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Abstract
In this paper, by taking full consideration of distributed delay, demographics and contact

heterogeneity of the individuals, we present a detailed analytical study of the Susceptible-

Infected-Removed (SIR) epidemic model on complex population networks. The basic

reproduction numberR0 of the model is dominated by the topology of the underlying net-

work, the properties of individuals which include birth rate, death rate, removed rate and

infected rate, and continuously distributed time delay. By constructing suitable Lyapunov

functional and employing Kirchhoff’s matrix tree theorem, we investigate the globally

asymptotical stability of the disease-free and endemic equilibrium points. Specifically, the

system shows threshold behaviors: ifR0 � 1, then the disease-free equilibrium is globally

asymptotically stable, otherwise the endemic equilibrium is globally asymptotically stable.

Furthermore, the obtained results show that SIR models with different types of delays

have different converge time in the process of contagion: ifR0 > 1, then the system with

distributed time delay stabilizes fastest; whileR0 � 1, the system with distributed time

delay converges most slowly. The validness and effectiveness of these results are demon-

strated through numerical simulations.

Introduction
The mathematical modeling of infectious disease propagation has been extensively studied by
both medical practice and the academia for a long time (see, for instance, [1–7]). Such mathe-
matical models focus on understanding the observed mechanisms of infectious diseases as well
as predicting the consequences of the introduction of public health interventions to control the
spreading of diseases [8]. In depicting the transmission of an infectious disease, the total popu-
lation is commonly divided into susceptible, infectious and recovered individuals [9]. If the
immunity is permanent, then we obtain an SIR model [7, 9]. The basic SIR model is formulated
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by Kermack and McKendrick [10] as the following:

dSðtÞ
dt

¼ �bSðtÞIðtÞ;

dIðtÞ
dt

¼ bSðtÞIðtÞ � lIðtÞ;

dRðtÞ
dt

¼ lIðtÞ;

8>>>>>>>><
>>>>>>>>:

ð1Þ

where S(t), I(t), R(t) represent the density of the susceptible, infected and removed (recovered)
individuals, respectively; β is the transmission coefficient between susceptible and infected
individuals, and λ is the recovery rate of infected individuals, the incidence at time t is denoted
by βS(t)I(t). The SIR model (1) is built on the assumption that the individuals recover with
immunity, which is appropriate for viral-agent-diseases such as measles, mumps, and small-
pox. If the recovery does not give immunity, then the SIR model can be modified as the so
called SIS model, which is applicable to diseases such as encephalitis and gonorrhea that caused
by a bacterium. If individuals do not recover, then the SIS model can be changed into SI model
[11]. For more details about these basic epidemiological models, we refer the interested reader
to Refs. [7, 9, 11, 12]. In this paper, we mainly concentrate on the SIR epidemic model.

One of the key parameters is the basic reproduction number (sometimes called the basic
reproductive ratio)R0 in epidemiological investigations, which represents the expected num-
ber of secondary cases generated by one primary case of infection in a totally susceptible and
sufficiently large population [13–15]. The basic reproduction number characterizes the trans-
mission intensity of a particular disease in population and it is interpreted as a threshold crite-
rion. For example, in model (1), if the initial number of susceptible individuals at the beginning
of a disease is S0, then the basic reproduction number isR0 ¼ bS0=l, ifR0 < 1, then the num-
ber of infected individuals declines monotonically, the epidemic eventually disappears; while
R0 > 1, the number of infected individuals increases first due to the infection and then
decreases due to the recovery of infected individuals, there occurs outbreak and/or persistence
of the disease [16].

Just as reported in [17], although model (1) provides an approximation for some observed
disease data, the population in the system is under the assumption of both homogeneous infec-
tivity and homogeneous connectivity of each individual, which is too oversimplified and
ignores many structures of the real population. Different individuals may have varied number
of acquaintances, and the transmission of many epidemic diseases exhibits heterogeneity [18,
19]. Nowadays, understanding the effects of the topological structures of population on the
propagation of epidemics has attracted widespread attention [20]. One way to proceed would
be to add contact heterogeneity to the population and see how much this alters the model
behavior [17]. Many real world systems, such as social networks(stock financial network), bio-
logical systems (protein interactions), and technological systems (WWW, Internet) can be
properly described as scale-free networks where nodes represent individuals or organizations
and links mimic the interactions or connections among them [20–22]. A scale-free network is
characterized by a power-law behavior P(k)*k−γ, where P(k) is the probability that a node is
connected to k other nodes and γ is a characteristic exponent whose value is usually in the
range 2< γ� 3 [23–25]. Under this framework, each node of the network represents an indi-
vidual in its corresponding state (susceptible, infected, or removed), possible contacts between
two individuals are linked by an edge, and these two nodes are called neighbors of each other
[17, 20]. Each edge is a connection along which the infection can spread, thus a node can
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acquire infection only from one of its neighbors, in other words, the contact rate is propor-
tional to the number of neighbors, i.e. the degree of a node [17, 20].

Considering the contact heterogeneity in population, then model (1) can be generalized as
below:

dSkðtÞ
dt

¼ �bkSkyðtÞ;

dIkðtÞ
dt

¼ bkSkyðtÞ � lIkðtÞ;

dRkðtÞ
dt

¼ IkðtÞ;

8>>>>>>>><
>>>>>>>>:

ð2Þ

where Sk(t), Ik(t) and Rk(t) are the densities of susceptible, infected and recovered individuals
with degree k (k = 1, 2, � � �, n) at time t, respectively, n is the maximum degree of the network. β
represents the transmission rate from susceptible individuals to infected individuals by contact
to the infected individual in its neighbors. The term θ(t) denotes the probability that any given
link points to an infected node [20]. Under the assumption of uncorrelated networks, the prob-

ability that a randomly chosen edge points to an infected node is yðtÞ ¼
P

k
kPðkÞIkðtÞP
k
kPðkÞ , where P(k)

is the degree distribution of the network [17, 20]. The term βkSk θ(t) in system Eq (2) repre-
sents the incidence at the present time t. Model (2) offers a cognition of the propagation of epi-
demics, information and financial risk in complex systems. Since many real applications, such
as infectious disease [19], information propagation [21], computer virus [26] and financial
risks transmission [27] are all correlated with the epidemic dynamics on networks, more
detailed justifications for epidemiology on networks have been carried out by some researchers,
among which are J. Zhang et al. [3] and Y. Wang et al. [8], M. Small [18, 19], M. Newman [28],
A. Cui et al. [29].

In traditional results, transmission on networks is dominated by the topology structure of
the underlying network and the infection scheme, such as properties of disease, infection pat-
tern, individual differences etc. [29–33]. In fact, during the propagation of epidemic, time
delays do exist because an individual may not be infectious until some time after becoming
infected [9, 34], some time (τ) is required before the infective organism develops in the vector
to the level that is sufficient to pass the infection further [5–7]. When consider the influence of
delay on disease spreading on networks, the models take a form of delay differential equation
[25, 33, 35, 36]. In previous papers, time delay is assumed to be single-valued. As is well
known, a constant delay may be applied if the movement time (e.g., time until recovery or time
until to be contagious) is known precisely, which is not very realistic for physical situation. For
example, according to Anderson and May, measles virus has an infectious period of 5 − 7 days
[15]. This variation may be due to variable environmental factors or the fact that healthy indi-
viduals recover faster. Allowing the infectivity to be varied in the interval since infection, up to
some maximum duration, gives a model with a distributed delay [7, 9]. Therefore, it is more
reasonable to introduce continuously distributed delays in epidemiology modeling. Unfortu-
nately, to the best of the authors’ knowledge, few works have been done to study the transmis-
sion process that consider both the topological structures of the contact networks and
distributed time delay. Analyzing the dynamics of the SIR model associated with distributed
time delay on complex networks still remains a challenging open problem, which may deliver
new insight of understanding the process of the propagation of the disease, information and
financial risk, which motivates our study in this paper.
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Generally speaking, in order to investigate the stability of time delayed SIR model, an effi-
cient way is to use the Lyapunov’s second method, conditions in this method concern the long-
time global dynamics. Of course, constructing suitable Lyapunov functional is usually not an
easy task. By virtue of Kirchhoff’s matrix tree theorem, a novel Lyapunov functional is estab-
lished in this paper. Our results make several contributions differing from the existing litera-
ture as follows. First of all, the disease-free equilibrium point is proven to be globally
asymptotically stable whenR0 � 1, and the endemic equilibrium point is globally asymptoti-
cally stable ifR0 > 1. Secondly, when the disease is permanence in the population, the densi-
ties of the infected individuals ascend if the degree of the node rises. What’s more, if f is larger,
then the final density of the infected nodes will rise. Finally, we compare the propagation pro-
cesses of disease with different types of delay through numerical simulations. By analyzing the
final densities of infected individuals and the converge time of the propagation processes with
distributed delay, discrete delay or without delay, we find that time delays accelerate the propa-
gation of disease: whenR0 > 1, the system with distributed delay spreads fastest, the system
without delay has slowest convergence rate, and the system without time delay performs
between these two kinds of systems. WhereasR0 � 1, disease process under distributed delay
lasts longest and the disease process without delay stabilizes fastest.

The remainder of this article is organized as follows. In section 2, based on some preliminar-
ies and the assumptions, the model of epidemic associated with continuously distributed delay
and complex networks are proposed. In section 3, by analyzing the corresponding characteris-
tic equations and constructing suitable Lyapunov functional, the stability of disease-free equi-
librium is studied. After then, by using Lyapunov functional and Kirchhoff’s matrix tree
theorem, we investigate the stability of the endemic equilibrium. In Section 4, numerical exam-
ples are provided to demonstrate the validness and effectiveness of the obtained main results.
The paper concludes with some remarks in Section 5.

Epidemic model on networks
In order to address the effects of contact heterogeneity in epidemic spreading, the complex dis-
persal network G withN vertices is constructed as follows: each vertex represents an individual
in its corresponding state (susceptible, infected, or removed), an undirected edge (i, j) is con-
nected along which the infection can spread. We suppose that the adjacency matrix of the con-
tact network G is irreducible, so that disease can disperse on the networks. Furthermore, in
order to take account of the heterogeneity induced by the presence of nodes with different con-
nectivities, we consider the time evolution of the magnitudes Sk(t), Ik(t) and Rk(t), which denotes
the densities of susceptible, infected and recovered individuals with degree k (k 2 {1, 2, � � �, n},
where n is the maximum degree of G) at time t, respectively, therefore, Sk(t) + Ik(t) + Rk(t) = 1.
To establish the propagation model on networks, throughout this paper, the following basic
assumptions are imposed:

1. Suppose that the birth rate of the new individuals with degree k is μ, also, the death rate for
each class is μ. The total number of the nodes with degree k in the network remains
unchanged with time.

2. A healthy node can be infected at rate β if it is connected to infected individual.

3. The recovery rate of infected individuals is denoted by λ.

4. The probability that any randomly chosen edge points to an infected node at time t is
denoted by θ(t). We assume that the contact network G is uncorrelated, then

yðtÞ ¼ 1
hki
Xn
k¼1

kPðkÞIkðtÞ.
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5. Infectiousness varies over time, which is described by a integrable function f(τ) � 0, τ 2
[0,1) and

R1
0 f ðtÞdt < þ1. The incidence at the present time t is

bkSkðtÞ
R1
0 f ðtÞe�ðmþlÞtyðt � tÞdt, in which the term e−(μ + λ)τ accounts for the probability

of survival as infectious individual during latent period. According to [7, 9, 37], ifR1
0 f ðtÞdt ¼ 1, then the integrable function f is defined as the probability density func-

tion of transmission delay.

On the basis of the above assumptions, the population dynamics with degree k is written as
follows

dSkðtÞ
dt

¼ �bkSkðtÞ
Z 1

0

f ðtÞe�ðmþlÞtyðt � tÞdt� mSkðtÞ þ m;

dIkðtÞ
dt

¼ bkSkðtÞ
Z 1

0

f ðtÞe�ðmþlÞtyðt � tÞdt� mIkðtÞ � lIkðtÞ;

dRkðtÞ
dt

¼ lIkðtÞ � mRkðtÞ:

8>>>>>>>>><
>>>>>>>>>:

Since the variable Rk(t) does not appear in the equations of
dSkðtÞ
dt

and
dIkðtÞ
dt

, furthermore,

Rk(t) = 1 − Ik(t) − Sk(t), which implies that it is sufficient to analyze the dynamic behaviours of

dSkðtÞ
dt

¼ �bkSkðtÞ
Z 1

0

f ðtÞe�ðmþlÞtyðt � tÞdt� mSkðtÞ þ m;

dIkðtÞ
dt

¼ bkSkðtÞ
Z 1

0

f ðtÞe�ðmþlÞtyðt � tÞdt� mIkðtÞ � lIkðtÞ:

8>>>><
>>>>:

ð3Þ

The initial conditions for Eq (3) are represented as

Skð0Þ 2 Rþ0; IkðuÞ ¼ �kðuÞ; �kðuÞ > 0; u 2 ð�1; 0�; ð4Þ

where k 2 {1, 2, � � �, n} is the degree of the node, Rþ0 ¼ ½0;þ1Þ, �k 2 Cðð�1; 0�;Rþ0Þ,
Cðð�1; 0�;Rþ0Þ is the positive cone of the Banach space of continuous functions mapping the
interval (−1, 0] into R equipped with the norm kϕk = supu 2 (−1, 0]|ϕ(u)|.

Remark 1.We should point out that the assumptions (i), (ii), (iii), (iv), (v) are reasonable.
Links between individuals would be cut off or new-established due to birth and death of indi-
viduals in population, so the demographics is considered in model (3). The propagation of dis-
ease on the network is described in an effective way: at each time step, a susceptible node is
infected with probability β, if it is connected to one or more infected nodes, at the same time,
an infected individual becomes removed with probability λ [20].

Remark 2. Although the time delayed epidemiology model on complex networks are stud-
ied in some papers [33, 36], the delays in all above-mentioned papers have been largely
restricted to be discrete. In fact, for a biological reason, the epidemic propagation is not instan-
taneous and cannot be modeled with discrete delays, and a more appropriate way is to incorpo-
rate continuously distributed delays. Moreover, when the delay kernel f is chosen as a δ
function at a certain time, then the distributed delay turns out to be discrete delay [38].

Remark 3. In this paper, we consider the heterogeneous contact network G. In fact, if the
contact network is assumed to be homogeneous, such as Erdos-Reny network and WS small-
world network, in which each individuals has same number of contacts, i.e., k� hki, then
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system Eq (3) degrades into

dSkðtÞ
dt

¼ �bhkiSðtÞ
Z 1

0

e�ðmþlÞtf ðtÞIðt � tÞdt� mSðtÞ þ m;

dIkðtÞ
dt

¼ bhkiSðtÞ
Z 1

0

e�ðmþlÞtf ðtÞIðt � tÞdt� mIðtÞ � lIðtÞ;

8>>>><
>>>>:

ð5Þ

where S(t), I(t) represents the density of susceptible individuals and the infected individuals,
respectively. hki is the number of contacts per unit time that is supposed to be constant for the
whole population. Furthermore, if we treat βhki as a unitary coefficient, then the system Eq (5)
can be dealt similarly as in [7, 9, 37].

The stability of the equilibrium

Spreading threshold and existence of the equilibriums
In order to find the equilibrium points of model (3), we denote

R0 ¼
b

mþ l
hk2i
hki f̂ ; ð6Þ

where f̂ ¼ R1
0
f ðtÞe�ðmþlÞtdt, hki and hk2i are the first and second moment of the degree

respectively, i.e., hki ¼
Xn
k¼1

kPðkÞ, hk2i ¼
Xn
k¼1

k2PðkÞ. As usual, hk2ihki can be regarded as the index

of heterogeneity of contact network G. We establish the following theorem.
Theorem 1. Consider the system Eq (3), we have the following assertions.

1. There always exists a disease-free equilibrium E0 ¼ ðS01 ; S02 ; . . . ; ; S0n ; I01 ; I02 ; . . . ; ; I0n ÞT ,
where S0k ¼ 1, I0k ¼ 0 for each k 2 {1, 2, � � �n}.

2. There is no endemic equilibrium ifR0 � 1.

3. There is an unique endemic equilibrium Eþ ¼ ðS�1 ; S�2 ; . . . ; ; S�n ; I�1 ; I�2 ; . . . ; ; I�n ÞT ifR0 > 1,
moreover,

S�k ¼
m

bkf̂ y� þ m
; I�k ¼

mbkf̂ y�

ðmþ lÞðbkf̂ y� þ mÞ ; 1 � k � n; ð7Þ

where θ� is the unique positive root of the equation:

m
mþ l

Xn
k¼1

ak
bkf̂ x

bkf̂ x þ m
¼ x ðx � 0Þ: ð8Þ

Proof. It is obviously that E0 is always an equilibrium of systems Eq (3). Now let

Eþ ¼ ðS�1; S�2; � � � ; S�n; I�1 ; I�2 ; � � � ; I�nÞ

be the positive equilibrium of system Eq (3). For 1� k� n, solve the equations

�bkf̂ S�ky
� � mSk þ m ¼ 0;

bkf̂ S�ky
� ¼ ðmþ lÞI�k ;

8<
:

Stability Analysis of SIR Model on Complex Networks
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then

S�k ¼
m

bkf̂ y� þ m
; I�k ¼

bkf̂ y�

mþ l
S�k;

therefore Eq (7) is obtained.

Since y� ¼ 1
hki
Xn
k¼1

kPðkÞI�k , substituting I�k into θ� yields

y� ¼
Xn
k¼1

ak
mbkf̂ y�

ðmþ lÞðbkf̂ y� þ mÞ : ð9Þ

Because I�k > 0, then θ� > 0 is a positive root of Eq (8).
Furthermore, define

gðxÞ ¼ m
mþ l

Xn
k¼1

ak
bkf̂ x

bkf̂ x þ m
ðx � 0Þ; ð10Þ

we have

g 0ðxÞ ¼ m
mþ l

Xn
k¼1

ak
mbkf̂

ðbkf̂ x þ mÞ2 jx�0 > 0;

g 00ðxÞ ¼ m2

mþ l

Xn
k¼1

ak
�2b2k2 f̂ 2

ðbkf̂ x þ mÞ3 jx�0 < 0;

g 0ð0Þ ¼ m
mþ l

Xn
k¼1

ak
bkf̂ m
m2

¼ R0;

gð0Þ ¼ 0;

gð1Þ ¼ m
mþ l

Xn
k¼1

ak
bkf̂

bkf̂ þ m
< 1:

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

If g0(0)� 1, which impliesR0 � 1, then θ = 0 is the single root of g(x) = x, thus the assertion
(ii) of Theorem 1 holds. If g0(0)>1, which meansR0 > 1, function g(x) = x has a unique posi-
tive root, hence, the assertion (iii) of Theorem 1 holds as well, this completes the proof.

Remark 4.R0 is called the basic reproduction number of system Eq (3). From Theorem 1, it
is easy to see thatR0 exhibits threshold behaviors: ifR0 � 1, the disease will be extinct gradu-

ally, otherwise, the disease will spread on networks. On one hand, according to [1, 20], hk
2i

hki is

the parameter defining the level of heterogeneity of the network, then if the heterogeneity of
network G rises,R0 will be higher, the risk of disease outbreak becomes larger. Comparing to
the Erdos-Renyi network and the small-world network, scale-free networks are very weak in
face of infections [20]. On the other hand,R0 gets larger if the function f(τ) is chosen larger in
[0,1).

Remark 5. The unbounded distributed delay implies that the distant past has influence on
the state of individual. What’s more, the unbounded distributed delay includes the bounded
case by just choosing the function value equal to zero except for some bounded interval [38].

Stability Analysis of SIR Model on Complex Networks
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Remark 6. From Eq (7), it is obvious that I�k ¼ mbf̂ y�

ðmþlÞ bf̂ y�þm
kð Þ, I

�
k increases respect to k, i.e.,

I�1 < I�2 < . . . ; I�n , which implies the nodes with higher degree have higher infected densities
densities eventually. Similarly, when f is chosen larger, then I�k gets larger.

Let us define the set

O ¼ fðS1; S2; � � � ; Sn; I1; I2; � � � ; InÞ 2 R
2n
þ ; 0 < Sk þ Ik < 1; 1 � k � ng; ð11Þ

where R2n
þ0 ¼ fðx1; x2; . . . ; ; x2nÞjxi � 0g.

In the following, we will investigate positively invariant set for system Eq (3).
Lemma 1. The set O defined by Eq (11) is the positively invariant for system Eq (3).
Proof. From Eq (11), the set O can be rewritten as

O ¼ fX ¼ ðx1; x2; � � � ; x2nÞj0 < xl; for 1 � l � 2n; xi þ xiþn � 1; for 1 � i � ng; ð12Þ

where xi = Si and xi+n = Ii for 1� i� n. The boundary of O, which is denoted by @O, consists
of 3n flat sets

%i1 ¼ fX 2 Ojxi ¼ 0g;
%i2 ¼ fX 2 Ojxiþn ¼ 0g;
%i3 ¼ fX 2 Ojxi þ xiþn ¼ 1g; 1 � i � n;

and the corresponding outer normal vectors are

xi1 ¼ ð0; � � � ; 0;�1
i

; 0; � � � ; 0Þ;

xi2 ¼ ð0; � � � ; 0;�1
iþn

; 0; � � � ; 0Þ;

xi3 ¼ ð0; � � � ; 0; 1
i

; 0; � � � ; 0; 1
iþn

; � � � ; 0Þ; 1 � i � n:

According to [39], O is positively invariant for system Eq (3), if for any point X in @O, dX
dt
is tan-

gent or pointing into the set. For 8i 2 {1, 2, � � �, n}, we have

dX
dt

����
x2%i1

; xi1

 !
¼ �1 � �biSi

Z 1

0

f ðtÞe�ðmþlÞt
Xn
k¼1

akIkðt � tÞdt� mSi þ m

 !

¼ �m � 0;

dX
dt

����
x2%i2

; xi2

 !
¼ �ðbiSi

Z 1

0

f ðtÞe�ðmþlÞt
Xn
k¼1

akIkðt � tÞdtÞ � 0;

dX
dt

����
x2%i3

; xi3

 !
¼ m� mSi � mIi � lIi ¼ �lIi � 0:

Therefore, O is positively invariant for system Eq (3), this completes the proof.

Stability of the disease-free equilibrium
Theorem 2. The disease-free equilibrium E0 of system Eq (3) is locally stable ifR0 < 1, and
unstable ifR0 > 1.

Stability Analysis of SIR Model on Complex Networks
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Proof. Consider the disease-free equilibrium E0. Firstly, for each k 2 {1, 2, � � �, n}, set
~Sk ¼ Sk � 1, then the linearized system of system Eq (5) can be transformed into:

d ~Sk
dt

ðtÞ ¼ �bk
Z 1

0

f ðtÞe�ðmþlÞtyðt � tÞdt� m~Sk;

dIkðtÞ
dt

¼ bk
Z 1

0

f ðtÞe�ðmþlÞtyðt � tÞdt� ðmþ lÞIk:

8>>><
>>>:

ð13Þ

To study the stability of this linear system, we suppose the solutions for system Eq (13) with
the exponential form as follows:

~SkðtÞ ¼ ~Sk0e
rt; IkðtÞ ¼ Ik0e

rt; ðk ¼ 1; 2; � � � ; nÞ; ð14Þ

where ~Sk0, Ik0, Rk0 represent the initial value. Substituting Eq (14) into Eq (13) yields

rð~S10; � � � ; ~Sn0; I10; � � � ; In0ÞT ¼ Að~S10; � � � ; ~Sn0; I10; � � � ; In0ÞT : ð15Þ

LetC ¼ R1
0
f ðtÞe�ðrþmþlÞtdt, where ρ is the eigenvalue of the matrix of system Eq (13), there-

fore,

A ¼

�m � � � 0 �ba1C � � � �banC

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � �m �bna1C � � � �bna1C

0 � � � 0 �ðmþ lÞ þ ba1C � � � banC

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � 0 bna1C � � � �ðmþ lÞ þ bnanC

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

2n	2n:

It is easy to see that the matrix A has n eigenvalues that equal to −μ. In order to obtain other
eigenvalues of A, define

F ¼

�ðmþ lÞ þ ba1C ba2C � � � banC

b2a1C �ðmþ lÞ þ b2a2C � � � b2anC

..

. ..
. . .

. ..
.

bna1C bna2C � � � �ðmþ lÞ þ bnanC

0
BBBBBBBB@

1
CCCCCCCCA

n	n:

Carry out similarity transformation to the matrix F: first of all, the second column multiplied
by� a1

a2
is added to the first column, followed by analogy; secondly, the first row multiplied by a1

a2

Stability Analysis of SIR Model on Complex Networks

PLOS ONE | DOI:10.1371/journal.pone.0158813 August 4, 2016 9 / 22



is added to the second row, and followed by analogy, then we have

F� ¼

�ðmþ lÞ 0 � � � banC

0 �ðmþ lÞ � � � b2anCþ banC
a1
a2

..

. ..
. . .

. ..
.

0 0 � � � �ðmþ lÞ þ b
Xn
k¼1

kakC

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

n	n

:

It is obvious that the matrix F� has n − 1 eigenvalues that equal to −μ − λ, and the nth eigen-
value of F� is

L ¼ �ðmþ lÞ þ b
Xn
k¼1

kak

Z 1

0

f ðtÞe�ðLþmþlÞtdt

¼ ðmþ lÞ bhk2i
ðmþ lÞhki

Z 1

0

f ðtÞe�ðLþmþlÞtdt� 1

� �
:

Suppose that Λ = a+bi, then we have

aþ bi ¼ ðmþ lÞR0

R1
0
f ðtÞe�ðaþmþlÞtð cos bt� i sin btÞdt

f̂
� ðmþ lÞ

which implies that

a ¼ ðmþ lÞ R0

R1
0
f ðtÞe�ðaþmþlÞt cos btdt

f̂
� 1

" #
;

b ¼ �ðmþ lÞR0

R1
0
f ðtÞe�ðaþmþlÞt sin btdt

f̂
:

ð16Þ

Consider Eq (16), whenR0 < 1, if a� 0, then the right side of Eq (16) is negative, which is a

contradiction to a� 0. Let φðxÞ ¼ x � ðmþ lÞ R0

R1
0

f ðtÞe�ðxþmþlÞtdt

f̂
� 1

� �
, we have

dφðxÞ
dx

¼ 1þ ðmþ lÞR0

R1
0
f ðtÞte�ðxþmþlÞtdt

f̂
> 1;

which means φ(x) is always monotonically increasing, what’s more

φð0Þ ¼ �ðmþ lÞðR0 � 1Þ:

IfR0 > 1, then ϕ(0)<0, the formula ϕ(x) = 0 has positive real root, the disease-free equilibrium
E0 of system is unstable. IfR0 < 1, then ϕ(0)>0, therefore, all the root of ϕ(x) = 0 is negative,
so the disease-free equilibrium E0 is locally asymptotically stable, this completes the proof.

Theorem 3. IfR0 � 1, the disease-free equilibrium E0 is the unique equilibrium of system
Eq (3), and it is globally asymptotically stable.

Proof. Choose the following Lyapunov function

VðtÞ ¼
Xn
k¼1

ak

Z SkðtÞ

1

x � 1

x
dx þ

Xn
k¼1

akIkðtÞ þ
mþ l

f̂

Z 1

0

f ðtÞe�ðmþlÞt
Z t

t�t

yðvÞdvdt; ð17Þ
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the time derivative of V(t) along the trajectories of system Eq (3) is given as

_V ¼
Xn
k¼1

ak
SkðtÞ � 1

SkðtÞ
�bkSkðtÞ

Z 1

0

f ðtÞe�ðmþlÞtyðt � tÞdt� mSkðtÞ þ m
� �

þ
Xn
k¼1

ak bkSkðtÞ
Z 1

0

f ðtÞe�ðmþlÞtyðt � tÞdt� ðmþ lÞIkðtÞ
� �

þ mþ l

f̂

Z 1

0

f ðtÞe�ðmþlÞtyðtÞdt� mþ l

f̂

Z 1

0

f ðtÞe�ðmþlÞtyðt � tÞdt

¼ �m
Xn
k¼1

ak
ðSkðtÞ � 1Þ2

SkðtÞ
þ
Xn
k¼1

akbk
Z 1

0

f ðtÞe�ðmþlÞtyðt � tÞdt

�
Xn
k¼1

akðmþ lÞIkðtÞ þ ðmþ lÞyðtÞ � mþ l

f̂

Z 1

0

f ðtÞe�ðmþlÞtyðt � tÞdt:

Since
Xn
k¼1

akIkðmþ lÞ ¼ ðmþ lÞyðtÞ, then

_V ¼ �m
Xn
k¼1

ak
ðSk � 1Þ2

Sk
þ
Xn
k¼1

akbk
Z 1

0

f ðtÞe�ðmþlÞtyðt � tÞdt

� mþ l

f̂

Z 1

0

f ðtÞe�ðmþlÞtyðt � tÞdt

¼ �m
Xn
k¼1

ak
ðSkðtÞ � 1Þ2

SkðtÞ
þ mþ l

f̂
ðR0 � 1Þ

Z 1

0

f ðtÞe�ðmþlÞtyðt � tÞdt:

ð18Þ

Therefore, ifR0 � 1, _V � 0. Furthermore, _V ¼ 0 only if Sk(t) = 1, Ik(t) = 0. Thus the system is
globally asymptotically stable in O, this completes the proof.

Stability of the endemic equilibrium
In order to investigate the stability of the endemic equilibrium, we shall demonstrate the
Kirchhoff’s matrix tree theorem at first. Considering the matrix Q = (qij)m×m, where qij � 0, 1
� i, j�m, the directed graph G(Q) associated with Q = (qij)m×m has vertices {1, 2, � � �,m} with
a directed arc (i, j) from i to j iff qij 6¼ 0. It is strongly connected if any two distinct vertices are
joined by an oriented path. Matrix Q is irreducible if and only if G(Q) is strongly connected
[40]. The Laplacian matrix of the directed graph G(Q) is defined as

L ¼

X
l 6¼1

q1l �q21 � � � �qm1

�q12
X
l 6¼2

q2l � � � �qm2

..

. ..
. . .

. ..
.

�q1m �q2m � � �
X
l 6¼m

qml

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

Let Cij denote the cofactor of the (i, j) entry of L, then for the linear system

Lv ¼ 0; ð19Þ
the following results holds.
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Lemma 2. (Kirchhoff’s matrix tree theorem, see [41, 42]) Assume thatm� 2 and Q =
(qij)m×m is irreducible, then following results hold:

1. The solution space of system Eq (19) has dimension 1, with a basis (v1, v2, � � �, vm) = (C11,
C22, � � �, Cmm).

2. For 1� k�m,

Ckk ¼
X
T2Tk

wðTÞ ¼
X
T2Tk

Y
ðr;lÞ2EðTÞ

qrl > 0;

where Tk is the set of all directed spanning subtrees of G(Q) that are rooted at vertex k, w

(T) is the weight of a directed tree T, and E(T) denotes the set of directed arcs in T.

Theorem 4. IfR0 > 1, then the endemic equilibrium E+ is globally asymptotically stable in
On{E0}.

Proof.WhenR0 > 1, then from Theorem 1, we have

m ¼ mS�k þ bkf̂ S�k
Xn
j¼1

ajI
�
j ; ðmþ lÞI�k ¼ bkf̂ S�k

Xn
j¼1

ajI
�
j : ð20Þ

Denoted by

V1kðtÞ ¼ SkðtÞ � S�k � S�k ln
SkðtÞ
S�k

; ð21Þ

V2kðtÞ ¼ IkðtÞ � I�k � I�k ln
IkðtÞ
I�k

; ð22Þ

V3kðtÞ ¼ bkS�k
Xn
j¼1

ajI
�
j

Z 1

0

aðtÞc Ijðt � tÞ
I�j

 !
dt; j; k 2 f1; 2; � � � ; ng; ð23Þ

where

cðxÞ ¼ x � 1� ln x; and aðtÞ ¼
Z 1

t

f ðxÞe�ðmþlÞxdx: ð24Þ

We note that V1k(t)� 0, V2k(t)� 0 with equality if and only if SkðtÞ ¼ S�k; IkðtÞ ¼ I�k . Also, ψ(x)
has the strict global minimum ψ(1) = 0 for all x> 0, therefore V3k(t)� 0 with equality if and
only if Ijðt � tÞ ¼ I�j for all τ 2 [0, h]. We will study the behavior of the Lyapunov functional as

following

VkðtÞ ¼ V1kðtÞ þ V2kðtÞ þ V3kðtÞ: ð25Þ

The derivative of V1k(t) along system Eq (3) is given by

dV1kðtÞ
dt

¼ 1� S�k
SkðtÞ

� �
dSðtÞ
dt

¼ �m
ðSkðtÞ � S�kÞ2

SkðtÞ
þ 1� S�k

SkðtÞ
� �

bkf̂ S�ky
� � bkSkðtÞ

Z 1

0

f ðtÞe�ðmþlÞtyðt � tÞdt
� �

:
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Similarly,

dV2kðtÞ
dt

¼ 1� I�k
IkðtÞ

� �
bkSkðtÞ

Z 1

0

f ðtÞe�ðmþlÞtyðt � tÞdt� ðmþ lÞIkðtÞ
� �

:

Therefore, we have

dV1kðtÞ
dt

þ dV2kðtÞ
dt

¼ �Dk þ bkS�k

Z 1

0

f ðtÞe�ðmþlÞt
Xn
j¼1

ajI
�
j 2� S�k

SkðtÞ
þ Ijðt � tÞ

I�j

"

� IkðtÞ
I�k

� SkðtÞIjðt � tÞI�k
S�kI�j IkðtÞ

#
dt;

ð26Þ

where Dk ¼ m
ðSkðtÞ�S�

k
Þ2

SkðtÞ .

Furthermore, the derivative of V3k(t) along Eq (3) is given by

dV3kðtÞ
dt

¼ d
dt

bkS�k
Xn
j¼1

ajI
�
j

Z 1

0

aðtÞc Ijðt � tÞ
I�j

 !
dt

¼ �bkS�k
Xn
j¼1

ajI
�
j

Z 1

0

aðtÞ d
dt

c
Ijðt � tÞ

I�j

 !
dt:

Using integration by parts, we obtain

dV3kðtÞ
dt

¼ bkS�k
Xn
j¼1

ajI
�
j �aðtÞc Ijðt � tÞ

I�j

 !�����
1

0

þ
Z 1

0

daðtÞ
dt

c
Ijðt � tÞ

I�j

 !
dt

" #
: ð27Þ

It follows from Eq (23) that lim h!1aðhÞ ¼ 0 and d
dt aðtÞ ¼ �f ðtÞe�ðmþlÞt, therefore,

dV3kðtÞ
dt

¼ bkS�k

Z 1

0

Xn
j¼1

ajI
�
j f ðtÞe�ðmþlÞt IjðtÞ

I�j
� Ijðt � tÞ

I�j
þ ln

Ijðt � tÞ
IjðtÞ

" #
dt: ð28Þ

From Eqs (26) and (28), we have

dVkðtÞ
dt

¼ �Dk þ bkS�k
R1
0
f ðtÞe�ðmþlÞt

Xn
j¼1

ajI
�
j 2� S�k

SkðtÞ
� IkðtÞ

I�

�

� SkðtÞIjðt � tÞI�k
S�kI�j IkðtÞ

þ IjðtÞ
I�j

þ ln
Ijðt � tÞ
IjðtÞ

#
dt:

ð29Þ

Since

2� S�k
SkðtÞ

� IkðtÞ
I�

� SkðtÞIjðt � tÞI�k
S�kI�j IkðtÞ

þ IjðtÞ
I�j

þ ln
Ijðt � tÞ
IjðtÞ

¼ c
IjðtÞ
I�j

 !
� c

IkðtÞ
I�k

� �
� c

SkðtÞIjðt � tÞI�k
S�kI�j IkðtÞ

 !
� c

S�k
SkðtÞ
� �

� c
IjðtÞ
I�j

 !
� c

IkðtÞ
I�k

� �
;

ð30Þ
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denoted by c IjðtÞ
I�
j

� �
¼ Fj and c

IkðtÞ
I�
k

� �
¼ Fk, then

dVkðtÞ
dt

� �Dk þ bkS�k

Z 1

0

f ðtÞe�ðmþlÞt
Xn
j¼1

ajI
�
j ðFj � FkÞdt

¼ �Dk þ bkf̂ S�k
Xn
j¼1

ajI
�
j ðFj � FkÞ:

ð31Þ

Consider the following two matrices

B ¼

bf̂ a1S1I1 bf̂ a2S1I2 � � � bf̂ anS1In

bf̂ 2a1S2I1 bf̂ 2a2S2I2 � � � bf̂ 2anS2In

..

. ..
. . .

. ..
.

bf̂ na1SnI1 bf̂ na2SnI2 � � � bf̂ nanSnIn

0
BBBBBBBB@

1
CCCCCCCCA

n	n

;

�B ¼

X
l 6¼1

�b1l ��b21 � � � ��bn1

��b12

X
l 6¼2

�b2l � � � ��bn2

..

. ..
. . .

. ..
.

��b1n ��b2n � � �
X
l 6¼n

�bnl

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

n	n

;

and set �bkj ¼ bkf̂ ajS
�
kI

�
j ; 1 � j; k � n. Since �bkj > 0, the digraph G(B) associated with B is

strongly connected, then matrix B is irreducible, thus the Laplacian matrix �B of G(B) is irreduc-
ible. Let Ckj denote the cofactor of the (k, j) entry of �B, from Lemma 2, we know that system
�Bc ¼ 0 has a positive solution c = (c1, c2, � � �, cn), where ck = Ckk> 0 for any k = 1, 2, � � �, n.

Choose the Lyapunov functional as VðtÞ ¼
Xn
k¼1

ckVkðtÞ; from Eq (31), we have

dVðtÞ
dt

�
Xn
k¼1

ck �Dk þ bkf̂ S�k
Xn
j¼1

ajI
�
j ðFj � FkÞ

" #

¼ �
Xn
k¼1

ckDk þ
Xn
k;j¼1

ck�bkjðFj � FkÞ ¼ �
Xn
k¼1

ckDk þ H:

ð32Þ

Next, we will show thatH ¼
Xn
k;j¼1

ck�bkjðFj � FkÞ ¼ 0. In fact, since Bc = 0, we have

Xn
j¼1

�b jkcj ¼
Xn
i¼1

�bkick, therefore,
Xn
k;j¼1

ck�bkjFj ¼
Xn
k¼1

Fk

Xn
j¼1

�bkjck ¼
Xn
k;j¼1

ck�bkjFk; which implies thatH


 0 for all I1(t), I2(t), � � �, In(t). Then dVðtÞ
dt

� 0 holds for all ðS�1; S�2; . . . ; ; S�n; I�1 ; I�2 ; . . . ; ; I�nÞ.
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Furthermore, since Δk = 0, then SkðtÞ ¼ S�k, moreover, c IkðtÞ
I�
k

� �
� c IjðtÞ

I�
j

� �
¼ 0 when

IkðtÞ
I�
k
¼ IjðtÞ

I�j
¼ s. Therefore, dVðtÞ

dt
¼ 0 if and only if

SkðtÞ ¼ S�k; and IkðtÞ ¼ sI�k ; k 2 f1; 2; � � � ; ng; t > 0; s > 0: ð33Þ

Substituting Eq (33) into the first equation of system Eq (3), we have

0 ¼ m� mS�k � sbkf̂ S�ky
�: ð34Þ

From Eq (7), we know that Eq (34) holds when σ = 1, namely at E+. Therefore, the only com-

pact invariant subset of the set where dVðtÞ
dt

¼ 0 is {E+}, thus the endemic equilibrium E+ is glob-

ally asymptotically stable.
Remark 7. By using Lyapunov functional and Kirchhoff’s matrix tree theorem [41, 42], the

global stability of the endemic points is proved. We note that the Kirchhoff’s matrix tree theo-
rem has been already employed in some previous papers, such as [40–43], unfortunately, these
articles mainly concentrate on the time delay, and the influences of contact heterogeneity of
the system are ignored. In this paper, the dynamical behaviors of the propagation model that
influenced by both distributed time delay and heterogeneity topology are investigated. There-
fore, our results complement the relative investigations in [40–43].

Remark 8. The results in this paper show clearly that the basic reproduction numberR0 of
the contagion model not only depends on the epidemic properties, but also depends on the
topology structure of the population networks and time delay. According to Eq (6), it is obvi-
ous thatR0 is proportional to the connectivity fluctuations hk2i and infected rate. Therefore,
for the sake of preventing the disease from breaking out, in practice, taking quarantine mea-
sures contrary to some specific populations (such as hub nodes and so on) to reduce the hetero-
geneity of the network is an efficient option.

Numerical examples
In this section, three examples are presented to demonstrate the correctness and effectiveness
of the main obtained results in this paper.

We start with a graph with 5 vertexes, in each time step, a node with one edge is added into
the graph and by using preferential attachment mechanism in [24], a BA scale-free network G1

with 800 nodes is obtained (see S1 Fig). The following simulations are implemented based on
G1. The minimal degree in G1 is 1 and the maximum degree is 70, the corresponding degree
distribution is shown in S2 Fig. By simply computing, the first moment of degree is hki =
3.9733 and the second moment of degree is hk2i = 44.8200.

Example 1 Based on G1, for k 2 {1, 2, � � �, 70}, consider the following SIR epidemic model

dSkðtÞ
dt

¼ �0:06kSkðtÞ
Z 1

0

0:5e�1:3tyðt � tÞdt� 0:4SkðtÞ þ 0:4;

dIkðtÞ
dt

¼ 0:06kSkðtÞ
Z 1

0

0:5e�1:3tyðt � tÞdt� 0:4IkðtÞ � 0:4IkðtÞ;

8>>>><
>>>>:

ð35Þ

with the initial conditions

Skð0Þ ¼
0:7kPðkÞ
44:8200

; IkðuÞ ¼
0:3kPðkÞ
44:8200

; u 2 ð�1; 0�:

It is obvious that β = 0.06, λ = 0.4, μ = 0.4, f(τ) = 0.5e−0.5τ, 0� τ�1 and the assumptions (i),
(ii), (iii), (iv), (v) are satisfied.
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To show the dynamical behaviors of propagation process, we perform Monte Carlo simula-
tions in this paper. In a time step, every infected individual tries to infect each of its susceptible
neighbors with infection rate 0.06, and it cures itself with rate 0.4, the time delay is distributed
from 0 to1. By simply computing, one can get that the positive invariant set of system Eq (35)

is �O ¼ f0 � SkðtÞ; 0 � IkðtÞ; 0 � SkðtÞ þ IkðtÞ � 1; 1 � k � 70g and the basic reproduction
number isR0 ¼ b

mþl
hk2i
hki
R1
0
f ðtÞe�ðmþlÞtdt ¼ 0:7025 < 1, thus the conditions for Theorem 3 are

all satisfied. Furthermore, by using Monte Carlo simulations, the dynamical behaviors of sus-
ceptible nodes and the infected nodes are presented in S3 and S4 Figs. Two properties of the
propagation process are shown in S3 Fig: for each k 2 {1, 2, � � �70}, the time series and the den-
sities of susceptible nodes Sk(t) are presented in S3 Fig, and Sk(t) converges to 1 eventually; sim-
ilarly in S4 Fig, the densities of infected nodes Ik(t) are shown, which converges to zero
gradually. The simulations in S3 Fig imply that the orbit of the system Eq (35) converges to the
disease-free equilibrium E0 = (S1, S2, � � �, S70, I1, I2, � � �, I70), where Sk = 1, Ik = 0, 1� k� 70,

therefore, E0 is globally asymptotically stable in region �O, which agrees with Theorem 3.
Example 2 For k 2 {1, 2, � � �, 70}, consider the following SIR epidemic model on G1

dSkðtÞ
dt

¼ �0:2kSkðtÞ
Z 1

0

0:5e�1:2tyðt � tÞdt� 0:4SkðtÞ þ 0:4;

dIkðtÞ
dt

¼ 0:2kSkðtÞ
Z 1

0

0:5e�1:2tyðt � tÞdt� 0:4IkðtÞ � 0:3IkðtÞ;

8>>>><
>>>>:

ð36Þ

with the initial function

Skð0Þ ¼
0:7kPðkÞ
44:8200

; IkðuÞ ¼
0:3kPðkÞ
44:8200

; u 2 ð�1; 0�;

where β = 0.2, λ = 0.3, μ = 0.4, f(τ) = 0.5e−0.5τ, 0� τ�1, the initial condition Eq (4) and the
assumptions (i), (ii), (iii), (iv), (v) are satisfied.

We present Monte Carlo simulations of the propagation process to show the validness of the
results in this paper. In each step, a susceptible can become infected at the rate of 0.2 and an
infected node would become recovery at the rate of 0.3, the time delay is distributed from 0 to

1. By simply computing, one can obtain thatR0 ¼ b
mþl

hk2i
hki
R1
0
f ðtÞe�ðmþlÞtdt ¼ 1:5680 > 1, and

the invariant set of system Eq (35) is �O1 ¼ f0 � SkðtÞ; 0 � IkðtÞ; 0 � SkðtÞ þ IkðtÞ � 1;

1 � k � 70gn�E0, where �E0 ¼ ðS1; S2; . . . ; ; S70; I1; I2; . . . ; ; I70Þ, and Sk = 1, Ik = 0, 1� k� 70,
thus all the conditions for Theorem 4 are satisfied. With the help of Monte Carlo simulations,
the dynamical behaviors of susceptible nodes and infected nodes are shown in S5 and S6 Figs,
which depict the propagation process clearly. In S5 Fig, the time series and the densities of sus-
ceptible nodes (Sk(t), k 2 {1, 2, � � �70}) are shown, for each k 2 {1, 2, � � �70}, Sk(t) converges to
S�k ¼ 0:4

0:0197kþ0:4
eventually; while in S6 Fig, the densities of infected nodes Ik(t) are presented,

which converge to positive steady levels I�k ¼ 0:079k
0:1378kþ2:8

. S5 and S6 Figs show that the orbits of sys-

tem Eq (36) converge to the endemic equilibrium Eþ ¼ fS�1; S�2; . . . ; ; S�70; I�1 ; I�2 ; . . . ; ; I�kg eventu-
ally, therefore, E+ is globally asymptotically stable in region �O1, which agrees with Theorem 4.
Furthermore, S6 Fig shows that those nodes with higher degree have higher infected densities,
which is consistent with Remark 5.

Example 3 In order to figure out the influences of delay, basing on G1, several cases are
arranged here.
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Case 1. Consider the SIR model (3) with a distributed delay:

dSkðtÞ
dt

¼ �0:06kSkðtÞ
Z 1

0

0:5e�1:45tyðt � tÞdt� 0:5SkðtÞ þ 0:5;

dIkðtÞ
dt

¼ 0:06kSkðtÞ
Z 1

0

0:5e�1:45tyðt � tÞdt� 0:45IkðtÞ � 0:5IkðtÞ;

8>>>><
>>>>:

ð37Þ

and the initial conditions are supposed as the following

Skð0Þ ¼
0:7kPðkÞ
44:8200

; IkðuÞ ¼
0:3kPðkÞ
44:8200

; u 2 ð�1; 0�; k 2 f1; 2; � � � ; 70g; ð38Þ

i.e, β = 0.06, λ = 0.45, μ = 0.5, and f(τ) = 0.5e−0.5τ. To show the differences of delays clearly, we
consider the total density of the infected nodes I(t), which is expressed by an average over the

various connectivity classes, i.e., IðtÞ ¼
X70
k¼1

PðkÞIkðtÞ [20]. From Eq (6), the basic reproductive

number isR0 ¼ 0:7001. The total density I(t) converges to 0, which agrees with Theorem 3,
i.e., the disease-free equilibrium of system Eq (37) is globally asymptotically stable. The trajec-
tory of I(t) of system Eq (37) whenR0 ¼ 0:8532 is shown in S5 Fig.

Case 2. Consider the following SIR model with a discrete delay

dSkðtÞ
dt

¼ �0:06kSkðtÞyðt � hÞ � 0:5SkðtÞ þ 0:5;

dIkðtÞ
dt

¼ 0:06kSkðtÞyðt � hÞ � 0:45IkðtÞ � 0:5IkðtÞ;

8>>><
>>>:

ð39Þ

with initial conditions Eq (38), and the discrete delay is chosen as h = 300. According to [35,
36], one can obtain that the reproduction number of Eq (39) isR0 ¼ 0:5568. The total density
I(t) converges to 0, which implies that the disease-free equilibrium of the system is globally
asymptotically stable. The corresponding trajectory of I(t) of systems Eq (39) is shown in S7
Fig.

Case 3. Consider the following SIR model without time delay, i.e., an SIR model in an ODE
type:

dSkðtÞ
dt

¼ �0:06kSkðtÞyðtÞ � 0:5SkðtÞ þ 0:5;

dIkðtÞ
dt

¼ 0:06kSkðtÞyðtÞ � 0:45IkðtÞ � 0:5IkðtÞ;

8>>><
>>>:

ð40Þ

with identical initial conditions Eq (38). According to [3], the reproduction number of Eq (40)
isR0 ¼ 0:5568. I(t) converges to 0 eventually. WhenR0 ¼ 0:6839, the corresponding trajec-
tory of I(t) of system Eq (40) is shown in S5 Fig.

All the system trajectories in S5 Fig show that the total densities of the infected nodes con-
verge to zero eventually whenR0 � 1. More specially, the system Eq (40) without delay con-
verges fastest, the system Eq (37) with distributed time delay stabilizes the most slowly, and the
system Eq (39) with discrete delay performs between systems Eqs (40) and (37). In fact, by sim-
ple computation, one can obtain that the convergence time of system Eq (37) is 18.6200, while
the convergence time of system Eq (39) is 11.8800 and for system Eq (40), the convergence
time is 9.3100 (if kI(t)k2 � 0.0001 for all t� t�, then we call t� as the convergence time). The
convergence time of the SIR systems are listed in Table 1.
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Furthermore, whenR0 > 1, let us consider the following cases.
Case 4. Consider the following SIR model with a distributed delay:

dSkðtÞ
dt

¼ �0:5kSkðtÞ
Z 1

0

0:5e�1:1tyðt � tÞdt� 0:3SkðtÞ þ 0:3;

dIkðtÞ
dt

¼ 0:5kSkðtÞ
Z 1

0

0:5e�1:1tyðt � tÞdt� 0:3IkðtÞ � 0:3IkðtÞ;

8>>>><
>>>>:

ð41Þ

with the initial conditions Eq (38), therefore, β = 0.5, λ = 0.3, μ = 0.3, and f(τ) = 0.5e−0.5τ. By
using Eq (6), the basic reproductive numberR0 ¼ 10:6779. The total density I(t) converges to
I� = 0.3450, which agrees with Theorem 4 and implies that the endemic equilibrium of system
Eq (41) is globally stable. The trajectory of I(t) of system Eq (41) is shown in S6 Fig.

Case 5. Consider the following SIR model with a discrete delay

dSkðtÞ
dt

¼ �0:5kSkðtÞyðt � hÞ � 0:3SkðtÞ þ 0:3;

dIkðtÞ
dt

¼ 0:5kSkðtÞyðt � hÞ � 0:3IkðtÞ � 0:3IkðtÞ;

8>>><
>>>:

ð42Þ

with initial conditions Eq (38), similarly, we choose h = 300. According to [35, 36], the repro-
duction number of Eq (42) isR0 ¼ 8:5720. I(t) converges to I� = 0.3155 eventually, therefore,
the endemic equilibrium of system Eq (42) globally asymptotically stable, the corresponding
trajectory is shown in S6 Fig.

Case 6. Consider the following SIR model without time delay, i.e., an SIR model in an ODE
type:

dSkðtÞ
dt

¼ �0:5kSkðtÞyðtÞ � 0:3SkðtÞ þ 0:3;

dIkðtÞ
dt

¼ 0:5kSkðtÞyðtÞ � 0:3IkðtÞ � 0:3IkðtÞ;

8>>><
>>>:

ð43Þ

the initial conditions are chosen as Eq (38). According to [3], the reproduction number of Eq
(40) isR0 ¼ 8:5720. The total density I(t) converges to I� = 0.3155, which means that the
endemic equilibrium of system Eq (43) is stable. The corresponding trajectory of I(t) of system
Eq (43) is shown in S8 Fig.

Similarly, we define ~t� as the convergence time, if kI(t) − I�k2 � 0.0001 for all t � ~t�, where
I� is the final density of the infected individuals. The convergence time of the SIR models and
the final densities of systems Eqs (41)–(43) are listed in Table 2. From Table 2, one can see that
the convergence time of system Eq (41) is 4.0100, the convergence time of system Eq (42) is
8.9400, and for system Eq (43), the convergence time is 9.6100. The system Eq (41) with dis-
tributed time stabilizes fastest, and the system Eq (43) without time delay converges the most
slowly.

Table 1. System, convergence time, and the final density of infected individuals whenR0 < 1.

System Type of delay R0 Convergence time of system Final density of infected individuals

system Eq (37) distributed delay 0.8532 18.6200 0

system Eq (39) discrete delay 0.5568 11.8800 0

system Eq (40) without delay 0.5568 9.3100 0

doi:10.1371/journal.pone.0158813.t001

Stability Analysis of SIR Model on Complex Networks

PLOS ONE | DOI:10.1371/journal.pone.0158813 August 4, 2016 18 / 22



From above results, it is obvious that time delay has significant effects on the spreading of
epidemic. As is indicated in S5 and S6 Figs, whenR0 � 1, time delays slow down the extinction
of disease, whileR0 > 1, time delays accelerate the spreading of disease. More specifically, by
comparing the convergence time of each system, the results show that the differences of delays
influence the propagation: when the distributed delay is incorporated, ifR0 � 1, then the dis-
ease lasts longest, whileR0 > 1, then the disease spreads fastest.

Conclusion
In this paper, by considering distributed delay, demographics and contact heterogeneity of the
individuals, we study SIR model on complex population networks in detail. We prove that
there exists the basic reproduction number of the epidemicR0 which determines not only the
existence of the endemic equilibrium E+ but also the stability of E+ and the disease-free equilib-
rium E0. Specifically, the epidemic will be extinct gradually ifR0 � 1; while ifR0 > 1, the dis-
ease becomes permanence and the endemic equilibrium point is globally asymptotically stable.
A series of numerical experiments are presented to confirm the correctness of the theoretical
analysis as well. Furthermore, the numerical simulations show that the distributed delay slows
down the extinction of disease whenR0 � 1; whileR0 > 1, time delay accelerates the spread-
ing of disease. Our theoretical studies deliver some new insights for understanding the propa-
gation of diseases and information in biological and social networks.
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S8 Fig. The trajectories of I(t) of systems Eqs (41), (42) and (43) whenR0 > 1.
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Table 2. System, the convergence time and the final density of infected individuals whenR0 > 1.

System Type of delay R0 Convergence time of system Final density of infected individuals

system Eq (41) distributed delay 10.6779 4.0100 0.3450

system Eq (42) discrete delay 8.5720 8.9400 0.3155

system Eq (43) without delay 8.5720 9.6100 0.3155

doi:10.1371/journal.pone.0158813.t002
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