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Abstract

Rhinoviruses (RVs) are associated with exacerbations of cystic fibrosis (CF), asthma and COPD. There is growing evidence suggesting the
involvement of the interferon (IFN) pathway in RV-associated morbidity in asthma and COPD. The mechanisms of RV-triggered exacerbations in
CF are poorly understood. In a pilot study, we assessed the antiviral response of CF and healthy bronchial epithelial cells (BECs) to RV infection,
we measured the levels of IFNs, pattern recognition receptors (PRRs) and IFN-stimulated genes (ISGs) upon infection with major and minor group
RVs and poly(IC) stimulation. Major group RV infection of CF BECs resulted in a trend towards a diminished IFN response at the level of IFNs,
PRRs and ISGs in comparison to healthy BECs. Contrary to major group RV, the IFN pathway induction upon minor group RV infection was
significantly increased at the level of IFNs and PRRs in CF BECs compared to healthy BECs.
© 2015 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Rhinoviruses (RVs) are small positive-sense ssRNA viruses
belonging to the Picornaviridae family. RV serotypes are
classified as major or minor group depending on the surface
thor at: Laboratory of Pediatric Lung Research, Depart-
earch, University of Bern, Bern, Switzerland. Tel.: +41 31
31 632 21 99.
marco.alves@dkf.unibe.ch (M.P. Alves).
m
6

016/j.jcf.2015.10.013
uropean Cystic Fibrosis Society. Published by Elsevier B.V. A
receptor used to infect target cells. More than 90% of RV
serotyped strains belong to the major group and use as receptor
the intercellular adhesion molecule 1 (ICAM-1), while the minor
group RV strains bind to low-density lipoprotein receptor
(LDLR) on target cells [1,2]. As the causative agents of the
common cold and acute respiratory tract infections in children,
RVs are one of the major causes of morbidity andmortality [3]. In
addition, RVs are the predominant agents associated with
pulmonary exacerbations of CF lung disease as they are detected
in up to 40% of all virus-associated CF exacerbations [4–6]. The
mechanisms of acute virus-mediated exacerbations in CF are so
far poorly understood.
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We and others have reported recently that primary CF
bronchial epithelial cells (BECs) have an increased susceptibility
to respiratory virus infections such as RVs and parainfluenza
virus [7–9]. We have confirmed these findings ex vivo in
bronchoalveolar lavage (BAL) samples collected from RV-
infected CF children, in which RV load was elevated in
comparison to control patients [10].

RVs are also responsible for more than 50% of virus-induced
asthma exacerbations [11]. Defective interferon (IFN) type I
(IFN-β) and type III (IFN-λs) production of the bronchial airway
epithelium upon RV infection has been identified as a
contributing mechanism behind the impaired RV control in
asthmatic adults and children [12–16]. The work of two groups
studying mechanisms of viral control and IFN induction in
BECs and macrophages collected from patients with chronic
obstructive pulmonary disease (COPD) led to controversial results.
After growing BECs at air–liquid interface (ALI), Schneider et al.
showed an increase in IFN production upon RV infection. Despite
that, cells showed an impaired viral control and an increased
pro-inflammatory phenotype [17]. On the other hand, Mallia et
al. found lower IFNs responses upon infection with RV by
BAL macrophages from COPD patients compared to control
subjects [18].

Since the IFN pathway is involved in the defective control
of RV in infected BECs from asthmatic and COPD patients,
we decided to evaluate the IFN response of CF BECs after
challenging with RVs from the major and minor group (RV16
and RV1B, respectively). Also, we aimed to assess the baseline
expression and induction of pattern recognition receptors (PRRs)
engaged in the sensing of RV including toll-like receptor 3
(TLR3), melanoma differentiation-associated protein 5 (MDA5),
and retinoic acid inducible gene I (RIG-I) [19]. Levels of
IFN-stimulated genes (ISGs) such as dsRNA protein kinase R
(PKR), 2′-5′-oligoadenylate synthetase 1 (OAS1), MxA
(Myxovirus resistance gene A), and viperin (virus inhibitory
protein, endoplasmic reticulum-associated, IFN inducible) were
also measured. Finally, the inflammatory response mediated by
RV infection of CF BECs has also been quantified through
the measurement of CXCL8/IL-8, IL-6 and CXCL10/IP-10
cytokines release.

2. Material and methods

2.1. Study subjects

For the establishment of primary BEC cultures, we recruited
healthy and CF volunteers at the University Hospitals of Bern
and Zürich. The clinical characteristics of the participants used
in this study have been presented elsewhere [9] and are
reproduced here for clarity ease of reference (Table 1). The
exclusion criteria were bleeding tendency, therapy with
anticoagulants and/or immunosuppressive agents. For the
control group steroid use within the past three months and
atopy were additional exclusion criteria. The study was
approved by the Ethics committees of the Cantons of Bern
and Zurich, Switzerland and informed consent was obtained
from all study participants and/or caregivers.
2.2. Isolation of primary CF and control bronchial epithelial
cells

BECs from 11 CF and 12 control subjects were grown from
bronchial brushings performed with a 3 mm brush (ConMed,
USA) as described [9].

2.3. Cell culture

Primary submerged cultures of BECs were obtained by
seeding freshly brushed cells in Bronchial Epithelial Growth
Medium (BEGM, Lonza, Switzerland), supplemented with
Single Quots (Lonza, Switzerland) as described previously [9].

2.4. Rhinovirus infection

RV16 and RV1B viruses were amplified and titrated with
Ohio HeLa cells (ECCAC, UK). BECs were infected with RVs
for 1 h at a multiplicity of infection of 4 and washed three times
with PBS (Life Technologies, USA). Fresh medium was added
and plates were further incubated at 37 °C for 24 h until
harvesting. Cells were treated in parallel with infection media
(IM) and polyinosinic–polycytidylic acid (poly(IC)) at a
concentration of 1 μg/ml (Invivogen, USA). Since the peak of
RV replication is observed at ca. 24 h post-infection [20,21],
total RNA and supernatants were harvested at 24 h post-
infection for further analysis.

2.5. Isolation of total RNA and RT-PCR

Total RNA purification was done by using the Nucleospin
RNA II kit (Macherey-Nagel, Switzerland). Synthesis of cDNA
was performed with Omniscript RT Kit (Qiagen, USA)
following the manufacturer's protocol. RT-PCRmeasurements
were done with the Taqman Fast universal PCR master mix
and the Fast SYBR Green master mix on a 7500 Fast Real Time
PCR System (all from Applied Biosystems, USA). The
sequences of primers and probes are depicted in Table 2. To
analyze the mRNA expression levels of IFNs, PRRs and ISGs,
the ΔΔCt method was used [22]. The mRNA expressions
levels were normalized to 18S rRNA.

2.6. ELISA

Protein levels of CXCL8/IL-8, IL-6 and CXCL10/IP-10
were measured by using the DuoSet ELISA Development kit
(R&D, USA) with the following detection limits: CXCL8/IL-8
15 pg/ml, IL-6 3 pg/ml, and CXCL10/IP-10 2 pg/ml.

2.7. Statistical analysis

Statistical analysis was performed using GraphPad Prism 5
(GraphPad Software Inc., USA). The data were analyzed for
normal distribution by using the Kolmogorov–Smirnov test. If
normally distributed, paired data were analyzed with one-way
ANOVA and the Tukey post hoc test. Paired data non-normally
distributed were analyzed with the Friedman and the Dunn's



Table 1
Demographic and clinical characteristics of study subjects.

Control Gender Age (yrs) Atopy a Steroid use b

1 f 7 No No
2 f 11 No No
3 m 12 No No
4 f 1 No No
5 m 8 No No
6 m 12 No No
7 f 15 No No
8 m 4 No No
9 m 16 No No
10 m 1 No No
11 m 6 No No
12 f 14 No No
13 f 13 No No
14 m 2 No No

CF Gender Age (yrs) Atopy a Steroid use b FEV1 % P. aeruginosa colonization c Genotype

1 m 8 No Yes 101 No F508del/R347P
2 m 4 No No 108 No F508del/F508del
3 f 5 No No ND Yes F508del/2347delG
4 f 11 Yes No 67 No G542X/2708del13
5 m 9 Yes Yes 106 No F508del/F508del
6 m 3 No Yes ND Yes F508del/F508del
7 f 9 Yes No 81 No F508del/F508del
8 m 1 No No ND No F508del/F508del
9 f 15 Yes Yes 38 Yes F508del/F508del
10 m 6 No No 127 No F508del/F508del
11 m 11 No No 62 No ND

PA: Pseudomonas aeruginosa.
m: male; f: female.
ND: not determined.
a Defined as positive history of hay fever, eczema or asthma.
b Defined as any treatment with systemic, inhaled or nasal steroids within the past 3 months.
c Defined as at least one PA-positive oropharyngeal culture during the preceding 12 months.
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post hoc tests. The analysis of unpaired data was performed
with a two-way ANOVA with the Bonferroni post hoc test if
normally distributed. Unpaired data non-normally distributed
were analyzed with the Kruskal–Wallis test followed by a
Dunn's post hoc test. A p b 0.05 was considered statistically
significant. Normally distributed data are shown as mean
and SEM and non-parametric data are shown as median and
IQR.

3. Results

3.1. IFNs response in CF BECs to RV infection

In order to determine if the antiviral responses mediated
by IFNs are functional in CF BECs, we measured mRNA
expression levels of IFN-λ1, IFN-λ2/3 and IFN-β in CF and
control BECs infected with RV16 and RV1B. After infection of
CF BECs with major group RV, we observed a non-significant
trend towards lower levels of IFN-λ1 (Fig. 1A), IFN-λ2/3
(Fig. 1B), and IFN-β (Fig. 1C) in comparison to healthy BECs.
In contrast, the IFN responses of CF BECs compared to healthy
BECs upon infection with minor group RV were significantly
increased for IFN-λ1 (Fig. 1A) and IFN-λ2/3 (Fig. 1B). We
observed no difference for the experiments with poly(IC) — a
strong IFN inducer — which gave similar levels of all
the measured IFNs between CF BECs and healthy BECs
(Fig. 1A–C).

3.2. PRRs expression upon RV infection in CF BECs

Next, we evaluated the expression of the PRRs involved in
the sensing and innate immune response to RVs. The
constitutive mRNA levels of the viral sensors TLR3, RIG-I
and MDA5 were not different in CF compared to control cells
(data not shown). We observed a non-significant trend towards
a decreased expression of RIG-I (Fig. 2B) and MDA5 (Fig. 2C)
upon infection with the major group virus RV16 in CF cells
compared to controls. Interestingly, in CF BECs infected with
RV1B, the level of RIG-I was significantly increased (Fig. 2B),
and we found a trend towards an elevated expression of TLR3
(Fig. 2A) in comparison to healthy BECs. Interestingly,
poly(IC) stimulation of CF BECs induced a significantly
higher level of all the PRRs tested in CF BECs in comparison to
healthy BECs (Fig. 2A–C).



Table 2
DNA sequences of primers and probes.

18S FW CGCCGCTAGAGGTGAAATTCT
RV CATTCTTGGCAAATGCTTTCG
P FAM-ACCGGCGCAAGACGGACCAGA-TAMRA

RV FW GTGAAGAGCCSCRTGTGCT
RV GCTSCAGGGTTAAGGTTAGCC
P FAM-TGAGTCCTCCGGCCCCTGAATG-TAMRA

IFN-λ1 FW GGACGCCTTGGAAGAGTCACT
RV AGAAGCCTCAGGTCCCAATTC
P FAM-AGTTGCAGCTCTCCTGTCTTCCCCG-TAMRA

IFNλ-2/3 FW CTGCCACATAGCCCAGTTCA
RV CTGCCACATAGCCCAGTTCA
P FAM-TCTCCACAGGAGCTGCAGGCCTTTA-TAMRA

IFN-β FW CACGGATACAGAACCTATGG
RV ACGAACAGTGTCGCCTACTA
P FAM-TCAGACAAGATTCATCTAGCACTGGCTGGA-TAMRA

TLR3 FW AAATTAAAGAGTTTTCTCCAGGGTGTT
RV ATTCCGAATGCTTGTGTTTGC
P FAM-TTTGGCCTCTTTCTGAACAATGTCCAGC-TAMRA

RIG-I FW CCAAGCCAAAGCAGTTTTCAA
RV CACATGGATTCCCCAGTCATG
P FAM-TTGAAAAAAGAGCAAAGATATTCTGTGCCCGAC-TAMRA

MDA5 FW GATTCAGGCACCATGGGAAGT
P FAM-GGGATGCTCTTGCTGCCACATTCTCTT-TAMRA
RV AGGCCTGAGCTGGAGTTCTG

PKR FW TCTTCATGTATGTGACACTGC
RV CACACAGTCAAGGTCCTT
P -

OAS1 FW CTGACGCTGACCTGGTTGTCT
RV CCCCGGCGATTTAACTGAT
P FAM-CCTCAGTCCTCTCACCACTTTTCA-TAMRA

MxA FW CAGCACCTGATGGCCTATCAC
RV CATGAACTGGATGATCAAAGG
P FAM-AGGCCAGCAAGCGCATCTCCAG-TAMRA

Viperin FW CACAAAGAAGTGTCCTGCTTGGT
RV AAGCGCATATATTTCATCCAGAATAAG
P FAM-CCTGAATCTAACCAGAAGATGAAAGACTCC-TAMRA

FW: forward; RV: reverse; P: probe.
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3.3. Induction of ISGs upon infection in CF BECs

In infected cells, activation of PRRs and subsequent IFN
production launches an antiviral effector mechanism leading
to the expression of numerous ISGs. Thus, we analyzed the
expression of selected ISGs, namely PKR, OAS1, viperin and
MxA upon RVs infection and poly(IC) stimulation. We found a
significantly lower expression of viperin (Fig. 3C) and a
tendency to a lower expression of MxA (Fig. 3D) in CF vs.
healthy BECs infected with RV16. Also, there was a
significantly higher expression of PKR (Fig. 3A) and MxA
(Fig. 3D) in CF BECs stimulated with poly(IC) in comparison
to controls.We observed no difference in the ISGs tested between
CF and healthy BECs infected with minor group RV1B
(Fig. 3A–D).

3.4. Pro-inflammatory cytokine responses of CF BECs to
RV infection

In order to evaluate the inflammatory response of CF BECs
after RV infection, we measured the levels of CXCL8/IL-8,
IL-6 and CXCL10/IP-10 cytokines under baseline condition
and upon infection with RV16, RV1B and stimulation with
poly(IC). The inflammatory cytokines produced by BECs
upon RVs infection and/or poly(IC) stimulation were generally
increased in CF cells. Indeed, CXCL8/IL-8 levels had the
non-significant tendency to be constitutively higher and
significantly increased upon poly(IC) treatment (Fig. 4A) in
CF cells compared to controls. Also, in comparison to control
BECs, CF BECs had significantly higher levels of IL-6 under
baseline condition and after poly(IC) stimulation (Fig. 4B).
The CXCL10/IP-10 levels produced by CF BECs were sig-
nificantly higher at baseline in comparison to control BECs. In
contrast to IL-8 and IL-6, CF BECs produced significantly less
CXCL10/IP-10 in comparison to control BECs stimulated with
poly(IC) (Fig. 4C).

4. Discussion

RV infections have been associated with pulmonary exacer-
bations of asthma, COPD and CF lung disease. There is growing
evidence that an impaired antiviral response mediated by the IFN
pathway may contribute to the increased susceptibility towards
RV infection of asthmatic [12,13,16] and COPD [17,18,23]
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Fig. 1. IFN responses of CF and control BECs to RV infection. (A) IFN-λ1, (B)
IFN-λ2/3 and (C) IFN-β mRNA levels measured 24 h post-infection by
RT-PCR in CF and control BECs. IM (infection media), pIC (poly(IC)). The
mRNA levels are represented as relative fold increase to mock infection (IM).
Significant differences between conditions (IM, RV16, RV1B, pIC) are
indicated by stars above error bars and are relative to the mock infection
controls (IM). Significant differences between groups (control and CF) are
indicated by horizontal lines. Stars indicate significance levels, *p b 0.05,
**p b 0.01, ***p b 0.001, ****p b 0.0001.
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Fig. 2. PRRs expression in CF and control BECs upon RV infection. (A) TLR3,
(B) RIG-I and (C) MDA5 mRNA levels measured in cell lysates of primary CF
and control BECs 24 h post-infection. IM (infection media), pIC (poly(IC)).
The mRNA levels are represented as relative fold increase to mock infection
(IM). Significant differences between conditions (IM, RV16, RV1B, pIC) are
indicated by stars above error bars and are relative to the mock infection
controls (IM). Significant differences between groups (control and CF) are
indicated by horizontal lines. Stars indicate significance levels, *p b 0.05,
**p b 0.01, ***p b 0.001, ****p b 0.0001.
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patients. In order to determine if the IFN pathway is also playing
a role in the RV-associated morbidity of the CF lung disease, we
used primary cultures of CF and healthy BECs. The expression
levels of IFN-λ1 and IFN-λ2/3 in CF BECs infected with
RV1B were higher than the levels found in healthy BECs.
Also, primary CF and healthy BECs stimulated with poly(IC)
gave similar IFN levels. However, we observed a trend towards
lower RV16-induced levels of IFN-λ1, IFN-λ2/3 and IFN-β in
CF BECs in comparison to healthy BECs. This observation is
in line with the results from Chattoraj et al. who reported a
decreased IFN response in CF BECs in comparison to healthy
BECs after infection with major group RV. Interestingly, the
IFN response of CF BECs was even lower after co-infection with
Pseudomonas aeruginosa and major group RV [24]. Also, the
same authors suggest that RV infection of CF patients is
exacerbating lower airway symptoms by promoting the out-
growth of P. aeruginosa [25]. Interestingly, Stelzer-Braid et al.
reported recently that most of CF pulmonary exacerbations
triggered by RVs are not associated with the presence of bacterial
pathogens as assessed bymultiplex RT-PCR [26]. Thus, the exact
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Fig. 3. ISGs levels upon RV infection of CF and control BECs. (A) PKR, (B) OAS1, (C) viperin and (D) MxA mRNA levels measured in cell lysates of primary CF
and control BECs 24 h post-infection. IM (infection media), pIC (poly(IC)). The mRNA levels are represented as relative fold increase to mock infection (IM).
Significant differences between conditions (IM, RV16, RV1B, pIC) are indicated by stars above error bars and are relative to the mock infection controls (IM).
Significant differences between groups (control and CF) are indicated by horizontal lines. Stars indicate significance levels, *p b 0.05, **p b 0.01, ***p b 0.001,
****p b 0.0001.
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contribution and the mechanism of P. aeruginosa in RV-induced
exacerbation of CF deserve further investigation.

The level of PRRs engaged in the sensing of RVs [19,27]
were measured upon infection of major and minor group RVs
and after poly(IC) stimulation. In line with the decreased IFN
responses of CF BECs infected with major group RV, we
observed a non-significant trend towards a decreased induction
of TLR3, RIG-I, and MDA5 in CF BECs in comparison to
healthy BECs after infection with major group RV. Interest-
ingly, we found a higher induction of TLR3, RIG-I, and MDA5
in CF vs. healthy BECs upon treatment with the IFN inducer
poly(IC). At the level of ISGs, we observed a decreased
induction of viperin and MxA in CF BECs in comparison to
healthy BECs after infection with major group RV. This
observation is in accordance with our finding of impaired IFNs
and PRRs expressions upon RV16 infection in CF BECs
compared to controls. The baseline and RV infection-induced
ISGs expressions were similar in CF and healthy BECs
challenged with minor group RV. Consistent with the increased
PRRs levels induced by poly(IC) treatment, poly(IC) treatment
of CF BECs also led to a higher expression of some of the ISGs
tested such as PKR and MxA, suggesting a dysfunction in
the signaling pathways involving dsRNA PRRs such as TLR3.
To our knowledge, this is the first report describing a hyper-
responsiveness of CF cells to PRRs stimulation.

While the infection of CF BECs with major and minor group
RV exert opposite IFN responses in comparison to healthy BECs,
the elevated inflammatory response triggered by infection was
similar for major and minor group RVs. The inflammatory
cytokines produced by CF BECs upon poly(IC) stimulation were
altered as demonstrated by the elevated levels of the pro-
inflammatory cytokines CXCL8/IL-8 and IL-6. Also, we found
an increased constitutive release of CXCL8/IL-8, IL-6 and
CXCL10/IP-10 by CF BECs compared to healthy BECs. This
observation is in accordance with previous reports attributing an
intrinsic inflammatory phenotype to CF airway cells [7,28], and
is compatible with our ex vivo data showing elevated
inflammatory cytokine concentrations in BALs of stable CF
patients [10]. In line with the elevated PRRs and ISGs of CF
BECs stimulated with poly(IC), poly(IC) stimulation led to a
hyper-inflammatory response of CF BECs in comparison to
healthy BECs as evidenced by the elevated levels of CXCL8/IL-8
and IL-6. However, since both cytokines are constitutively
elevated in CF BECs, it is unclear yet if the increased
inflammatory response of CF BECs to poly(IC) is solely due to
poly(IC) stimulation or as an additive effect to the already
elevated baseline levels of CXCL8/IL-8 and IL-6. Additional
experiments are required with other inflammatory stimuli in order
to address this question. In contrast to IL-8 and IL-6, CXCL10/
IP-10 levels upon stimulation with poly(IC) were significantly
decreased in CF cells in comparison to control cells. This
observation is possibly explained by the fact that the regulation of
the CXCL10/IP-10 gene transcription is under the control of the
IFN pathway [29,30].

In healthy cells, the responses to major and minor group
RVs have been evaluated by a few groups. A study by Wang et
al. gave similar antiviral responses of healthy BECs to RV1B
and RV39 [27]. In line with our data, it was reported by two
other groups that minor group RV is a higher inducer of IFN-λs
and IFN-β in comparison to major group RV [20,31]. Recently,
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Schuler et al. found that major and minor group RVs induced
a distinct antiviral signaling and inflammatory cytokine
responses in primary healthy macrophages [32].

While RVs are the most frequently detected viruses during
virus-induced CF exacerbation, there is a growing number of
studies reporting that several viral pathogens can trigger CF
exacerbation in children and adults including influenza virus,
respiratory syncytial virus, parainfluenza virus, coronavirus,
adenovirus and metapneumovirus [4,33–36]. All these viruses
are inducing distinct pathogenesis in the lung and it is therefore
conceivable that the mechanisms of virus-induced CF exacerba-
tion are at least in part virus-specific. In line with this hypothesis,
a recent study by Ramirez et al. demonstrated that CF exac-
erbations triggered by RV or influenza virus led to a distinct
antiviral response [37]. Therefore, it would be interesting to test
our in vitro system with other clinically relevant respiratory
viruses such as influenza and respiratory syncytial virus.

In summary, we report a differential IFN pathway response
of CF BECs after infection with major and minor group RVs.
Major group RV infection is leading to a diminished IFN
pathway response at the level of IFNs, PRRs, and ISGs.
However, IFN pathway induction in CF BECs upon minor
group RV infection was higher than in healthy BECs. Also, CF
BECs have an intrinsic inflammatory phenotype as assessed by
the constitutive elevated release of CXCL8/IL-8 and IL-6 and
CXCL10/IP-10 cytokines. Finally, since our study is based on a
small number of subjects, our data need further confirmation in
a large study population.
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