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Our study aimed to explore the applicability of deep learning and machine learning techniques to distinguish MPE
from BPE. We initially used a retrospective cohort with 726 PE patients to train and test the predictive performances
of the driverless artificial intelligence (AI), and then stacked with a deep learning and five machine learning models,
namely gradient boosting machine (GBM), extreme gradient boosting (XGBoost), extremely randomized trees (XRT),
distributed random forest (DRF), and generalized linearmodels (GLM). Furthermore, a prospective cohortwith 172 PE
patients was applied to detect the external validity of the predictive models. The area under the curve (AUC) in the
training, test and validation set were deep learning (0.995, 0.848, 0.917), GBM (0.981, 0.910, 0.951), XGBoost
(0.933, 0.916, 0.935), XRT (0.927, 0.909, 0.963), DRF (0.906, 0.809, 0.969), and GLM (0.898, 0.866, 0.892), respec-
tively. Although the Deep Learningmodel had the highest AUC in the training set (AUC=0.995), GBM demonstrated
stable and high predictive efficiency in three data sets. The final AI model by stacked ensemble yielded optimal diag-
nostic performancewith AUC of 0.991, 0.912 and 0.953 in the training, test and validation sets, respectively. Using the
driverless AI framework based on the routinely collected clinical data could significantly improve diagnostic perfor-
mance in distinguishing MPE from BPE.
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Introduction

Pleural effusion (PE) is characterized with significant accumulations
of fluid in pleural cavity, which is a common problem in clinical practice
[1–4]. There are about 1.5 million patients in the United States newly
diagnosed with PE each year [5,6]. PE is related to more than 50 etiolo-
gies and could be divided into benign pleural effusion (BPE) and malig-
nant pleural effusion (MPE) [7]. BPE is mainly caused by tuberculosis,
pneumonia and chronic heart failure in China [8]. Sometimes, MPE pre-
sents as the initial or even only sign in patients with cancer, but this does
not mean that MPE is a warning sign for early stage of cancer. To the
contrary, MPE generally signifies an advanced stage of cancer and a
worse survival [9]. Accurate identification of patients with high proba-
bility of MPE is critical to deploy optimal interventions and thus im-
prove patients' clinical outcomes. Hence, a convenient method with a
minimum invasion that can accurately identify malignancy from BPE
as early as possible is highly desirable.
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Several clinical markers including serum carcinoembryonic antigen
(CEA), adenosine deaminase (ADA) and lactate dehydrogenase (LDH), are
commonly used to differentiate MPE from BPE in a clinical setting. How-
ever, no single marker can obtain satisfactory diagnostic performance in
identifying MPE from BPE. Therefore, combination of several significant
variables seems to achieve better diagnostic performance than single
index. A clinical study [10] from Spain revealed that combination of four
serum tumor markers reached a sensitivity of 54%. Furthermore, a recent
study [11] demonstrated that combination of four indexes (age, proteins,
glucose, and lactic acid) selected by logistical regression to separate tuber-
culous pleurisy from BPE achieved 78% specificity and 93.5% sensitivity
with an area under curve (AUC) of 0.915. Yang et al. [12] exploited logistic
model to develop a PET-CT scoring model for the differential diagnosis of
MPE and BPE, and the scoring model yielded a sensitivity of 83.3% and a
specificity of 92.2% with the cut-off value of 4 points in the training
group. Hence, the predictive performances of diagnostic models created
by logistical regression are somewhat limited.
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Recently, artificial intelligence (AI) in themedicalfield has become a re-
search hotpot, and holds the promise to automatically diagnose
heterogeneous diseases with high accuracy [13–18]. In our previous work
[19], four machine learning (ML) algorithms were successfully employed
to construct and validate a quantitative histomorphometry to identify gas-
tric cancer patients with high risk of recurrence. Chen et al. [20] created
a computer-aided system of deep learning (DL) to automatically detect hy-
perplastic colorectal polyps with high accuracy. Kather et al. [21] success-
fully used DL algorithm to accurately predict microsatellite instability
(MSI) from H&E histology in gastrointestinal tumors. Moreover, Yu et al.
[22] demonstrated that they applied seven ML classifiers based on histopa-
thology features to predict the survival of patients with lung cancer and the
ML classifiers obtained fairly satisfactory predictive accuracy. In addition, a
population-based cohort study revealed that the XGBoost model exhibited
better predictability in differentiating between critically ill patients who
would and would not response to fluid intake compared with a conven-
tional logistic regressionmodel [23]. However, no current studies have sys-
tematically assessed the predictive values of DL and ML models in the
identification of MPE from BPE.

In our previous work [24], we succeeded to design a three dimensional
scaffoldmicrochip which could efficiently isolate individual effusion tumor
cell (ETC) and ETC cluster from effusions. Then we used logistical regres-
sion analysis to create a three-marker (effusion CEA, ETC count and ETC
cluster count) predictive model, and this predictive model obtained excel-
lent diagnostic performances both in the training and validation sets. In
this study, we used five ML algorithms and a DL classifier, which were au-
tomatically tuned to develop predictive models based on the most accessi-
ble clinical features and laboratory indexes to identify MPE from BPE.
Next, we compared the diagnostic performances among the six computa-
tional models as well as the stacked ensemble model. Finally, we prospec-
tively validated the seven predictive models with an independent cohort
of 172 patients.

Materials and methods

Study population

An observational study of PE cases from January 2014 through April
2018 was performed in Renmin Hospital of Wuhan University (RHWU). A
total of 726 patients with PEwere finally included in the study andwere ran-
domly split into the training and test sets by the ratio of 8:2. To investigate the
external validity, a prospective cohort containing 172 patients with PE in
Wuhan Union Hospital (WUH) from August 2019 through December 2019
was used as a validation set. Both the clinical ethics committees of RHWU
(No. WDRY 2019-K014) and WUH (No. 2019-S075) checked and approved
the study design prior to the commencement of this clinical study. All patients
were required to provide the informed consent. In addition, the prospective
study conducted inWUHwas also registered on the website of Clinical Trials
(No. NCT03997669) prior to the initiation of this study.

The inclusion criteria:

(1) confirmed to suffer from PE by ultrasonography, chest CT or X-ray;
(2) patients who underwent diagnostic thoracentesis; (3) PE patients with
known etiologies after a series of examinations.

The exclusion criteria:

(1) patients without willingness to participate in this study; (2) patients
younger than eighteen years old; (3) patients lack of critical clinical infor-
mation; (4) PE patients with indeterminable causes.

Diagnostic criteria

A PE was determined as MPE if cancer cells were clearly found through
cytological smear, cell block together with immunohistochemistry or
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pleural biopsy. Tuberculous pleural effusion (TPE) was diagnosed when
acid-fast stain or mycobacterial culture was positive, or caseous necrosis
was observed in histopathology. The diagnosis of chronic heart failure
(CHF) wasmainly based onmedical history, a series of examinations (echo-
cardiogram, electrocardiogram, b-type natriuretic peptide). More impor-
tantly, CHF reacts to diuretics. Additionally, parapneumonic effusion was
identified when the presence of PE was associated with pneumonia, and
PE was soon disappeared after antibiotic therapy. Besides, other types of
BPE followed well-established diagnostic criteria.

Data collection

This study aimed to create diagnostic models based on the available
electronic health record data, so the following clinical variables were col-
lected through the electronic medical record (EMR). Data were collected
at the time of admission and prior to any medical interventions. Demo-
graphic features (gender and age), objective clinical symptom (fever), ra-
diological characteristics (volume of PE, site of PE,) blood routine [white
blood cells (WBC), lymphocytes (LC), neutrophil cells (NC), red blood cell
distribution width (RDW), platelets (PLT)], serum biochemical parameters
[erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), serum al-
bumin (ALB), serumLDH, serum alkaline phosphatase (ALP)], serum tumor
markers [CEA, serum neuron-specific enolase (NSE), serum squamous cell
carcinoma antigen (SCC)], effusion biochemical parameters [ADA, effusion
ALB, effusion LDH], effusion routine [effusionWBC, percentage of lympho-
cytes (L%) and percentage of neutrophils (N%)] and effusion tumormarker
(CEA). Furthermore, fever refers to a body temperature > 37.5 °C. The site
of PEwas classified into unilateral and bilateral. The volume of PE based on
ultrasonography was categorized as mild PE (<500 mL), moderate PE
(500–1000 mL) or severe PE (>1000 mL).

Machine learning and deep learning classifiers

In this study, we use the driverless artificial intelligence (AI) by h2o
package (version 3.28.0.4) in R, stacked with a DL and five types ML
models [25], namely gradient boosting machine (GBM), extreme gradi-
ent boosting (XGBoost), extremely randomized trees (XRT), distributed
random forest (DRF), and generalized linear models (GLM) to create
predictive models for the differential diagnosis of MPE and BPE. The
final models and the stacked ensemble model were chosen among the
100 models which were automatically trained and tuned. All available
variables (N= 25) were directly taken into account as inputs to classify
PE patients likely to be diagnosed with MPE. The confusion matrix
contained the predicted probabilities and actual classification was ap-
plied to calculate the diagnostic performances of seven algorithmic
models. 5-fold cross-validation were undertaken in patients randomly
assigned to a 80% training set and a 20% test set to determine the aver-
age diagnostic performance. The workflow for establishing and validat-
ing the candidate predictive models via computational algorithms is
shown in Fig. 1. Moreover, the parameters and code source of the algo-
rithms are clearly illustrated in Table S1 and S2.

Statistical analysis

The continuous variables between MPE and BPE groups were ana-
lyzed with either Student t-test or Mann–Whitney U test as appropriate.
While, the categorical data were compared with Chi-square test or
Fisher's exact test. The receiver operator characteristic (ROC) analyses
were executed to evaluate the diagnostic performance of the models
for predicting MPE. The area under the curve (AUC) was measured in
each ROC curve and specificity together with sensitivity was also calcu-
lated to assess the diagnostic performances of the models. The above
statistical analyses were implemented with R software version 3.6.1.
and SPSS 20.0. Differences were regarded as statistically significant
when P < 0.05 at both sides.



Fig. 1. Flow chart of creating and validating predictive models using deep learning and machine learning algorithms.
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Results

Patients characteristics

A total of 1641 patients with PE were initially screened from both co-
horts. 726 PE patients with intact clinical information from RHWU cohort
and 172 cases from WUH cohort were finally enrolled in our analysis.
The detailed flow chart of patient selection was clearly shown in Fig. 2. In
the RHWU cohort, the differences in clinical features between MPE and
BPE groups were exhibited in Table 1, and we could observe that age, gen-
der and most laboratory indexes were statistically different between MPE
and BPE groups. Moreover, the detailed disease types in RHWU and WUH
cohorts were listed in Table 2. In the present study, lung cancer was the
principle part of MPE both in the RHWU cohort and WUH cohort, while
TPE was the main cause of BPE.
Fig. 2. The detailed proce
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Model performance in the RHWU cohort

Patients in the RHWU cohort were randomly portioned to the training
set (N = 581) and testing set (N = 145). Discriminative abilities of six
models were evaluated using ROC analysis. As illustrated in Fig. 3, the
AUCs for identification of MPE in the training set were 0.981 by the
GBM, 0.933 by XGBoost, 0.927 by the XRT, 0.995 by the DL, 0.906 by
the DRF and 0.898 by the GLM. Similarly, as shown in Fig. 4, the diagnostic
performances in the testing set were the following: 0.910 by the GBM,
0.916 by XGBoost, 0.909 by the XRT, 0.848 by the deep learning, 0.809
by the DRF and 0.866 by the GLM. Hence, we could conclude that although
the DLmodel had the highest AUC in the training set, GBMmodel achieved
excellent predictive ability for the differentiation of MPE and BPE in the
RHWU cohort. Furthermore, the sensitivity and specificity of each predic-
tive models in the training, test and validation sets were listed in Table 3.
ss of patient selection.



Table 1
Clinical characteristics of the patients with PE in RHWU cohort.

BPE (n = 391) MPE (n = 335) P

Age 57.5 ± 18.0 63.5 ± 13.6 <0.001
Gender, male 270 (69.1%) 192 (57.3%) 0.001

Male 270(30.9%) 192(42.7%)
Female 121

Fever 157 (40.2%) 54 (16.1%) <0.001
PE volume 0.410

Mild 97 (24.8%) 92 (27.5%)
Moderate 200 (51.2%) 168 (50.1%)
Severe 94 (24.0%) 75 (22.4%)

Primary site 0.316
Unilateral 219 (56.0%) 200 (59.7%)
Bilateral 172 (44.0%) 135 (40.3%)

WBC (109/L) 7.5 ± 2.6 7.7 ± 2.3 0.570
NC (109/L) 5.6 ± 1.3 5.5 ± 1.9 0.788
LC (109/L) 1.2 ± 0.5 1.3 ± 0.7 0.375
RDW 45.2 ± 6.5 46.1 ± 7.0 0.069
PLT (109/L) 276.3 ± 118.2 263.0 ± 113.0 0.122
CRP (mg/L) 67.8 ± 29.4 35.4 ± 18.5 <0.001
ALP (U/L) 67.1 ± 20.6 70.3 ± 17.6 0.321
ALB (g/L) 60.5 ± 17.3 66.7 ± 26.3 0.142
LDH (U/L) 280.2 ± 131.4 289.9 ± 147.2 0.571
ESR (mm/h) 65.3 ± 18.6 41.4 ± 12.9 <0.001
CEA (ng/mL) 3.1 ± 1.7 57.3 ± 19.0 <0.001
SCC (ng/mL) 1.3 ± 0.6 2.4 ± 0.7 0.001
NSE (ng/mL) 20.0 ± 7.7 27.1 ± 13.8 <0.001
Effusion WBC 1290.0 (445.0, 2739.0) 1158.0 (480.0, 2100.0) 0.418
Effusion N% 20.5 ± 5.1 16.9 ± 8.7 0.029
Effusion L% 74.0 ± 26.4 74.4 ± 22.0 0.842
Effusion ALB 38.7 ± 13.7 40.8 ± 11.9 0.028
Effusion ADA 31.5 ± 11.7 14.3 ± 6.1 <0.001
Effusion LDH 256.0 (133.0, 501.0) 301.0 (184.0, 530.0) 0.293
Effusion CEA 1.0 (0.5, 1.8) 168.8 (6.9, 688.0) <0.001
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Validation of the models in the WUH cohort

To probe external validity of the models, we prospectively collected
clinical information of 172 patients with PE from WUH cohort which was
independent from the WHWU cohort. The basic features of patients from
WUH cohort were listed in Table S3. In the validation set, ROC analyses re-
vealed that the predict accuracy as measured by the AUC was 0.951 by the
GBM, 0.935 by XGBoost, 0.963 by the XRT, 0.917 by the DL model, 0.969
by the DRF and 0.892by the GLM (Fig. 5). Among them, GBM model
achieved the most favorable predictive performance in the WUH cohort
with a sensitivity of 84.75% and a specificity of 95.58%.
Comparison of the model performance for prediction of MPE

Stacked Ensemble is an important ML approach using multiple predic-
tive models from different algorithms to pick out the best combination of
Table 2
Origins of PE in RHWU cohort and WUH cohort.

Disease type RHWU cohort (N = 726) WUH cohort (N = 172)

MPE
Lung cancer 261 (35.95%) 51 (29.65%)
Breast cancer 12 (1.65%) 2 (1.16%)
Lymphoma 18 (2.48%) 1 (0.58%)
Mesothelioma 4 (0.55%) 1 (0.58%)
Ovary cancer 6 (0.83%) 0 (0%)
Other cancers 34 (4.68%) 4 (2.33%)

BPE
Tuberculous pleurisy 186 (25.62%) 56 (32.56%)
parapneumonic effusions 151 (20.80%) 35 (20.35%)
Heart failure 30 (4.13%) 7 (4.07%)
Pulmonary embolism 1 (0.14%) 0 (0%)
Empyema 12 (1.65%) 5 (2.91%)
Other benign diseases 11 (1.52%) 10 (5.81%)
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a variety of prediction algorithms. As illustrated in Fig. 6A-C, The Stacked
Ensemble model performed favorable predictive performances in the train-
ing set (AUC= 0.991), in the testing set (AUC= 0.912) and in the valida-
tion set (AUC=0.953).Moreover, 5-fold cross validationwas performed to
evaluate the comprehensive predictabilities of the six models and the
Stacked Ensemble model. Surprisingly, DL ranked fourth among the six
models (Fig. 6D). Three machine learning models (GBM, XGBoost and
XRT) achieved more favorable predictive outcomes than the DL model
and only GBM model showed significantly better AUC than the DL model.
Moreover, Taken together, assembling the DL and ML algorithms by
Stacked Ensembles could greatly improve diagnostic significance for the
differentiation of MPE and BPE.

Important features from the models

To investigate the potential impact of each clinical feature on the dis-
criminative abilities of the predictive models, we ranked the clinical vari-
ables from high to low in each model based on the functional
contribution to the outputs. In this method [25], variables that provide im-
portant information to the trainedmodels are ranked higher than those pro-
viding redundant information. Since the featureswith lower rank possessed
little impacts on the predictive performance of the classification model, we
only listed the first ten features. As displayed in Supplementary Fig. S1, ef-
fusion CEA ranked first in the DL and ML models, highlighting its great sig-
nificance in the separation of MPE from BPE. Therefore, we exploited the
ROC analyses to specifically evaluate the diagnostic accuracy of effusion
CEA. In the training set, effusion CEA exhibited good diagnostic perfor-
mance as measured by an AUC of 0.909 with a sensitivity of 82.09% and
a specificity of 91.37% when the optimal cutoff value was set at
3.6 ng/mL (Fig. S2A). As displayed in Fig. S2BC, effusion CEA obtained ac-
ceptable performances both in the test set (AUC = 0.883) and validation
set (AUC= 0.866). With the same cutoff value, the sensitivity and specific-
ity of effusion CEA for the differential diagnosis of MPE and BPE were
79.1% and 85.9% in the test set, and 63.41% and 89.38% in the validation
set. To sum up, we concluded that the driverless AI framework, including
ML and DL, offered great improvement in separating MPE from BPE over
the effusion CEA.

Discussion

MPE usually represents end-stage malignancy and is closely related to
poor median survival [26,27]. The high morbidity of MPE continues to
rise and therefore causes a heavy health care burden [28]. An ability to dis-
tinguish between MPE and BPE with considerable accuracy is clinically sig-
nificant to avoid the deferred diagnosis of MPE [29–32]. Thus, this clinical
study aiming to precisely differentiate MPE from BPE was of great public
health implications. Using sophisticated DL and ML techniques, we identi-
fied some important clinical features associated with the discrimination
of MPE and BPE, such as effusion CEA, serum CEA, ADA and ESR. In this
study, we demonstrated that automatically tuned ML algorithms such as
the GBM, XGBoost and XRTmodels can enrich themost informative clinical
features and allow us towell construct better-performing predictive models
by stacked ensemble, whose predictive accuracy was significantly superior
to the DL model and effusion CEA. More importantly, a prospective cohort
was applied to detect the clinical application of predictive models in differ-
ent patients’ population, and the predictive models also exhibited satisfac-
tory diagnostic accuracy. To the best of our knowledge, this is the first
study to apply driverless AI to identify MPE from BPE with the largest sam-
ple size.

Patients with MPE could present similar manifestations as BPE patients,
so tremendous efforts have beenmade to differentiateMPE from BPE in the
past few decades. Rong et al. [33] detected the level of Hsp90-beta in PE
and found that effusion Hsp90-beta could identify MPE with a sensitivity
of 93.46% and s specificity of 79% when the optimal level of Hsp90-beta
was set at 1.659 ng/mL. Jing et al. [34] demonstrated that the effusion
sB7-H4 was a potentially promising biomarker in identification of MPE



Fig. 3. Discriminative abilities of predictive models for the identification of MPE from BPE in the training set. ROC curves of predictive model created by GBM (A); XGBoost
(B); XRT (C); DL (D); DRF(E); GLM(F).

Fig. 4.Diagnostic abilities of predictivemodels for the differential diagnosis ofMPE and BPE in the test set. ROC curves of predictivemodel created byGBM (A); XGBoost (B);
XRT (C); DL (D); DRF(E); GLM(F).
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Table 3
Sensitivity and specificity of seven predictive models in the training, test and validation sets.

Algorithmic models Training set Test set Validation set

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

DL 95.90% 98.08% 80.59% 83.33% 89.83% 87.61%
GBM 92.91% 94.57% 85.57% 84.62% 84.75% 95.58%
XGBoost 93.66% 87.54% 88.06% 84.62% 94.92% 83.19%
XRT 85.82% 90.10% 83.58% 88.46% 94.92% 89.61%
DFR 82.46% 86.90% 83.58% 84.62% 93.22% 91.15%
GLM 83.96% 81.79% 79.10% 84.61% 81.36% 82.30%
Stacked Ensemble 97.76% 94.89% 80.60% 87.18% 92.33% 92.92%
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fromBPEwith a sensitivity of 81.82%and s specificity of 90.48%. Addition-
ally, a recent meta-analysis [35] with 550 PE patients from seven case-
control studies revealed that detection of serum IL-27 concentration was
an accurate test for the differential diagnosis of MPE and BPE with a sensi-
tivity of 93% and a specificity of 97%. In spite of the relatively high diag-
nostic accuracy, these tumor markers were not routinely detected in
clinical practice.

Most of studies focused on the role of serum CEA in the differential di-
agnosis of MPE and BPE, while few studies investigated the potential diag-
nostic significance of effusion CEA. Pan et al. [36] found that levels of
effusion CEA were significantly higher in patients with MPE than that in
BPE patients and thus effusion ECA was incorporated into the predictive
model. Furthermore, a clinical study conducted by Zhang et al. [37] re-
vealed that effusion CEA could be served as a promising indicator for the
discrimination of MPE and with favorable diagnostic performance as
reflected by an AUC of 0.924. Our study showed that effusion CEA was
the most informative parameter in the deep learning and machine learning
models, indicating the significant role of effusion CEA in the differential
Fig. 5. Diagnostic performances of predictive models for the discrimination of MPE and
(B); XGBoost (C); DL(D); DRF(E); GLM(F).
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diagnosis ofMPE and BPE. ROC analyses in our study also showed the diag-
nostic performance as reflected by AUCwas 0.909 in the training set, 0.883
in the test set and 0.866 in the validation set respectively. Effusion CEAwas
directly secreted by exfoliative cancer cells in the process of tumor invasion
and metastasis, and levels of CEA were much higher in PE than that in
serum [38]. Hence, effusion CEA is a good biomarker for the identification
of MPE.

Due to the limitation of algorithm, predictive model created by logisti-
cal regression analysis is unlikely to achieve adequate diagnostic accuracy
compared with that by the advanced DL or ML algorithms. Compared
with logistical regression, one of the advantages of DL and ML methods is
handling the complex associations of a vast number of clinical variables
with nonlinear interactions [39]. Currently, few clinical studies have been
performed on the application of ML algorithms in the recognition of MPE
from BPE. Porcel et al. [40] employed a decision tree model to selected 4
discriminant variables (age, body temperature, PE ADA and LDH) among
12 clinical features. Their predictive model obtained 98.3% specificity,
92.2% sensitivity, and AUC of the ROC curve was 0.976 for identifying
BPE in the validation set. ROC curves of predictive model created by GBM (A); XRT



Fig. 6. Predictability of themodel developed by Stacked Ensemble and comparison of the seven predictive models. ROC curves of themodel developed by Stacked Ensemble
in the training set (A); test set (B) and validation set (C). The seven algorithms were ten cross-validation to calculate the average AUC of each predictive model (D).
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TPE. Moreover, Ren et al. [41] applied 12 clinical features to design a ran-
dom forest model, and this model exhibited favorable diagnostic perfor-
mance for the identification of TPE with a sensitivity of 90.6% and a
specificity of 92.3%. They also verified the diagnostic model in the prospec-
tive study, and the results indicated that the specificity and sensitivity were
90.0% and 100.0% respectively. Exactly speaking, no studies have specifi-
cally applied the DL algorithm to create and validate a predictive model
for the differentiation between MPE and BPE. In our prognostic study con-
taining records of 898 patients, we demonstrated that the diagnostic
models constructed by ML and DL classifiers exhibited acceptable perfor-
mances in the diagnosis of MPE, and GBM stands as the superior ML
method.

We undertook this clinical study with the primary goal to compare five
ML classifiers with DL for construction of predictive models for the identi-
fication of MPE from BPE. It is worth noting that DL demonstrated the
highest AUC of 0.995 in the train set whereas the prediction efficiency
was less satisfactory in the test and validation set. DL method is more sen-
sitive to changes of sample size than ML technique [41], and DL algorithm
requires sufficient samples to obtain high predictive accuracy. The sample
sizes in the test and validation sets were relatively small compared with
7

that in the training set. Therefore, ML models offered significant improve-
ment over DLmodel in predictingMPEbased on themost accessible clinical
features in this study. The underlying reason might be due to overfitting
[42] of DL in the training set in our study. Besides, the inputs of the models
were relatively simple comparedwith large factors in dealing with complex
application scenarios such as medical images, which might be more suit-
able for DL [43,44].

Note that a few limitations exist in this study. First, the study design
in training and test sets was retrospective and thus suffered from inher-
ent biases. Although we validated our study with a prospective cohort
registered on the clinical trial website, the sample size in WUH cohort
was relatively small. Second, our cohorts contained patients with PE
only from one geographic region (Wuhan) of China, which might limit
the generalizability of predictive models and require further validations
in patients from distinct geographic regions. Finally, some other serum
tumor markers, such as CA19–9, CA12–5 were not included in our
study, as most of the included patients with MPE were lung cancer and
few patients underwent such tests. Therefore, more prospective studies
with large sample size from multiple medical centers are further war-
ranted to verify our conclusion in the future.
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In conclusion, using driverless AI to create a predictive model based on
the routine clinical indexes for the identification of MPE could improve di-
agnostic performance. GBM is superior to DL and stacked ensemble offers
the optimal combination of a collection of prediction algorithms for the dis-
crimination of MPE and BPE, whichmay provide a more effective and non-
invasive diagnostic method to help physicians in decision-making. Further
researches are necessary to verify the feasibility and generalizability of ap-
plying the computational algorithms to accurately identify patients with
MPE in clinical settings.
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