.4%) aligned reads from the JXO and OXJ MEFs, re-
spectively. In total, 90.2% and 89.1% of the aligned reads
were in the sense orientation along exons (coding and non-
coding combined). The aligned reads were used to
generate pileup for each base with Samtools v0.1.18. The
pileup reads were used to identify the SNPs that are
present in either JXO or OXJ with �80% alternative
AF and total coverage �10. The reference allele and al-
ternative alleles in either JXO or OXJ samples were then
counted for these candidate SNPs. SNPs with �80% in
both JXO and OXJ were excluded. The P-value and odds
ratio were calculated using Fisher’s exact test based on the
coverage information of reference and alternative alleles in
the JXO and OXJ samples, and P-values were adjusted by
FDR method (17). A total of 1247 predictive (TRUE)
SNPs (Supplementary Table S2) were selected based on
the following cutoff criteria: the FDR in one sample was
<0.05 and the reciprocal sample had an alternative AF
<20%. Out of the 1247 TRUE SNPs, 813 and 434 SNPs
qualified in the JXO and OXJ MEFs, respectively. The
number of SNPs below this cutoff (FALSE) was 17 858
total (11 800 in JXO and 6058 in OXJ MEFs).

There is a substantial discrepancy between the numbers
of TRUE SNPs in the two crosses. This is due to our
method of identifying SNPs. The JXO and OXJ
datasets were complementary: one cross was used for
calling each TRUE SNP (alternative JF1 allele is in abun-
dance), and the other cross was used to confirm it (alter-
native JF1 allele is in minority). As one can see from
Supplementary Table S2, the JXO cross has revealed
maternally expressed imprinted genes and the OXJ cross
confirmed them. On the other hand, the OXJ cross has
revealed paternally expressed imprinted genes and the
JXO cross confirmed them. Therefore, the number of
TRUE SNPs in the JXO or OXJ cross, respectively,
only depends on the number of maternally or paternally
expressed imprinted transcripts, respectively, and the
number of SNPs along their lengths.

Confirming known imprinted genes

The SNPs were annotated with mm9 refseq database. Of
1251 TRUE SNPs, 861 mapped to 32 known imprinted
genes (Table 1), many of these are known ubiquitously im-
printed. Transcription was found in the correct DNA strand
(Table 1; Supplementary Table S2). For example Igf2 and
Igf2as transcripts occurred from (�) and (+) DNA strands,
respectively. Imprinted transcripts usually harbored more
than one of the allele-specific SNPs. Grb10 and Kcnq1ot1
had the most support with 205 and 201 SNPs, respectively.
The OG2 strain has performed well against the JF1 inbred
strain in identifying imprinted transcripts. The OG2
sequence aligned in general with the C57BL/6J reference
genome. For the known maternally expressed ubiquitous
imprinted genes, 502 of 527 (95%) SNPs identified the
JF1 as alternative allele (in the JXO cross). For the pater-
nally expressed ubiquitous imprinted genes 330 of 334 SNPs
(99%) identified JF1 as alternative allele (in the OXJ cross),
and each of these calls were confirmed in the reciprocal
cross (Table 1; Supplementary Table S2).

We summarized the reasons for not detecting other
known imprinted genes (Figure 1; Supplementary Table
S3). Of 152 known imprinted transcripts (26) we excluded
22 small RNAs, because our method is not suited for small
RNA detection and also excluded 12 coding transcripts that
were recently shown not to be genuinely imprinted (15), and
one that was a duplicate entry (A19). Of the remaining 117
known imprinted genes we were unable to make a call for
66 genes, either because of the low level or no transcription
in MEF (61 transcripts), or lack of SNPs (five transcripts).
Nineteen known imprinted genes were not confirmed, these
exhibited biallelic transcription in MEFs, 14 of these are
known to be tissue-specifically imprinted, 4 have very
limited information available, and 1 gene, and Dlk1
was paternally biased but was just below the cutoff with
21–25% leaky expression from the maternal allele.

Imprinted transcript extensions

In addition to correctly predicting 32 known imprinted
genes, we detected parental allele-specific transcripts that
extended beyond known imprinted genes (Table 2;
Supplementary Table S2). Each of these extensions was
represented by a minimum of 2 and a maximum of 209
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SNPs. A total of 267 SNPs predicted eight imprinted tran-
script extensions. Using the Integrative Genomics Viewer
(IGV) (27) we could see the alternative SNPs for each of
the maternally and paternally expressed extensions in the
JXO and OXJ MEFs, respectively, similarly to the SNPs
of confirmed imprinted genes. For each of these exten-
sions, the parental origin of the alternative SNPs sug-
gested that the extensions are expressed from the same
parental allele as the transcript it extends. Examples are
shown in Figure 2 and Supplementary Figure S1. The
Dlk1-Dio3 imprinted domain had three of the maternal
allele-specifically transcribed extensions, extending in the
sense strand from Meg3, Rtl1as and Rian (Figure 2).
The intergenic transcripts exhibited much lower levels
than the transcripts of Meg3, Rtl1as, Rian and Mirg
genes. The intergenic transcripts appeared to read across

all the way from the beginning of Meg3 to the end of
Mirg. However, no transcript was detectable in the
intergenic regions of Dlk1-Meg3 and Mirg-Dio3 (not
shown). The extension of the maternally expressed
Grb10 imprinted gene is displayed in Supplementary
Figure S1A. The paternally expressed Snrpn/Snurf gene
was extended toward the paternally expressed
D7Ertd715e transcript (Supplementary Figure S1B). The
paternally expressed Nespas RNA (28,29) extended
beyond the Mir296 and Mir298 microRNAs (Supple-
mentary Figure S1C). In addition, Peg3 and Peg12 pater-
nally expressed imprinted genes were extended beyond
their known 30 ends (Table 2). The Peg3 extended tran-
script is not annotated in RefSeq but corresponds to
Ensemble gene prediction ENSMUST00000051209,
encoding a 1571AA long protein. This predicted transcript

Table 1. Known imprinted genes confirmed in MEF deep sequencing
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AF357425 13 32 + chr12_110872195 47 0 47 0 1.00 0.00 1.52E-23 MAT
AK050713 12 27 + chr12_110907826 31 0 22 0 1.00 0.00 2.64E-11 MAT
Asb4 7 19 + chr6_5348300 19 0 9 2 1.00 0.18 0.045042863 MAT MAT
Cdkn1c 3 129 � chr7_150644367 202 1 133 0 1.00 0.00 4.16E-91 MAT MAT
Grb10 205 106 � chr11_11831012 1789 7 1600 4 1.00 0.00 0 MAT MAT
H19 6 7323 � chr7_149761651 7298 4 5969 8 1.00 0.00 0 MAT MAT
Igf2r 14 136 � chr17_12876894 167 3 244 5 0.98 0.02 1.22E-102 MAT MAT
Meg3 20 133 + chr12_110783337 139 0 118 0 1.00 0.00 2.55E-72 MAT MAT
Mirg 66 35 + chr12_110980023 56 0 39 0 1.00 0.00 1.74E-23 MAT
Rian 202 98 + chr12_110884294 926 10 712 0 0.99 0.00 0 MAT MAT
Rtl1as 2 18 + chr12_110831619 20 0 22 0 1.00 0.00 2.36E-08 MAT MAT
Airn 1 13 + chr17_13008045 0 13 0 12 0.00 1.00 0.001142434 PAT PAT
Blcap 1 55 � chr2_157387807 3 42 0 65 0.00 0.93 1.98E-23 PAT
D7Ertd715e 5 14 � chr7_67115005 0 13 0 17 0.00 1.00 5.01E-05 PAT PAT
Igf2 6 1706 � chr7_149836880 18 2774 0 2589 0.00 0.99 0 PAT PAT
Igf2as 2 31 + chr7_149853327 0 36 0 55 0.00 1.00 2.22E-22 PAT PAT
Impact 14 187 + chr18_13133281 23 362 10 292 0.03 0.94 3.05E-146 PAT PAT
Kcnq1ot1 201 22 � chr7_150427528 0 14 0 22 0.00 1.00 1.60E-06 PAT PAT
Mest 1 380 + chr6_30695854 9 300 0 450 0.00 0.97 8.79E-200 PAT
Ndn 1 67 + chr7_69493343 0 59 0 74 0.00 1.00 1.97E-35 PAT
Nespas 2 11 � chr2_174107316 0 12 0 9 0.00 1.00 0.020011567 PAT PAT
Nnat 4 79 + chr2_157387776 2 48 1 77 0.01 0.96 8.59E-28 PAT PAT
Peg10 10 115 + chr6_4707869 0 115 0 94 0.00 1.00 4.06E-58 PAT PAT
Peg12 3 39 � chr7_69608449 0 44 0 47 0.00 1.00 3.23E-23 PAT PAT
Peg13 5 31 � chr15_72639823 0 15 0 52 0.00 1.00 1.80E-11 PAT PAT
Peg3 17 53 � chr7_6662661 1 49 0 42 0.00 0.98 9.36E-22 PAT PAT
Plagl1 18 45 + chr10_12844715 0 46 0 47 0.00 1.00 7.81E-24 PAT PAT
Sgce 4 81 � chr6_4639630 0 103 0 108 0.00 1.00 3.78E-59 PAT
Slc38a4 19 350 � chr15_96825404 2 143 41 355 0.10 0.99 4.89E-86 PAT PAT
Snrpn 1 45 � chr7_67133548 2 31 0 56 0.00 0.94 3.91E-18 PAT PAT
Snurf 1 45 � chr7_67133548 2 31 0 56 0.00 0.94 3.91E-18 PAT PAT
Zdbf2 17 24 + chr1_63360418 0 11 0 35 0.00 1.00 4.56E-07 PAT PAT

We tabulated in alphabetical order the previously known imprinted transcripts that were confirmed in our RNA deep sequencing experiments using
MEFs. We provided the number of informative SNPs and the average read number per SNP along each transcript. The direction of the transcript is
marked with regard to the two (+ and �) DNA strands, as it appears in the UCSC browser. We also included a representative SNP from each
imprinted transcript with chromosomal coordinate, and read numbers at this SNP for the reference (OG2) and the alternative (JF1) allele in the
JF1xOG2 and OG2xJF1 (JXO and OXJ) crosses, where the mother’s genotype is always written first. The calculated AF follows for the alternative
allele (maternal and paternal allele, respectively) in the reciprocal crosses. The FDR of the predictor algorithm was calculated based on the AF values
and statistical significance (see ‘Materials and Methods’). The results of sequenom allelotyping experiments (when tested) and visual inspection of the
transcripts using IGV are indicated by the transcribed parental allele maternal (MAT) or paternal (PAT).
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is homologous with the human PEG3 transcripts, which is
2 kb longer than the annotated mouse transcript.

Predicting novel imprinted genes

Of 1247 TRUE SNPs, only 123 predicted putative novel
imprinted transcripts (Supplementary Table S2 and S4).
Some predicted transcripts had no annotation in mm9 and
we named them MegDT1-MegDT5 and PegDT1. These
transcripts presented a warning for such deep sequencing
analysis. The mapping of these six transcripts with a total
of 94 TRUE SNPs was ambiguous. MegDT5 had an un-
usually high SNP coverage (�30 SNPs along 1.1 kb) in
chr14. Most of the SNPs occurred in both JXO and
OXJ MEFs. The two TRUE SNPs, however, were exclu-
sive to JXO MEFs, predicting maternal allele-specific
transcription. We used NCBI blast to align the underlying
sequence and found perfect match to the mRNA sequence
of the paternally expressed imprinted gene, Snrpn. Because
all the reads of MegDT5 matched the Snrpn transcript but
were different from the aligned sequence in chr14, we
determined that we uncovered a silent pseudogene for

the imprinted Snrpn gene on chr14. MegDT1 with 66
SNPs was mapped to chr1 but had a paralogous region
in the mitochondria chromosome (chrM). The remaining
28 TRUE SNPs predicted 22 unambiguously annotated
novel imprinted transcripts with mostly 1 and maximum
3 SNPs each. When we looked at the annotated predicted
transcripts in IGV, we found that even though the TRUE
SNP indicated allele-specific expression, it was in minority
among the SNPs along the same transcript. The majority
of SNPs in the predicted transcripts appeared equally in
both crosses, suggesting biallelic transcription. Therefore,
these predicted transcripts were not genuine imprinted
genes. For comparison we also display a few SNPs
where the prediction program called a FALSE SNP even
though the allelic frequency was at the 80% cutoff
(Supplementary Table S2 and S4).

Confirmation of the allele-specific expression using
sequenom allelotyping

We selected a subset of TRUE SNPs from the known and
predicted putative imprinted genes for verification by

Previously known imprinted transcripts excluding small RNAs (n=117)

Found (n=32) 

No SNP (n=5) 

Low level (N=14) or no expression (n=47) 

Unable to make call (n=66)

Not confirmed in MEF (n=19)

Known just below cutoff (n=1) 

Known tissue specific (n=14) 

Not confirmed in MEF (n=19) Unable to make call (n=66)

Known with limited data (n=4) 

Figure 1. Detecting known imprinted genes by RNA deep sequencing in MEFs. Known imprinted genes are tabulated into groups of found, not
confirmed in MEF and unable to make call. The latter categories are divided further. See details in Supplementary Table S3.
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multiplex sequenom allelotyping assays (Figure 3). We
also included some controls from the FALSE SNPs. We
used RNA from different organs of reciprocal JXO and
OXJ 13.5 embryos and from JF1X129S1 and 129S1XJF1
adult organs to test the parental allele-specific expression.

Sequenom allelotyping confirmed that Igf2 was pater-
nally expressed in MEFs and 13.5 dpc organs (Figure 3A),
but displayed biallelic transcripts in adult cerebellum
(Figure 3B). This is expected based on the finding that
Igf2 is expressed from both parental alleles in adult
choroid plexus and leptomeninges (30). Very little is
known about the organ-specific expression pattern of
Igf2as (31). Now we report that Igf2as transcription

follows the same pattern as Igf2, being paternal allele-
specific in MEFs as expected (23) and in each organ of
the 13.5 dpc embryo (Figure 3A), but it is biallelic in the
adult cerebellum (Figure 3B). This suggests that Igf2 and
Igf2as are under the control of the same parental allele-
and tissue-specific regulatory elements. Zdbf2 is a pater-
nally expressed gene (32,33). Its transcript reads were
ubiquitously paternal allele-specific in 13.5 embryos and
adults, except that the placenta had a low level of tran-
scripts from the maternal allele (Figure 3A). This latter
may originate from contaminating maternal cells, which
are not possible to remove completely from the placenta
(15). Paternal allele-specific transcription of D7Ertd715e,
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Table 2. Imprinted transcript extensions detected in MEF deep sequencing
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Grb10 ext (N) � chr11 11824747 11830503 2 11 chr11_11828159 10 0 12 0 1.00 0.00 0.0182 MAT
Meg3 ext (N) + chr12 110809913 110828360 11 15 chr12_110826437 14 0 13 0 1.00 0.00 0.0006 MAT MAT
Nespas ext (E) � chr2 174091931 174,106,739 15 23 chr2_174092928 0 24 0 22 0.00 1.00 0.0000 PAT
Peg12 ext (E) � chr7 69603714 69606757 2 16 chr7_69604676 0 10 1 23 0.04 1.00 0.0005 PAT
Peg3 ext (N) � chr7 6656607 6658671 7 68 chr7_6658505 0 52 0 69 0.00 1.00 0.0000 PAT
Rian ext (E) + chr12 110899856 110967973 209 24 chr12_110903354 63 0 52 0 1.00 0.00 0.0000 MAT MAT
Rt1as ext (N) + chr12 110831619 110842153 15 17 chr12_110841979 25 1 31 0 0.96 0.00 0.0000 MAT
Snurf ext (N) � chr7 67119318 67126070 6 12 chr7_67121406 0 11 0 12 0.00 1.00 0.0044 PAT

The imprinted transcript extensions detected in MEF deep sequencing are tabulated as in Table 1. Some of these imprinted extensions are novel (N),
and others have been noticed before. We provide their full extent (E).
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Nespas, Peg10, Peg12, Peg13 and Mest genes was con-
firmed in MEFs and in 13.5 dpc embryo and adult
organs (except Peg13 in the adult, because the Peg13
SNP did not exist between 129S1 and JF1).

Grb10 is an interesting imprinted gene affecting
behavior, and exhibits a complex pattern of parental
allele-specific expression, paternal allele-specific transcrip-
tion in the fetal and adult brain and maternal allele-
specific transcription in the placenta and other embryo
organs (34,35). In MEF deep sequencing, Grb10 transcript
reads in the JXO cross displayed the alternative JF1 SNP
variants, revealing maternal allele-specific transcripts
(Figure 3A). Sequenom allelotyping confirmed Grb10’s
maternal allele-specific transcription in MEFs and in
each of the 13.5 dpc embryonic and other adult organs
with the exception of the adult brain, where it exhibited
paternal allele-specific expression (Figure 3A and B). The
embryo head at 13.5 dpc displayed maternal allele-specific
transcription, likely because the transcript level in the
brain contributes to a small portion relative to the rest
of the head (34). We confirmed the deep sequencing
results for the maternally expressed Cdkn1c, Meg3, Rian
and Rtl1as genes in the 13.5 dpc embryo and the adult.
The SNP at Rtl1/Rtl1as detects two overlapping tran-
scripts in opposite orientation. Maternal allele-specific
combined transcription in each organ is mainly from
Rtl1as and biallelic transcription in placenta is from
maternal Rtl1as and paternal Rtl1, based on our
previous observations using strand-specific analysis (36).

We confirmed the ubiquitous maternal allele-specific
transcription of the Meg3 and Rian extensions (Table 2;
Figure 3). Sequenom allelotyping revealed, however, that
the TRUE SNP at an unambiguously mapped putative
imprinted gene, Abhd14b (Supplementary Table S4) was
biallelically expressed in MEFs and also in 13.5 dpc
embryo organs, confirming our observations in IGV.
Similarly, biallelic expression was detected at the control
FALSE SNPs (Daam2, Nphp3, Zfp329, Zfp566, Zfpm2,
BC018507, Figf, Kctd12b, Mtm1 and Zrsr2, which dis-
played an allelic frequency above the 80% cutoff in deep
sequencing but failed the FDR cutoff (Supplementary
Table S4; Figure 3). Mtm1 and Zrsr2 showed a very
slight maternal allele-specific bias in embryonic organs,
but were not imprinted in the classic sense. These two
X-chromosome transcripts displayed correct paternal
allele-specific inactivation in the placenta and yolk sac,
while Figf2 and Kctd12b did not. MegD15 was mapped
to chr1 but several chrM transcripts also aligned to this
region. We tested the allele-specific expression of MegDT1
using allelotyping at two SNPs. We found ubiquitous
maternal allele-specific expression (Figure 3A). However,
only the maternal allele was represented in the genomic
DNA in the heterozygous MEF lines. We determined that
these transcripts were silent in chr1 but were expressed
from maternally inherited mitochondria DNA. MegDT5
mapped to the Snrpn pseudogene in chr14. In sequenom
allelotyping, we found that this transcript was paternally
expressed, suggesting that the pseudogene is silent and
the reads belong to the paternally expressed Snrpn gene
in chr7.

Epigenetic analysis of the imprinted transcript extensions

The deep sequencing analysis of MEFs failed to detect
novel imprinted transcripts apart from the transcript ex-
tensions in established imprinted domains. We wondered
if these extensions are independent transcripts or they
arise from missed termination of the known imprinted
transcripts. We did not observe any deep sequencing
reads between Rian and its extension, supporting the
first possibility. However, RACE analysis at the junction
of Rian and Rian extension successfully detected the 30 end
of Rian but failed to detect the 50 end of the Rian exten-
sion (data not shown). In addition, reverse-transcription
PCR amplified a fragment across the junction with an
antisense primer coming from the extension. These
results collectively suggested that the transcript between
Rian and Mirg does not initiate at the 30 end of Rian
but is an extension of Rian.
We wondered whether the imprinted transcript exten-

sions are specific to MEFs or could be general components
of known imprinted domains. To this end we compared
the deep sequencing results obtained in JXO and OXJ
MEFS with male and female somatic cells (MSC and
FSC, respectively) of the embryonic testis and ovary at
15.5 dpc, as assessed recently (22). We found that each
of the extensions also existed in MSC and FSC
(Figure 4 and not shown), suggesting that they are not
unique features of MEF. To get an insight of epigenetic
regulation of the imprinted transcript extensions, we
aligned the results of RNA deep-sequencing in MEF,
MSC and FSC with ChIP-chip analysis (22). We found
each of the known differentially methylated regions
(DMRs) of imprinted domains marked by opposite chro-
matin marks in MSC and FSC (Figure 4). Specifically, we
found the H3K4me2 and H3K9ac active marks together
with the H3K9me3 repressive mark at each of the germline
DMRs. This was expected based on previous studies that
showed active and repressive chromatin marks in the
DNA unmethylated and DNA methylated allele of the
DMRs, respectively. However, the starting points of
each extension displayed rather uneventful chromatin
composition, suggesting that these are truly extensions
of known imprinted genes and are under the epigenetic
control of the DMRs of their respective domains.
To detect parental allele-specific DNA methylation in

the extended domains we performed Methylated CpG
island recovery assay (MIRA)-SNuPE (20) at the
promoter of D7Ertd715e and the junction of Rian and
Rian extension, which could potentially serve as pro-
moters. The methylated fraction was captured from the
MEF DNA and was subjected to sequenom allelotyping
at the specific genomic loci. We found no evidence for
allele-specific DNA methylation at these positions
(Figure 5) suggesting that the parental allele-specific tran-
scription of D7Ertd715e, and Rian extension is secondary
to the control of Snrpn/Snurf and Rian, respectively.

DISCUSSION

MEFs are convenient sources for biochemical studies
when cell number may be limiting from mouse embryos.
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To validate this model system with respect to imprinted
gene expression, we carried out an allele- and strand-
specific deep sequencing experiment using MEFs from re-
ciprocal mouse crosses and performed validation using
sequenom allelotyping of the same MEF samples,
embryo organs from the same crosses and adult organs
from two additional mouse crosses. We verified the
parental allele-specific transcription of 32 ubiquitous im-
printed transcripts. Based on the imprinting signature
of MEFs, they provide valid models for understanding
the biochemical aspects of genomic imprinting at these
32 imprinted genes.

Imprinted genes play important roles in development
(1). Our RNA deep sequencing approach detected eight
imprinted transcript extensions in known imprinted
domains. A previous in silico analysis found that several
intergenic ESTs in the Dlk1-Dio3 domain transcribed in
the same direction as Rian. They confirmed maternal
allele-specific expression in one EST, CE2, downstream
of Rtl1as (37). This intergenic transcript is identical to
the Rtl1as extension we detected. Another study used se-
lective priming and parallel sequencing in 9.5 dpc embryos
and detected paternally expressed extension of Nespas,
Peg12 and maternally expressed extension of Rian and
another maternally expressed transcript upstream of
Grb10 (38). Two additional fragments that showed
maternal-allele specific transcription in uniparental
mouse fibroblasts in the Rian-Mirg intergenic region
(AK050713 and AK053394) (39) map to the Rian exten-
sion we observed in MEFs. Our deep sequencing dis-
covered novel maternally expressed downstream
extensions of Grb10 and Meg3, and novel paternally ex-
pressed extensions of Peg3 and Snurf/Snrpn. In addition,
we were able to define the full extent of the eight imprinted
extensions. It will be interesting to find out whether the
imprinted transcript extensions play any function in devel-
opment. Proper expression of imprinted genes along the
Dlk1-Dio3 imprinted domain is essential for development.
Whereas paternally expressed coding transcripts are essen-
tial for perinatal viability, the maternally expressed non-
coding RNAs play important role in postnatal viability
(40,41). The level of pluripotency of induced pluripotent
(iPS) cells correlated with the upregulated expression of
this region (42). The role of the Meg3 extension, Rtl1as
extension and Rian extension will need to be tested in de-
velopment and pluripotency using genetic experiments.
The ubiquitously paternally expressed D7Ertd715e and
the Snurf extension map to the Snprn imprinted domain,
where loss of the paternal allele is implicated in the
Prader-Willi syndrome. Again, further genetic studies
need to test whether these imprinted transcripts, and the
Nespas, Peg3, Peg12 and Grb10 extensions have a role in
development or disease.

Small imprinted RNAs are recognized as regulators of
biological functions (6). Imprinted transcript extensions in
MEFs harbor miRNAs. Some of these miRNAs are im-
printed, being expressed from the same parental allele as
the extension. Mir296 and Mir298 are paternal allele-spe-
cifically expressed and their transcription in the paternal
chromosome depends on the unmethylated allele of the
germline DMR located at the Nespas promoter 27 kb

away (8). Now we show that the paternally transcribed
Nespas extension includes these miRNAs suggesting that
it indeed serves as their precursor RNA. There is a large
number of microRNAs along the Dlk1-Dio3 imprinted
domain, and all tested ones are transcribed from the
maternal chromosome, including Mir136 and Mir127
along Rtl1as, Mir370 along Rian, Mir154, Mir337,
Mir410 along Mirg and Mir411, Mir380, Mir300,
Mir376 and Mir376b along the Rian extension (9).
Expression of all of these miRNAs requires the presence
of the unmethylated allele of the IG-DMR in the maternal
chromosome (9) similarly to the other maternally ex-
pressed non-coding RNA genes of the domain (43).
Downregulation of the miRNAs of the Dlk1-Dio3 im-
printed domain coincides with downregulation of Meg3
and Rian in iPS cells, and may contribute to their
reduced pluripotency (44), as the efficiency of generating
all-iPSC mice is diminished in case LOI of this locus
occurs (45). It was speculated that the miRNAs are pro-
cessed from a single precursor transcript initiating at the
Meg3 (Gtl2) promoter (9). Our deep sequencing and chro-
matin analyses support this hypothesis.
We revealed two potential caveats of using RNA deep

sequencing method for discovering novel imprinted genes.
The method has to be somewhat forgiving with respect to
obtaining perfect alignments to detect SNPs. In certain
cases allele-specific reads can detect silent pseudogenes
of imprinted genes or may align to sequences of
mitochondria origin that occur along autosomes. Our
results stress the importance of careful observation of
the data and thorough validation of imprinted expression
using independent methodologies.
The JF1 versus OG2 comparison performed well for

identifying imprinted transcripts. Even though the JF1
inbred line is less distant genetically from the reference
genome than other non-domestic clad inbred lines,
CAST/Ei or SPRET/Ei, its genome still contains
15million SNPs over the C57BL/6J reference genome
(25). The specific mouse crosses used in this study only
prevented us from assessing the imprinting status of 4%
(5 of 117) known imprinted genes due to lack of SNPs
between OG2 and JF1. Fourteen of 19 imprinted genes
that we did not confirm are known tissue-specifically im-
printed genes. The other five that exhibited biallelic tran-
scription in MEFs are likely tissue-specifically imprinted
in cell types other than MEFs. In 61 cases, we were unable
to make a call because of the insufficient transcript levels
in MEFs. In summary, we can estimate by extrapolation,
that using our method we should be able to detect at least
96% of imprinted genes if they were transcribed in a given
cell type and if they exhibited imprinted transcription in
that cell type. This method should be suitable for efficient
screening of other mouse cell types or tissues.
Our RNA deep sequencing has confirmed 32 ubiquitous

imprinted genes but identified no new bona fide imprinted
genes in MEFs. In the light of our current results and
other recent studies (13,15,23,46), we can safely predict
that the final number of ubiquitously imprinted genes
will not be more than 100. However, additional organs
and cell types will need to be analyzed systematically to
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reveal the total number of imprinted genes exhibiting
tissue or cell-specific pattern of imprinted expression.
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