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In this work, we present experimental results of a high-speed label-free imaging cytometry system 
that seamlessly merges the high-capturing rate and data sparsity of an event-based CMOS camera 
with lightweight photonic neuromorphic processing. This combination offers high classification 
accuracy and a massive reduction in the number of trainable parameters of the digital machine-
learning back-end. The event-based camera is capable of capturing 1 Gevents/sec, where events 
correspond to pixel contrast changes, similar to the retina’s ganglion cell function. The photonic 
neuromorphic accelerator is based on a hardware-friendly passive optical spectrum slicing technique 
that is able to extract meaningful features from the generated spike-trains using a purely analogue 
version of the convolutional operation. The experimental scenario comprises the discrimination of 
artificial polymethyl methacrylate calibrated beads, having different diameters, flowing at a mean 
speed of 0.1 m/sec. Classification accuracy, using only lightweight digital machine-learning schemes 
has topped at 98.2%. On the other hand, by experimentally pre-processing the raw spike data through 
the proposed photonic neuromorphic spectrum slicer at a rate of 3 × 106 images per second, we 
achieved an accuracy of 98.6%. This performance was accompanied by a reduction in the number of 
trainable parameters at the classification back-end by a factor ranging from 8 to 22, depending on 
the configuration of the digital neural network. These results confirm that neuromorphic sensing and 
neuromorphic computing can be efficiently merged to a unified bio-inspired system, offering a holistic 
enhancement in emerging bio-imaging applications.

Imaging flow cytometry (IFC) is the physical evolution of conventional flow cytometry (FC)1 that strengthens 
the light-scatter recording capabilities of FC with accurate recording of the morphological features of the 
particles under investigation. IFC significantly enhances the detection capabilities of typical cytometers2. 
Furthermore, visualization of spatial information adds an additional layer of qualitative information and allows 
the simultaneous recording of both brightfield and darkfield images3,4 without hindering typical fluorescent-
based analysis. In this context, the stark difference between FC and IFC lies in the nature of the signals they 
capture. In FC, the signal consists of single-pixel time traces, acquired through photodiodes or photomultipliers, 
which provide only statistical information about the interaction between the particle and incident photons. 
In contrast, IFC employs a detailed 2D imaging scheme, enabling the detection of the particle’s actual spatial 
features (see Fig. 1a). Figure Furthermore, the high throughput of IFC schemes minimizes the lab-to-diagnose 
time to few minutes, unlocks the use of ultra-low sample volumes, whereas more importantly allows the detection 
of very rare cell populations5, such as cancer cells in blood flow6, profile complex phenotypes or capture the 
associated dynamic of cell development phases1,7. Exploiting these merits, IFC has started infiltrating a broad 
range of applications among which the most prominent are new drug discovery8, personalized medicine, DNA 
sequencing and rapid disease diagnostics3,9,10 . In principle, the above applications can be partially addressed by 
conventional high-throughput FC, but in most cases, a fluorescent agent is required that in turn can affect the 
molecule/cell’s chemical or biological properties and thus can compromise the detection sensitivity or render 
it difficult to be applied. Furthermore, conventional FCs are mechanically complex and costly, demand high 
sample volume due to the fact that their output is based on statistics, mandate the use of elaborate microfluidic 
systems and last but not least can be operated only from trained personnel. This last aspect is of paramount 
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importance, as easy-to-handle home-care diagnostics are a rapidly growing necessity in modern societies with 
an aging population.

As a response, during the last years, a growing number of IFC modalities have emerged, that try to 
simultaneously address two contradicting requirements: namely high-speed operation and crisp spatial feature 
capturing. The contradiction is based on the fact that conventional capturing devices, experience blur effects, 
when high frame rate is requested, due to their limited bandwidth and high latency. Aiming to amend this, a 
wide pallet of technologies has been proposed, each offering vastly different performance metrics, in terms of the 
maximum particle flow that they can handle, footprint and wavelength range that they can operate. Broadly, IFC 
technologies can be categorized into two main categories: Single detector/pixel IFCs and 2-dimensional (2D) 
IFCs. The first category is dominated by time-stretched based approaches, where spatial information is projected 
in time and it is detected through a single high-speed photodiode. In this case, spatial resolution is linked 
to temporal resolution and thus it can proliferate by the high-speed capabilities of photonic technology11,12, 
theoretically offering detection of particle flow > 106 particles/s. Following a similar concept, dual comb 
microscopy schemes, projects spatial information to the consecutive radio-frequency (RF) beating of two optical 
combs with different free spectral range13,14. Despite the discrete merits of both techniques, they both mandate 
complex optical setups, costly optical sources, are restricted to the near-infrared (NIR) wavelengths, while both, in 
practice, generate massive amount of data during acquisition. In the 2D IFC category, time delay and integration 
(TDI) cameras allow motion-blur free images but at the cost of low particle-speed (< 3000 particle/s), this trade 
off stems from the necessity of high-integration time to unlock sufficient gain at the detector15. Alternatively, 
schemes based on strobe-photography can unlock high rates exceeding 50000 particles/s but at the cost of using 
sophisticated microfluidic schemes so as to enable precise control of the particle motion (trajectory and speed)16. 
Similarly, to the 1D case, 2D modalities also in typical cases generate an increased volume of data.

Recently, an alternative type of camera has been proposed for IFC, which follows a bio-inspired acquisition 
principle that relies on autonomous and asynchronously recording contrast detection events, instead of 
the camera periodically transmitting every pixel’s intensity in the form of a frame17. In detail, event-based 
cameras (neuromorphic cameras) detect the contrast variation among adjustment pixels and transmit, in an 
asynchronous manner electrical spikes, similar to the retina-ganglion cells in mammals. Through this technique, 
time-continuous data transmission is limited to pixels detecting temporal contrast events in their field of view, 
thus massively reducing transmission bandwidth requirements, while offering wide dynamic range acquisition 
and radically increased capturing rate (i.e. temporal resolution) to IFC compatible levels2,18,19. More importantly, 
these types of cameras rely on standard CMOS technology, thus are relative low-cost, have limited footprint 
and do not require complex optical systems or sophisticated control electronics. A critical difference in this 
IFC modality is that bio-inspired sparsity (spike encoding) can potentially reduce the volume of data generated 
during measurement.

Another critical step in IFC involves the data processing techniques employed after data capture. In this 
context, requirements vary depending on the specific IFC installation. For example, generic microfluidics 
permit multiple particles in the field of view, necessitating the use of object tracking algorithms20. In addition, 
the acquisition speed and resolution of the generated signal (frame rate and pixel count), impose additional 
restriction on the size of the following neural network and on the associated processing latency. A plethora of 
neural network architectures have been proposed so as to efficiently tackle the aforementioned requirements, 
ranging from convolutional neural networks (CNNs) to recurrent neural networks (RNNs) and deep neural 

Fig.1.  (a) Basic concept of a typical multispectral FC, where statistics of scattered photons generate a particle 
signature. (b) Schematic of the proposed IFC: the neuromorphic camera used is a Prophesee Gen4 sensor17. 
(c) The installed IFC. (d) Typical recorded synthetic frame depicting 20 μm PMMA spheres flowing within the 
microfluidic channel: polarity “1” and “0” corresponds to pixel contrast increase and decrease respectively.
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networks (DNNs)21,22. Each of these neural network implementations is adapted to the IFC, offering a diverse 
mix of advantages and disadvantages in terms of complexity, accuracy, and latency. However, critical features 
such as a limited number of floating-point operations (FLOPs), low latency, low power consumption, and FPGA 
compatibility with hardware-constrained digital processors (such as ASICs, FPGAs, or even generic platforms 
like Raspberry Pi) are essential for efficient, real-time, and portable IFC systems. In all cases, an increased data 
volume generated by the IFC modality leads to a higher parameter count in the neural network, which in turn 
results in unavoidably higher power consumption and latency during neural network training.

Based on the above discussion, this work has a twofold objective: first, we enhance classical IFC by 
incorporating a neuromorphic camera that enables blur-free operation while tracking fast-moving particles, 
thus reducing sample volume and analysis time. Second, although these event-based modules leverage bio-
inspired data sparsity, they still tend to generate vast amounts of data due to their high temporal resolution. 
This increased data volume places stringent demands on the machine learning hardware responsible for 
analysis and feature extraction. Typically, the models employed (such as CNNs or RNNs) are large, multi-layer 
neural networks with a high number of trainable parameters. To address this challenge, we propose replacing 
the computationally intensive neural network back-end with an analog optical integrated circuit capable of 
efficiently extracting features from IFC outputs while compressing the data passed to the digital readout, all 
without sacrificing precision. This photonic pre-processing approach enabled the use of a significantly smaller 
and less complex machine learning model in the final stage of the setup.

In detail, we realize a low-cost, compact, light emitting diode (LED) based IFC scheme built around a CMOS 
neuromorphic camera, capable of capturing up to 1Gevents/sec with µs-range temporal resolution, delivering 
an equivalent of 100 kframes/sec17. The developed IFC module utilizes a generic off-the-shelve microfluidic 
chip with a single straight channel, without any sheath flow control mechanism. The IFC scenario realized was 
discriminating aqua solutions of Polymethyl methacrylate (PMMA) spheres of 12, 16 and 20 μm in diameter. 
The generated electrical spikes (events) were processed in two distinct ways: the first method involved direct 
processing using solely digital machine-learning (ML) models, such as fully connected feedforward neural 
networks (FNNs) and compact RNNs. This direct method yielded high classification accuracy, up to 98.2 and 
98.6% for the optimal FNN and RNN configurations, respectively. However, direct processing with FNNs required 
30,000 trainable parameters, while RNNs demanded 1 million, significantly increasing hardware requirements 
and power consumption during training. The second approach adopts an unconventional path by transferring 
the IFC signals into the optical domain, where they are pre-processed through a photonic neuromorphic scheme 
utilizing an optical spectrum slicing (OSS) architecture23. The pre-processed outputs are then also fed into a 
conventional digital FNN as above. In this scenario, the photonic neuromorphic pre-processor functions as an 
analogue CNN accelerator, resulting in an improved classification accuracy of 98.6%, surpassing the accuracy 
achieved when FNNs directly processed the generated data. Additionally, this approach resulted in a significant 
reduction in the number of trainable parameters for the digital FNN by a factor of > 20. These experimental 
results validate that the combination of neuromorphic sensing and processing can enhance accuracy and more 
importantly generate a massive impact on the power consumption requirements of the overall IFC schemes.

Results
Neuromorphic camera based IFC
The experimental IFC setup is depicted in Fig. 1a-b. The light source is a simple LED emitting at 635 nm, chosen 
to simplify the experimental system while avoiding the generation of laser-source, diffraction patterns that 
could obscure the actual physical features of the particles. Two microscope objectives were utilized to focus and 
collect light into/from a generic microfluidic channel. The three classes of particles tested were PMMA spheres 
with diameters of 12, 16, and 20 μm (refer to the Methods section for details). A steady flow was maintained 
in the channel with the aid of a vacuum pump, allowing the particles to reach mean velocities ranging from 
1 to 0.07  m/s, corresponding to an ideal particle flow rate of 500 to 350 particles/s, assuming a sequential, 
uninterrupted flow of particles. This particle speed is consistent with previous IFC studies using event-based 
systems, resulting in comparable nominal particle flow2. To better assess the experimental system, we computed 
the actual particle flow by analyzing all captured images and counting unique particle instances, yielding a flow 
rate of 10–15 particles per second. This lower actual flow rate was necessary to prevent clogging in the generic 
microfluidic setup, achieved by significantly diluting the solutions. It is important to note that this limitation 
does not affect the baseline accuracy and performance of the IFC, which is primarily dependent on the camera’s 
temporal resolution relative to particle speed, rather than the dilution. The event-based camera (Prophesee Gen4 
sensor) offered a spatial resolution of 640 × 480 pixels and a temporal resolution of 1 μs per pixel, providing an 
effective capture rate of 1 Gevents/sec17.

The lightweight data processing pipeline is illustrated in Fig. 2. The Prophesee camera generates asynchronous 
events – tuples that include the coordinates, a timestamp, and a binary polarity signifying whether the pixel 
contrast is triggered by an intensity increase or decrease (X, Y, t, P). In our case, we sum all events per pixel 
(regardless of their polarity), over an integration time (T) to generate I(X,Y). The choice of T depends on the 
speed of the particles and is linked to the number of events per frame; meaning that for a fast-moving sphere, 
a low value of T would result in too few events per synthetic frame, thus a lower signal-to-noise ratio (SNR). 
Conversely, a high value of T obscures the recording of the fine spatial features of the particles, similar to motion 
blur. To compute the optimum T for our setup, we recorded the total number of spiking events over time (see 
Fig. 2b). This measurement is performed once, and the particles’ flow is represented by individual peaks over 
time. Figure 2b facilitates the extraction of two key observations. The first concerns the duration of each peak, 
which remains consistent across all recorded peaks, regardless of their amplitude, and corresponds to the time 
needed for each object to enter and exit the IFC’s field of view (Fig. 2c). Therefore, the rise time of these peaks 
can provide an estimate of the optimum integration window (T) for the specific vacuum pump setting; in our 
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case, T was set to 3 ms (Fig. 2c). The second observation is that the peaks’ amplitude (number of events) varies, 
with several peaks observed in Fig. 2b having a significantly low number of events (< 50). These peaks do not 
correspond to actual PMMA particles but are debris or air bubbles contaminating the PMMA mixture, evident 
in all samples. Therefore, a unified criterion of rejecting events with a low event count (< 100) has been used 
throughout all measurements.

Interestingly, the information in I follows a rate-encoding scheme, where pixels with a high spike count 
correspond to spatial locations subjected to strong activity (refer to Fig. 2a). Furthermore, considering we did 
not choose a sophisticated microfluidic channel; the particles do not flow in a single file but exhibit diverse 
trajectories. This led us to the use of an object tracking algorithm. To preserve the simplicity of the pre-
processing stage, we utilized a straightforward centre of mass computation, involving only the summation of 
the synthetic frame’s rows and columns (see Fig. 2a). By locating the centre of each particle, we cropped the 
dimensions of the synthetic frame to 100 × 100 pixels. Based on this pipeline, 4378 unique synthetic frames were 
captured/generated, not equally divided among the three classes: 1216 particles correspond to 20 μm spheres, 
1811 to 16 μm, and 1351 to the 12 μm class. A critical issue in IFC data processing, as raised in24, is related 
to whether experimental bias can influence the accuracy of ML schemes; specifically, if measurements of two 
particle classes are performed under different experimental conditions, then the ML’s accuracy might reflect 
these experimental biases rather than the inherent differences between the two classes. To avoid this pitfall, we 
recorded data through multiple experimental instances (on different days, using different microfluidic channels-
replaced due to clogging), ensuring multiple classes were recorded in each instance. In Fig. 3a–c, images from 
three typical microfluidic channels used in different instances are presented. It is evident that minor positioning 

Fig. 3.  (a-c): Images of microfluidic channels from different experimental instances, showing variations 
in width (in pixels) due to minor misalignments. (d-f): Histograms of the distribution of particle widths, 
normalized to the width of the corresponding channel for each particle class: (d) PMMA spheres of 12 μm 
diameter, (e) 16 μm, and (f) 20 μm.

 

Fig. 2.  (a) Data collection and lightweight pre-processing pipeline. (b) Total number of spikes across all 2D 
coordinates over time for a typical sample of 20 μm PMMA spheres. (c) Zoomed-in version of a single peak 
from part b.
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errors among instances can affect the IFC magnification factor (width of channel in pixels). To address this, we 
normalized each synthetic frame’s spatial features (measured in pixels) to the width of each microfluidic channel 
used. In Fig. 3d–f, normalized particle size histograms for the three classes are presented; each class exhibits 
a distinguishable mean value (md=20µm = 0.25± 0.04, md=16µm = 0.17± 0.02 and md=12µm = 0.14± 0.016
), while significant overlap between the three distributions is observed. This implies that even after data 
normalization, the classification task remains challenging, necessitating an ML model.

Digital machine learning IFC
Initially, we focused on lightweight ML that can be implemented on hardware-constrained platforms, such as 
ASICs or generic systems (e.g., Raspberry Pi, Arduino). A subset of the dataset was randomly chosen to equalize 
the number of samples per class. Therefore, 1216 unique samples per class were used, of which 70% were used 
for the training of each model and 30% for testing. All ML models were implemented on the TensorFlow 
framework25 by a graphics processing unit (GPU) alongside an Adam Optimizer26 with a learning rate of 0.01, 
and categorical cross-entropy as the loss function. The model training process involved data processed in batches 
of 250 for a maximum of 500 epochs. To prevent overfitting, an early-stopping callback was implemented to 
monitor validation loss, maintaining a validation split of 10% during training (see Methods). The architectures 
used here include a fully connected FNN with 1 and 2 layers. In Table 1, we present the accuracy and the number 
of trainable parameters for the lightest neural network configuration employed: a single layer consisting of 3 
nodes, each equipped with a rectified linear unit (ReLU) activation function. The optimal performance without 
digital pre-processing was achieved when synthetic frames were used directly as input, yielding an accuracy of 
97.5% and requiring 60,000 FLOPs per forward pass. To further enhance performance, we employed a digital 
pre-processing technique tailored for image processing, specifically the Histogram of Gradients (HoG)27. This 
approach resulted in a slight accuracy improvement to 98%, while reducing the FLOPs per forward pass to 
26,000. However, these benefits come with the subtle cost of additional digital pre-processing of the original 
data. In particular, HoG requires the computation of both the magnitude and angle of each pixel’s contrast 
relative to its neighboring pixels, row- and column-wise. This process results in a minimum of 105 additional 
computations during pre-processing27. It is also important to note that the intensity histograms of the synthetic 
frames (used to generate Fig. 3) were used as input to the same neural network, serving as a basic benchmark for 
accuracy and complexity. Although histograms require very few parameters (303), their performance is limited 
to a maximum accuracy of 90%, underscoring the complexity of the IFC classification task. This lower accuracy 
can be attributed to the fact that the histogram data captures only size (diameter) information, leading to poorer 
performance compared to the use of synthetic frames. The difference in performance may be due to debris 
present in the samples, which can be similar in size to the target particles and lead to misclassification when size 
is the only feature considered. By contrast, when a 2D representation is used, the morphological details of the 
particles allow the machine learning model to filter out debris more effectively.

Aiming to further boost performance, we use a feedforward neural network with an additional dense layer. 
In Table 2, we present performance metrics including accuracy, number of trainable parameters and power 
consumption, using the thermal design power (TDP) for each network. For each metric, we compute two values: 
one for the ML model with the fewest parameters (highlighted in bold) and another for the model providing the 
best performance in terms of classification accuracy (indicated in regular font). A compact network with two 
fully connected layers (FCLs) and only six hidden nodes achieved a precision of 97.9%. However, increasing the 
number of hidden nodes to 46 yields only a minor improvement of 0.3%, with an accuracy of 98.2%. Similar 
to the single FCL classification case, the highest accuracy is achieved through HoG pre-processing (98.3%), 
which halves the number of trainable parameters but requires more complex data pre-processing, as mentioned 
above. The best overall performance, a 98.7% accuracy, is again achieved with HoG and 2 FCLs. Interestingly, 
the accuracy boost when using a two-layer FCL network over a single-layer perceptron is marginal. For instance, 

Metric Max accuracy (%) Mean accuracy (%) Trainable parameters FLOPS Thermal design power % Optimum nodes/function

Synthetic frames (100,100) 97.9/98.2 97.4 ± 0.5 / 97.9 ± 0.3 60,027 / 460,187 120,038/920,278 15.1/19.4 6, relu / 46, relu

HoG (66,66) 98.3/98.7 97.7 ± 0.6 / 98.3 ± 0.4 34,883 / 200,563 69,746 / 401,030 11.3/16.9 8, tanh / 46, tanh

Table 2.  Performance of a 2-FCL neural network. The metrics in bold correspond to the most lightweight 
network in terms of parameters and the metrics in regular font to the optimum network in term of 
performance. In the last column the number of nodes at the hidden layer and the type of non-linear activation 
function used are presented.

 

Metric Max accuracy (%) Mean accuracy (%) Trainable parameters FLOPS

Synthetic frames (100,100) 97.5 96.8 ± 0.7 30,003 60,001

Histogram (100) 90 88.6 ± 1.4 303 601

HoG (66,66) 98 97.5 ± 0.5 13,071 26,137

Table 1.  Performance of a single layer feedforward neural network for raw events, histograms and HoG.
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the inference score increased from 97.5 to 98.2% for synthetic frames used as direct input, but this came with a 
substantial rise in FLOPs per forward pass, from 30 to 900 K.

Photonic neuromorphic pre-processor for IFC
Numerical simulations
As shown in the results above, input pre-processing (e.g., HoG) is a potential path towards further increasing 
accuracy, without massively affecting the number of trainable parameters. On the other hand, digital pre-
processing introduces additional computations, thus impacting power consumption during inference. Aiming to 
circumvent this impediment, we pursue an alternative approach, where input signals are pre-processed directly 
in the optical/analogue domain. In particular, we utilize a neuromorphic photonic scheme that will alleviate 
the additional computational workload associated with digital feature extraction techniques28,29, while at the 
same time, off-loading part of the back-end computational complexity, allowing for slimmer digital back-end 
ML models. In this context, our group proposed a photonic accelerator, relying on a hardware-friendly optical 
spectrum slicing (OSS) technique23. This approach involves the utilization of multiple passive optical filters 
acting in parallel as convolutional neural nodes. Each OSS node monitors distinct spectral regions of the input 
optical signal and applies a complex kernel filter directly in the analogue domain without any need for digital 
processing. This scheme was successfully applied to the field of high-speed image processing, where the OSS 
has offered performance levels comparable to fully digital sophisticated architectures23. More importantly, OSS, 
when targeting datasets such as the MNIST, offered a significant reduction in the number of trainable parameters 
and consequently to the overall power consumption. The fact that recurrent versions of the OSS have been also 
tested in transmission impairment mitigation in high baud rate optical communications further solidifies the 
capabilities of this approach as a ML accelerator30. On the other hand, OSS has been only recently combined with 
real-life datasets and, in particular, with medical imaging modalities such as IFC21. Here, we aim to combine 
the efficiency of a neuromorphic camera with photonic neuromorphic pre-processing for the first time, so as to 
enhance the IFC’s capabilities overall.

Before implementing the OSS scheme, synthetic frames are converted into 1D vectors, as depicted in Fig. 4. 
This conversion involves serializing each block of pixel values (patch) in two orientations—row-wise and column-
wise. Both orientations are used in the 1D representation of each synthetic frame to enhance their spectro-
temporal characteristics (see Methods section). The key components of the OSS scheme are illustrated in Fig. 5. 
The 1D vectors of each synthetic frame are transferred to the optical domain by modulating the amplitude of a 
continuous-wave optical carrier through a digital-to-analog converter (DAC) and an electro-optic modulator, 
such as a Mach–Zehnder Modulator (MZM). The processing core comprises multiple bandpass optical filters. 
Operation wise, the application of the filter’s transfer function in the frequency domain is identical to the 
convolution of the signal with the filter’s impulse response in the temporal domain. Therefore, each OSS node is 
set at a different central frequency, facilitating the “slicing” of distinct regions of the optical signal. This results 
in a change in the impulse response of each filter and the application of varying complex weights to the input 
time-traces23. Unlike digital kernels, the control over the complex weights is coarsely adjusted through the filter’s 
hyperparameters, which shape the impulse response of the OSS filters, such as central frequency (fm), bandwidth 
(fc) etc. (red and green insets of Fig. 5). Furthermore, the filters can act as tunable optical integrators31, where 
the integration time is governed through tuning the filters’ bandwidth and order. The integration time in this 
scenario is equivalent to the receptive field; meaning the number of spatial pixels’ values that are linked during 
convolution.

Following this purely optical step, the time-traces are transferred back to the electrical domain through 
a photodiode (PD) and an analog-to-digital converter (ADC) that follows each filter. The PDs introduce an 
elementwise nonlinear transformation at the filter outputs through their square-law characteristics. Furthermore, 
by reducing the bandwidth of the PDs or equivalently by integrating the PDs’ output, an average-pooling-like 
operation is performed. The extent of this integration can be controlled through Eq. 1, where the PD’s 3 dB 
bandwidth is set according to the pixel rate (modulation rate at the MZM) of the input signal (PR) and the size 
of the patch. This is defined by dividing the synthetic frame into square blocks of M ×M  pixels.

Fig. 4.  Conversion of synthetic frames to 1D vectors for OSS processing. Each frame is serialized into a 1D 
vector by processing blocks of pixel values (patches) in two orientations: row-wise and column-wise (see 
Methods).
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Towards the same direction, the sampling rate (SR) of the ADCs can be used to further compress data by under-
sampling the output. The digitized samples at the output of the OSS are subsequently flattened and fed to a simple 
digital back-end comprising a lightweight digital FCL with 1 or 2 dense layers, identical to the ones presented 
above. It is worth mentioning that the number of nodes in the FCL and thus the trainable parameters are directly 
governed by the number of samples that are generated and fed to the back-end.

Towards validating the concept, the first step consists of numerically simulating the OSS scheme so as to 
determine the optimum hyperparameters that would maximize classification accuracy. In this case, the OSS 
nodes are implemented as first-order bandpass Butterworth filters that can be easily realized using conventional 
photonic structures (e.g. micro-ring resonators-MRRs). The system’s hyperparameters under examination 
included the patch size (M ×M ), stride, number of OSS nodes and OSS filter characteristics (fc, fm). Initially, 
optical input was assumed to be injected to the filters at a pixel rate of 100 GS/s, with an average input power of 
20 mW; a typical optical spectrum and time-trace of a particle are shown in Fig6 b,a, respectively. Subsequently, 
the optical signal was split equally to feed the OSS nodes with a 1xN splitter, where nodes range from 1 to 10. 
In Fig.6c, three typical filter responses are depicted at different frequencies, “slicing” the spectrum of the input 
signal. The bandwidth of the PDs was adjusted in accordance with the selected patch size, as defined in Eq. 1, 
while the sampling rate of the ADCs was modified to extract only two samples over the temporal duration of a 
single patch.

The generated digital samples were fed to a single FCL identical to the digital scenario described above. 
The key differentiation in this approach lies in the preliminary optimization phase. Prior to classification, we 
employed the ‘Optuna’32 hyperparameter optimization framework to systematically identify the optimal values 
for the OSS scheme in this task (bandwidth, central frequency and patch size).

The hyperparameter scan revealed that using a 20 × 20 pixel patch with a 10-pixel stride, during the conversion 
of 2D image data to a 1D format for OSS processing, yielded optimal results. Figure 7 graphically illustrates the 
mean performance of two OSS-CNN configurations, one using a single-layer and the other a two-layer FNN as 
the classification backend, against the number of OSS nodes utilized. For context, the standalone performances 
of both single and dual-layer digital FCL models are included for direct comparison, depicted by red and blue 
dashed lines, respectively. In particular, utilizing a single OSS node, with a filter 3 dB bandwidth (fc) of 11 GHz 
and a central frequency detuning (fm) of 19 GHz, testing accuracy reached as high as 96.4%. Adding just one 
more OSS node—adjusting fm to 16 and 37 GHz for each filter, with fc set to 8 GHz—enhanced maximum 
classification accuracy to 97.9%, slightly surpassing the standalone single-layer FCL model’s performance by 
0.4% (see Table 1). A similar accuracy level was also achieved in the cases that node number increased to 3–5. 
Further exploration with a two-layer FCL classifier, as indicated by the Optuna framework, included 80 nodes 
in the digital hidden layer with a ReLU activation. This setup showed a notable improvement, where the single-

Fig. 5.  Schematic diagram of the OSS-CNN for the classification of IFC experimental data. (a) The synergy 
of a continuous-wave laser, a DAC and an MZM, used to imprint the 1D synthetic frame vectors onto the 
amplitude of the optical carrier. (b) A flattened IFC synthetic frame after laser modulation, displayed alongside 
the original synthetic frame. (c-d) Complex-valued coefficients (I/Q) for two identical filters, positioned 
at different detunings relative to the signal’s carrier frequency. (e–f) Reconstructed images after processing 
through two discrete OSS nodes.
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node OSS scheme’s accuracy boosted to 98.5%, compared to 98.2% for the purely digital approach. The highest 
accuracy achieved with the OSS-assisted scheme was 98.6% with two optical nodes, though an increase in the 
number of OSS nodes beyond three resulted in a slight decline in performance, possibly due to overfitting. 
Overfitting here arises when more than three OSS nodes are used, due to increase in the model’s parameters.

From a first glance, the inclusion of a fully analogue accelerator in this case, does not provide a strong 
performance boost as in23 but still improves testing accuracy by 0.5%. However, the key advantage of integrating 
OSS lies in its impact on reducing the number of trainable parameters, a critical factor in minimizing power 
consumption during model training. Table 3 provides a detailed comparison of OSS configurations (with one 
and two FCL layers) against purely digital neural network models, including the standalone single-layer and 
double-layer feedforward neural networks described above and a sophisticated yet parameter-efficient gated 
recurrent unit RNN (GRU-RNN). It highlights the differences in classification accuracy, the number of trainable 
parameters and the number of hidden units for each architecture.

Fig. 7.  Mean classification accuracy of a numerically simulated OSS-CNN with one (red circles) and two FCLs 
(blue circles) across varying OSS nodes, compared to standalone one-layer (red dashed line) and two-layer 
FCL models (blue dashed line).

 

Fig. 6.  (a) Time trace at the output of the DAC corresponding to the 1-D vector of a 12 μm cell, (b) Optical 
power spectrum of the signal modulated by the vector of the 12 μm cell and (c) Power transfer functions of 
three OSS filters with a 12 GHz 3-dB bandwidth, designed for uniform segmentation of the right-sideband 
spectrum within the input optical signal.

 

Scientific Reports |        (2024) 14:24179 8| https://doi.org/10.1038/s41598-024-75667-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The results of Table 3 underscore that the OSS was able to achieve a classification precision higher compared 
to simple FCLs and identical to the more complex GRU-RNN architectures. This is particularly noteworthy 
since the OSS-2FCL configuration operates with significantly fewer trainable parameters, approximately 8, 15 
times lower compared to 1-FCL and 2-FCL respectively, whereas versus the complex RNN, OSS offers a strong 
parameter reduction by a factor of 22, without any performance degradation. This key property, similar to23, can 
be attributed to the CNN-like architecture of the OSS system. Specifically, the slicing process by multiple filters 
performs a convolutional operation, where the kernel is roughly dictated by the transfer function and position 
of each filter’s response. This process extracts multiple diverse features from the original data, which are also 
integrated by the filter’s integrational property. Additionally, these rich, information-wise features undergo a 
nonlinear transformation through the PD, which is also set to average these values over the temporal duration of 
a patch (see Eq. 1). Consequently, the number of samples delivered to the input of the back-end classifier for each 
synthetic frame is significantly reduced, corresponding to two samples per patch as determined by the sampling 
rate of the post-nodal ADCs.

Experimental validation of OSS assisted IFC
The aforementioned concept was experimentally validated, as depicted in the schematic diagram of Fig. 8. The 
setup included a tunable laser (CoBrite-DX Tunable Laser) amplitude-modulated through a 20 GS/s arbitrary 
waveform generator (AWG) (Tektronix AWG70002B) and a Mach–Zehnder modulator (MZM) (iXblue 
MXIQ-LN-30) with a 20 GHz 3-dB bandwidth. Subsequently, the modulated signal was directed to an optical 
waveshaper (Coherent WaveShaper-1000A Programmable Optical Filter), acting as a Butterworth filter with a 
3-dB bandwidth around 10 GHz, centred at 1552.6 nm, realizing a single OSS node. It is worth mentioning that 
this experimental setup aims at a proof of concept, thus near-future implementations could rely on optimized 
components such as silicon photonic filters and high-speed, miniaturized modulators. The optical output was 
captured by a 10 GHz photoreceiver (Thorlabs RXM10AF) connected to a 50 GS/s digital signal oscilloscope 
(OSC) (Tektronix DPO75002SX). The final digital signal was resampled to 20GS/s to match the rate of the AWG 
and was filtered using a digital low-pass filter to implement an operation akin to average pooling. The final 
step involves classification using a digital dense feedforward neural network, identical to the one used in the 
numerical simulations described above.

Fig. 8.  Schematic diagram of the OSS-CNN experimental setup. The setup includes a tunable laser, a 20 
GS/s AWG, and an MZM. The signal is then boosted by an EDFA to enhance SNR and sent to a waveshaper. 
Detection and analysis are conducted with a 50 GS/s OSC. Post-processing is performed using a DLPF and 
classification via a FCL.

 

Architectures Max accuracy (%) Mean accuracy (%) Hiddenunits Parameters

1 FCL 97.5 96.8 ± 0.7 – 30,003

2 FCLs 98.2 97.9 ± 0.3 46 460,187

OSS-1FCL 97.9 97.6 ± 0.3 – 1947

OSS-2FCL 98.6 97.8 ± 0.6 80 52,163

GRU-RNN 98.6 97.9 ± 0.7 38 1,144,677

Table 3.  Comparison of OSS-CNN with digital neural network architectures in terms of accuracy and 
trainable parameters.
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The data pre-processing pipeline was slightly modified compared to the numerical simulations, aiming to 
reduce the number of samples processed by the AWG due to time constraints. In this approach, we took the 
original 100 × 100 pixel frames and divided them into smaller, 4 × 4 pixel blocks. By calculating the average value 
of each 4 × 4 block, we effectively compressed the frame into a smaller, 25 × 25 pixel frame, reducing the overall 
data. Therefore, the compressed frames were then transformed into 1D vectors using 5 × 5 patches and a stride of 
2. To increase the SNR of the optical signal and assess the system’s capabilities when not limited by thermal/shot 
noise during detection, an Erbium-Doped Fiber Amplifier (EDFA) was used prior to the waveshaper to boost the 
optical power to 8 dBm. To simplify the experimental setup and facilitate the recording of a single trace at a time, 
the optical convolution process at the waveshaper was performed sequentially. Specifically, the filter response of 
the waveshaper was maintained constant at 193.22 THz (1552.6 nm), while to implement multiple OSS nodes, 
the central frequency of the laser source was detuned relative to the central frequency of the filter. The carrier 
frequency was adjusted in 1 GHz steps, ranging from −9 GHz to + 9 GHz, allowing for the exploration of 19 
distinct filter central frequencies. Figure 9a shows a segment of a normalized time trace corresponding to a 
12 μm particle as sent to the AWG. In Fig. 9b, the resulting outputs for two different filter-carrier detunings (−6 
and + 1 GHz), as captured by the oscilloscope, are presented. The variation in frequency detuning led to distinct 
outputs, highlighting the optical filter’s differential interaction with the signal’s spectral components.

After photodetection, the signal from the oscilloscope was resampled at a rate of 20 GS/s to align with the 
AWG’s output rate. The number of consecutive samples subjected to averaging was then adjusted based on the 
bandwidth of the following LPF, as per Eq. 1, leading to varying degrees of compression at the output of the OSS 
system. The compression ratio (CR) serves as a metric that demonstrates the level of compression, compared to 
the input, applied at the OSS accelerator’s output. It is defined as the ratio of the initial data size to the size of the 
digital outputs of the OSS nodes per dataset sample. For this experimental setup, the compression ratio can be 
calculated using the formula:

	
CR =

N

2Nf
.� (2)

where Nf  is the number of distinct filter positions contributing to the inputs for the FCL and N is the integer 
denoting the number of successive samples involved in the averaging process. The averaged outputs from all 
particle samples were then merged to construct the optical pre-processed version of the original dataset.

The classification process began with analyzing the digitized outputs from each filter position, thereby examining 
the performance when a single OSS node was used for pre-processing under various averaging scenarios. 
Subsequently, the back-end FCL was supplied with combinations of outputs from 2, 3, and 5 different OSS nodes, 
thereby implementing an expanded OSS scheme. Figure 10 illustrates the mean classification accuracy for the 
optimal combination of two distinct filter positions (optimum found to be −1 and 0 GHz from the carrier) with 
a single-layer FCL as the digital classifier. This is compared alongside the performance of the optimal simulated 
2-node OSS (solid-blue line), in relation to the CR. Additionally, Fig. 10 presents the accuracy of the standalone 
digital FCL processing the entire synthetic frame dataset (black dashed line) and the accuracy from a time trace 
derived from an uncompressed synthetic frame without any OSS node intervention (red dashed line). Here, 
“mean accuracy” refers to the average classification accuracy obtained over ten iterations of the same 3-neuron 
FCL model, where the only difference across iterations was the initial values of the weights, with all the other 
training parameters remaining constant. From Fig. 10, it is evident that the performance of the experimental 
OSS setup is similar to that of the simulated OSS. The highest accuracy recorded in the experimental setup was 
98.1% at a CR of 3.3, underscoring the efficacy of OSS by enhancing accuracy by 0.6% over a system without 
noise, while concurrently reducing the number of trainable parameters by a factor of 3.3. Another significant 
observation from Fig.  10 is the robustness of OSS pre-processing, which sustains nearly 96% accuracy even 
under substantial compression (96.1% with a CR of 20).

Fig. 9.  (a) Temporal segment of the normalized event-vector time trace from the AWG corresponding to a 
12 μm cell. (b) Normalized outputs for two distinct filter detunings from the carrier frequency at the OSC, 
specifically at −6 GHz (red) and + 1 GHz (green), applied to the input signal depicted in (a).
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In Fig. 11, the mean precision of the experimental OSS-CNN is plotted against the number of OSS nodes 
(filter positions), considering a single-layer (Fig. 11a) and a two-layer FNN back-end (Fig. 11b), with the CR held 
constant at 3.3. For comparison, the figure also includes the mean classification accuracy of the digital single-layer 
and two-layer FNNs that directly processed the synthetic frames. In Fig. 11a, the accuracy of the experimental 
setup is comparable to, or higher than, that of the standalone digital FCL, especially when three OSS nodes are 
used. Notably, the experimental setup achieves its highest accuracy of 98.1% with three nodes, outperforming 
the single-layer digital FNN despite the presence of noise from components such as the photodetector and the 
EDFA. Furthermore, the experimental OSS system demonstrates strong robustness, consistently maintaining 
a precision above 97% with 1, 2, and 3 OSS nodes. Figure 11b shows that adding a second dense layer in the 
digital back-end improves accuracy across all cases relative to Fig. 11a. The peak accuracy for the experimental 
OSS reaches 98.4% with 1–2 OSS nodes, slightly below the 98.6% achieved in the simulated OSS. The overall 
performance of the experimental setup declines slightly across different node configurations, indicating the 
influence of experimental factors, particularly in the 2-node case where mean accuracy drops to 97.6% compared 
to 98.6% in the simulated system. Interestingly, in configurations with 1–2 OSS nodes, the experimental OSS 
outperforms the dual-layer digital FCL while significantly reducing the number of trainable parameters.

Discussion and conclusion
In this work, experimental data from a neuromorphic event based IFC system have been recorded, regarding the 
classification of aqueous solution of PMMA particles with different diameter. The generated datasets comprise 

Fig. 11.  Mean classification accuracy of the experimental OSS system as a function of the number of OSS 
nodes, using (a) a single fully connected layer (1-FCL) and (b) a two-layer fully connected network (2-FCL) 
as the digital back-end. For comparison, the mean performance of the digital FNNs with one and two layers, 
which directly processed the synthetic frame dataset, are also included.

 

Fig. 10.  Mean classification accuracy for the optimal 2-node experimental OSS configuration, utilizing filters 
detuned by − 1 and 0 GHz, paired with a 1-FCL classifier, in comparison to a simulated 2-node OSS as a 
function of the CR. For reference, the accuracy of a standalone FCL is shown (black dashed lines), alongside 
the mean accuracy from the uncompressed output of a wideband (25 GHz) filter aligned with the carrier 
frequency (red dashed lines) are also presented.
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rate-encoded synthetic frames subject to a lightweight pre-processing, mainly consisting of object tracking, to 
compensate for the utilization of a generic micro-fluidic system. The core of this work comprises two different 
innovative steps, the utilization of an event-based detector for IFC and unconventional data processing. Regarding 
the first step, event-based sensors have just started infiltrating the IFC landscape, offering rapid visualization, 
low data-rates and reduced cost compared to conventional FC, even at this early development phase33.

Regarding the second step, classification of the IFC data has been performed in three ways: lightweight digital 
feedforward neural networks, offering a classification accuracy of 98.2% comparable to2, but requiring more 
than 460 K trainable parameters. The second approach consisted of using digital pre-processing of the dataset, 
following the well-established HoG algorithm; topping accuracy at 98.7% with 200 K parameters during training 
and with the additional digital processing cost during inference. The third route replaces the HoG algorithm 
with an all-optical convolution-like photonic neuromorphic scheme, based on optical spectrum slicing; this 
route offloads the pre-processing to the analogue domain while the same feedforward neural networks (FNNs) 
are used as back-end. Although an all-optical FNN scheme could be considered, we utilize a hybrid electro-optic 
approach so as to circumvent issues such as the hard-to-scale optical networks and the absence of an efficient 
optical training approach.

In this work this concept has been validated both experimentally and numerically and it offered an optimum 
accuracy of 98.6%. The most critical attribute of the proposed scheme is that this performance is achieved with 
only a fraction of trainable parameters demanded by standalone digital neural networks and without any type 
of computationally intensive digital preprocessing. Thus, reducing power consumption both during inference 
and training. These improvements stem from the ability of the OSS to inherently correlate pixel information and 
apply random, yet complex kernels directly in the analogue domain. This in turn, evokes a coarse projection of 
image’s features to a higher dimensional space, like a reservoir computing scheme, thus simplifies classification by 
a lightweight digital neural network. This combination of neuromorphic sensing and neuromorphic computing 
has been presented also in the recent past, where in2 a similar IFC generated spiking data that were classified 
through digital pre-processing (feature extraction) and a software implemented spiking neural network, offering 
similar accuracy to this work. More recently in18 the same IFC as in2, was merged with a spiking neural network 
realized in hardware (Intel’s Loihi) so as to classify a two-class PMMA particle scenario. The key difference 
between our work and18 is the fact that our optimization efforts aim towards applying neuromorphic-analogue 
pre-processing so as to reduce the trainable parameters of a conventional (floating-point based) back-end, 
where in18 the aim is to exploit spiking data sparsity and generate an all-spiking system. The reasoning for our 
approach is that conventional digital back-end is more mature and efficient compared to experimental spiking 
processors, whereas independently of the architecture our approach offers a comparable smaller parameter space 
to train of 1.9 K parameters comparted to 394 K parameters derived in18 with similar accuracy. On the other 
hand, the proposed IFC entails an additional electro-optic conversion step that is not present in standalone 
digital solutions or in all-spiking approaches. This conversion step is a necessity in all photonic accelerators34,35, 
whereas for the explicitly OSS it has been shown that the power consumption of the electro-optics is lower 
compared to the energy-footprint of the digital back-end. In addition, this step can be omitted if an inherently 
photonic IFC detector is employed as in12. Furthermore, in our work we generate 2D synthetic-frames from 
raw data so as to drive our photonic accelerator, which is more computation-hungry compared to simple down-
sampling of raw spiking data18.

Overall, the results in this work alongside similar works curving complementary strategies confirm that 
by matching neuromorphic sensing with neuromorphic processing an overall performance enhancement can 
be achieved outperforming all previous schemes, whereas offering a strong reduction in terms of trainable 
parameters by a factor > 20 that is of utmost importance for emerging machine learning modalities.

Methods
Experimental setup
The experimental setup features two 40 × microscope objective (RMS40X- 40X Olympus Plan Achromat 
Objective, 0.65 NA, 0.6 mm) lenses with a numerical aperture (NA) of 0.65 and a working distance of 600 μm. 
These lenses are securely mounted on two 3-Axis MicroBlock. Two planoconvex lenses with a focal length of 
10 cm are used before and after the objectives so as to direct/collect light from the microscope system. The light 
source is a 635 nm emitting LED with average power of 5mW, whereas the recording event-based camera is 
Gen4 provided by Prophesee with a resolution of 640 × 480 pixels and a temporal resolution in spike generation 
of 1μsec. The camera records pixel’s contract changes with two polarity values, depending on whether there is 
an increase or decrease in intensity. In this work, synthetic frames do not include this feature and all events are 
mapped to the synthetic frame, independently of their polarity. A vacuum pump installed offered a steady liquid 
flow ranging from 10 μlit/hour to several ml/min thus, regulating the speed of the particles from 0.001 m/sec 
to well beyond 1 m/sec. In the experiments a particle speed of 0.07 m/sec was used. Finally, the microfluidic 
channels employed, were straight channels based on TOPAS, offering absorption below < 0.5  dB at 635  nm, 
having a cross section of 100 × 100 μm. The microfluidic scheme had no seethe control, thus particles propagated 
at random trajectories within the cross-section.

Sample preparation
The experiments involved three distinct categories of calibrated transparent PMMA spheres (POLYAN) of 
different diameters 12, 16, and 20 μm. The initial concentration of calibrated transparent PMMA spheres was 
5% and it was further diluted to 1:200 by adding purified water. The low particle concentration was used so 
as to avoid clogging in the microfluidic channel and reduce the probability of particle clustering. All tubes 
and microfluidic chambers employed during dataset generation were used solely for one class to avoid cross-
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contamination that would hinder labeling of the dataset. Prior to any measurement, all the microfluidic channels 
were thoroughly cleaned by debris by injecting purified water at high flow.

Synthetic frames to 1-D vectors
In order to leverage the OSS optical preprocessing, synthetic frames are serialized using multiple spatial 
orientations. Although this step does not require any digital preprocessing, it determines the order in which 
pixels are inserted into the stream, thereby potentially augmenting input data. Specifically, it can generate 
additional correlations among pixels when combined with a filter. The process consists of the following steps: the 
values of the synthetic frame are divided into blocks of size MxM  pixels, where M  is equal to 20 in numerically 
simulated OSS and to 5 in experimental OSS (see Fig.4). Each block is sequentially serialized in two alignments: 
column-wise and row-wise. Both of these serialized forms are utilized in the representation of each synthetic 
frame in a one-dimensional vector. The stride, defined as the step by which the patch window shifts across 
the synthetic frame before serializing the next block, is employed in two orientations. The first orientation is 
row-wise, serializing pixels within the patch based on horizontal alignment, and the second is column-wise, 
focusing on vertical alignment of the patch pixels. Utilizing both patch orientations aims to augment the spatio-
temporal characteristics of each particle sample within its one-dimensional representation. Consequently, the 
classification dataset comprises 4378 different one-dimensional vectors, each representing a synthetic frame.

Machine learning training process
The neural network models were formulated using the Keras API36 implemented on the Tensorflow framework25, 
and their training and evaluation processes were conducted utilizing a graphical processing unit (GPU). In all 
instances, 70% of the available data particles were designated for training, while 20% out of these were reserved 
for validation to mitigate the risk of overfitting. The remaining 30% of the data were allocated for evaluation to 
ensure a comprehensive and unbiased assessment of model performance. The optimization algorithm selected 
for these models was Adam, with a fixed learning rate of 1 × 10–4 and the training regimen was performed for 
300 epochs. Furthermore, in our study, we employed an early stopping mechanism with a patience of 100 epochs 
after the minimum validation loss was reached to prevent overfitting. This ensures that the model does not 
continue to train beyond the point where it is effectively learning, thereby mitigating the risk of memorization of 
the training data. To account for potential variations in performance due to the random initialization of weights, 
we repeated the training procedure 10 times. Each repetition started with a new random initialization of the 
model’s weights (as the reviewer commented), ensuring the robustness of the reported results. By doing so, we 
account for any possible variability in the final accuracy and provide a more reliable estimate of the model’s 
performance. Additionally, during each repetition the entire dataset was shuffled, preventing any subset with 
specific characteristics from being consistently presented to the model during training.

The architectural configurations encompassed a basic digital perceptron, a fully connected feedforward 
neural network (FNN) with 1–2 layers and lightweight recurrent neural networks (RNN), instantiated as long-
short term memory (LSTM), gated-recurrent unit (GRU) and Vanilla-RNN (V-RNN).

To optimize hyperparameters, the ‘Optuna’ framework32, which utilizes a Tree-structured Parzen Estimator, 
was employed to maximize the testing accuracy. A comprehensive evaluation of the aforementioned models 
was undertaken, focusing on several factors: the number of hidden neurons, the learning rate and the batch 
size within the FCs or the RNN models, as well as the activation function of the hidden nodes in the FC layers.

The data delineated in Tables 2 and 3 encapsulate a robust array of computational characteristics, including 
the number of parameters, FLOPS, and Thermal Design Power (TDP). The TDP represents the maximum 
amount of heat a processing component, like a GPU is expected to generate under heavy loads, where a lower 
TDP generally indicates reduced power consumption. These metrics were derived through the application of 
TensorFlow libraries in conjunction with NVIDIA tools, ensuring precise and dependable measurements critical 
for assessing and contrasting computational performance. In this analysis, an NVIDIA 2080Ti GPU with a TDP 
of 250 Watts was utilized. The determination of the TDP percentage was conducted using the GPU-Z monitoring 
utility37. The average TDP percentage was calculated over 100 training epochs for each neural network model.

Data availability
All codes generated for the emulation of the optical spectrum slicing concept and the dataset generated in the 
context of this work are available upon request to the corresponding author.
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