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Abstract

Drug-induced toxicity damages the health and is one of the key factors causing drug with-

drawal from the market. It is of great significance to identify drug-induced target-organ toxic-

ity, especially the detailed pathological findings, which are crucial for toxicity assessment, in

the early stage of drug development process. A large variety of studies have devoted to

identify drug toxicity. However, most of them are limited to single organ or only binary

toxicity. Here we proposed a novel multi-label learning model named Att-RethinkNet, for

predicting drug-induced pathological findings targeted on liver and kidney based on toxico-

genomics data. The Att-RethinkNet is equipped with a memory structure and can effectively

use the label association information. Besides, attention mechanism is embedded to focus

on the important features and obtain better feature presentation. Our Att-RethinkNet is appli-

cable in multiple organs and takes account the compound type, dose, and administration

time, so it is more comprehensive and generalized. And more importantly, it predicts multi-

ple pathological findings at the same time, instead of predicting each pathology separately

as the previous model did. To demonstrate the effectiveness of the proposed model, we

compared the proposed method with a series of state-of-the-arts methods. Our model

shows competitive performance and can predict potential hepatotoxicity and nephrotoxicity

in a more accurate and reliable way. The implementation of the proposed method is avail-

able at https://github.com/RanSuLab/Drug-Toxicity-Prediction-MultiLabel.

Author summary

Drug-induced toxicity damages the health and is one of the key factors causing drug with-

drawal from the market. Hence, to fully assess drug-induced toxicity, it is important to

predict the detailed pathological findings, which are also crucial for toxicity mechanism

understanding. However, most of the existing toxicity studies only predict binary toxicity

(the toxicity or non-toxicity) or only predict the toxicity targeting single organ. The patho-

logical findings of multiple organs are not well explored. Here we show, through the pro-

posed Att-RethinkNet, it is possible to predict drug-induced pathological findings on
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both liver and kidney. Our results suggest that the Att-RethinkNet predicts potential hepa-

totoxicity and nephrotoxicity in a more accurate and reliable way, and it is applicable in

multiple organs and takes account the compound type, dose, and administration time, so

it is more comprehensive and generalized than the existing methods. The accurate predic-

tion of pathological findings on multiple organs may benefit drug development.

This is a PLOS Computational Biology Methods paper.

Introduction

Drug development consists of activities involving in bringing a new drug from laboratory to

market. It is typically divided into four distinct and essential phases: drug discovery, preclinical

research, clinical research, and approval and marketing, which is relatively expensive and

time-consuming, and is filled with risk and uncertainty. Through systematic review of statistics

concerning the cost of drug development, researchers find that companies spend 10 to 15

years and millions of dollars in obtaining a new drug into the market [1, 2]. However, failure

rate of new drug candidates is still considerably high for many reasons, and drug-induced tox-

icity, including adverse reactions and toxic effects, is a common reason for drug withdrawal or

discontinuation [3]. Drug-induced toxicity, which is assessed by the pathological findings with

respect to the phenotypic end point, refers to the negative effects of medications, that is, dys-

functions and tissue lesions caused by the interaction of various chemical substances, which

may cause adverse health issues. Since kidney and liver are filters for various regions of the

body, they are the primary targets of toxins [4] and reports have shown that a great deal of

drug failure is due to the hepatotoxicity and nephrotoxicity [5]. Thus, it is necessary to identify

drug-induced hepatotoxicity/nephrotoxicity, especially the pathological findings caused by

hepatotoxicity/nephrotoxicity in the early stage of drug development and eliminate toxic com-

pounds as soon as possible so that the success rate of drug candidate trials can be greatly

improved.

In the past, it is common to predict drug-induced toxicity through wet-lab experiments.

Although such type of experiment is irreplaceable, it requires specially designed room, safety

equipment, professional researchers, etc., which is a costly and inconvenient procedure. There-

fore, a growing number of researchers are interested in in-silico techniques because computa-

tional approaches are usually cost-effective, which provides guidance for developing a new

pharmaceutical drug and assists researchers assessing drug safety risks during drug develop-

ment. In recent years, micro-array technology in toxicology, known as toxicogenomics, is

becoming a broadly used method for determination of potential toxicity of a new chemical

entity [6–8]. Toxicogenomics data plays an important role in understanding and predicting

drug-induced toxicity, and the application of gene expression data prompts researchers to

solve biological problems through data analysis methods. The analysis of gene expression pro-

files in target organs after drug treatment can be used to assist in detecting potential toxicity

before the appearance of a toxic phenotype [9–13]. Presently, some databases such as Open

TG-GATEs (Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System), which

is one of the largest public toxicogenomics databases have been built for toxicity research [14].

And an increasing number of studies have focused on using the gene expression profiles and

toxicity information for the identification of the potential negative effects of drugs.
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Many researchers have carried out a series of toxicity exploration on target organs. Zhu

et al. constructed random forest models based on three types of descriptors to predict drug-

induced liver injury (DILI), the models based on under-sampling and over-sampling to deal

with unbalanced data sets both achieved promising performance [15]. Minowa et al. proposed

a prediction model based on gene expression profiles for predicting drug-induced proximal

tubular injury in rats, and found that there were differentially expressed in a number of genes

at 24h after a single dose administration, which improved the predictive powder of the model

to a certain extent [16]. On this basis, An et al. tried to consider the toxicity of two organs at

the same time, and developed four computational models to classify whether a drug is liver

toxic or liver-kidney toxic. The models used artificial neural network (ANN), k-nearest neigh-

bor (kNN), linear discriminant analysis (LDA), and support vector machine (SVM) respec-

tively, and all prediction accuracy of them were more than 90% [17]. Zhang et al. mapped

thousands of drug side effects to multiple labels, integrated the base predictors according to

the weighted scoring ensemble strategy, and finally obtained a high-precision ensemble model

[18]. Raies et al. used binary relevance and classifier chains methods to predict multiple toxic-

ity endpoints for the same compound, and the comparative calculation results showed that the

classifier chain algorithm achieved better performance [19]. Su et al. developed a series of

models for hepatotoxicity prediction, where dose information and biological context were suf-

ficiently explored, and provided a fitting method of dose-response curve [20, 21]. Jinwoo et al.

employed gene-expression data, explored co-occurrences of pathologies, and proposed an

integrative model to predict multiple organ pathologies, which is an advanced method to pre-

dict multiple pathology to the best of our knowledge [22]. The integrative model built a KNN

classifier for each pathology and extracted the pathology associations to calculate the final

scores. The accuracy of the prediction model ranges from 80% to 97% in both liver and

kidney.

After review of recent research, we conclude that despite high accuracy performances

achieved by several studies, existing works still have limitations. Firstly, most of prior studies

focused on the prediction of toxicity (toxic or non-toxic) in a certain organ. Pathological find-

ing prediction has not been explored much considering its importance for toxicity assessment.

The handful existing pathology predictive models developed individual model for each label

[19], which neglected the fact that compounds might cause several toxic effects simultaneously.

Secondly, the pathological finding prediction is a multi-label classification task. In recent

years, many multi-label classification methods have been proposed in the field of biological

information [23, 24]. Nevertheless, most of the existing multi-label classification models in

toxicogenomics area still used traditional machine learning models such as binary relevancy

(BR) or classier chain (CC). The advanced deep learning technology has not been tested and

employed. Directly applying existing deep learning network often obtains unsatisfactory

results due to different characteristics of the toxicogenomics data, so it is required to build

proper deep architecture with careful design. Lastly, some studies show very limited applicabil-

ity for toxicity identification due to the adoption of small-scale, single-dose and single-time

point data, thus data considering various factors should be fully adopted.

In this paper, we proposed a novel multi-label learning model, named Att-RethinkNet, for

predicting drug-induced toxicity in multi-organ based on toxicogenomics data. Instead of

handling the binary classification problem that differentiating whether a compound is toxic or

non-toxic, we identified the specific pathological findings of liver and kidney, which is a multi-

label learning task. To overcome the shortcomings such as ignoring label correlation in the tra-

ditional multi-label classification, inspired by Yang et al.’s work [25] which was evaluated on

dozen multi-label data sets and justifies that RethinkNet obtains a better performance than

state-of-the-art algorithms for multi-label classification tasks, we designed the deep framework
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Att-RethinkNet, which is equipped with a memory structure and can effectively utilize the

label correlation information. Besides, attention mechanism is embedded to focus on the

important features and obtain better feature presentation. The Att-RethinkNet, which is appli-

cable in multiple organs and takes account the compound type, dose, and administration time,

is considerably more comprehensive than existing models. And more importantly, it predicts

multiple pathological findings simultaneously, instead of predicting each pathology separately

as the previous model did. To the best of our knowledge, our Att-RethinkNet is the first to

explore the multiple pathological findings based on deep architecture. Experiment results on

Open TG-GATES show the efficacy and efficiency of the proposed method.

Fig 1 shows an overview of predicting pathological findings in this study. There are mainly

four steps, including data collection, data pre-processing, construction of the proposed Att-

RethinkNet model and evaluation of the Att-RethinkNet. The details of each step will be intro-

duced in the following materials and methods section. The implementation of the Att-Rethin-

kNet can be found at https://github.com/RanSuLab/Drug-Toxicity-Prediction-MultiLabel.

Materials and methods

Step 1 & Step 2: Data collection and pre-processing

We used the Open TG-GATEs to train and validate our model. TG-GATEs is a large-scale tox-

icogenomics database developed by the Japanese Toxicogenomics Project (TGP) [14]. The

Fig 1. The work flow of the proposed method. We have four steps for the proposed method, data collection, data pre-processing, construction of the proposed Att-

RethinkNet model and evaluation of the Att-RethinkNet.

https://doi.org/10.1371/journal.pcbi.1010402.g001
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database includes gene expression profiles and toxicological data of 170 compounds, derived

from in vitro experiments using human primary hepatocytes and rat primary hepatocytes and

in vivo experiments in rat at different dosages and time points [26, 27]. We also used data

extracted from Toxygates which was released as an integrated, easily accessible and user-

friendly platform for the Open TG-GATEs toxicogenomics data analysis [28]. Toxygates uses

the Bioconductor affy package in R to carry out data normalization of each sample. Toxygates

enables users to directly extract the correlation between gene expression and variables (such as

dose level and exposure time) from the original microarray data of Open TG-GATEs, displays

the gene expression data in human readable form, and convert the binary file in CEL format

into CSV files.

In our studies, we used in vivo gene expression profiling of liver and kidney from rats at

24h of all three dose levels (low, middle, and high). For the liver data, rats were exposed to 158

compounds and expression levels of 31,042 mRNAs were collected. For the kidney data, rats

were exposed to 41 compounds and also expression levels of 31,042 mRNAs were collected.

The 41 compounds of kidney data were all included in the liver data so they were tested on

both organs. However, for other compounds tested for liver, the potential pathological risk to

kidney is unknown. The drugs or chemical compounds involved in the experimental data are

shown in S1 Table. We next examined the in vivo hepatic and renal pathology taking place at

four time points (3h, 6h, 9h, 24h) from TG-GATEs and focused only on the pathological find-

ings that can be induced by larger than or equal to 5 compounds.

According to TG-GATEs, pathologists described drug-induced pathological symptoms

obtained from in vivo tests using a controlled vocabulary. In our experiments, we targeted 20

pathological findings that comprise 12 liver pathological findings, including Cellular infiltra-

tion (CI), Eosinophilic change (EC), Hypertrophy (HY), Increased mitosis (IM), NOS lesion

(NL), Microgranuloma (MI), Necrosis (NE), Hepatodiaphragmatic nodule (HN), Kupffer cell

proliferation (KCP), Single cell necrosis (SCN), Swelling (SW), and Cytoplasmic vacuolization

(CV) and 8 kidney pathological findings, including Hyaline cast (HC), Lymphocyte cellular

infiltration (LCI), Basophilic change (BC), Cyst (CY), Dilatation (DI), Cystic dilatation (CD),

Necrosis (NE), and Regeneration (RE). For multi-label problems, The label vector consists of

20 “1” or “0”, where the “1” represents a pathological finding exists, and “0” shows that the

pathological findings does not exist.

We fitted a smooth sigmoid dose-response curve and extracted the maximum response

(Rmax) from the curve, which contained comprehensive biological information and was

proved a proper presentation of the curve in our previous study [20]. We removed the

genes if the expression values at three doses could not form the dose-response curve and

finally 6009 and 8485 genes were picked for liver and kidney. Then, according to the char-

acteristics of the data we collected, we improved the MLSMOTE (Multilabel Synthetic

Minority Over-sampling Technique) algorithm [29] to effectively handle imbalanced data

set for multi label classification, which can overcome the issue of information loss in major-

ity class samples, and avoid over-fitting caused by replication of the minority class samples.

We added a judgment in the original method to avoid the rare case of generating samples

with all labels being 0, which can enrich the information of samples to a greater extent.

The steps, calculation formulas and advantages of improved MLSMOTE algorithm was

summarized in S1 Text. We also presented the results of metrics that measure the imbal-

ance ratio of data set before and after the MLSMOTE in S1 Text, and indicated the number

of samples liver or kidney had in the majority and minority classes of original data. After

data augmentation, we obtained 16,460 samples and 16,268 samples for liver and kidney

respectively.
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Step 3: Construction of Att-RethinkNet

Review of traditional multi-label learning algorithms. Multi-label learning aims at

training models to tackle problems where each sample is associated with multiple labels simul-

taneously. We here reviewed two commonly used multi-label classification methods, binary

relevance (BR) and classifier chains (CC) in this section. Both BR and CC decompose the

multi-label classification task into multiple binary classification problems. BR treats the predic-

tion of each label as an independent binary classification problem, where each classifier is

trained by all the features and only a single label needs to be predicted. Since each label is

treated individually, this algorithm ignores possible correlations among the labels of the train-

ing data. CC is an extension of BR. In the CC approach, a series of binary classifiers are con-

structed according to label order and the binary assignments of preceding class labels are

treated as the additional features [30]. CC adds labels into feature space, so the relationship

among classified labels can be considered in the rest classifiers, which overcomes the weakness

of BR and usually reports a better performance.

We compared the proposed method with BR and CC algorithms in our studies. For every

binary classification task, we choose logistic regression (LR), random forest (RF), linear sup-

port vector machines (SVM) as base classifiers, and optimized the parameter C of LR, two

hyper parameters number of trees and maximum depth of trees of RF, the parameter C of SVM

using grid searching strategy. Finally, we evaluated the model performance via five-fold cross-

validation.

RethinkNet. RethinkNet, a deep learning architecture for multi-label classification, is

designed to mimic the “rethinking” process that human beings attempt to explore correlation

between labels and solve multi-label problems more effectively through thinking the same

issue over and over again until it is digestible. This process can be taken as a sequence predic-

tion problem. The structure of RethinkNet is intuitive and understandable. It consists of two

layers: recurrent neural network (RNN) layer and dense (fully connected) layer.

The RNN layer is used for a specific purpose: rethinking, an action that polishes the predic-

tion result iteratively. RethinkNet adopts RNN to model the “rethinking” process and fully uti-

lizes the RNN memory structure which stores temporary predictions on the labels from all

classifiers. All classifiers receive the same information avoiding influence of the label order.

Different from the CC which forms a chain of binary classifiers, a chain of multi-label classifi-

ers as a sequence of rethinking is established [31]. On the dense layer, each neuron in the layer

receives input from all the neurons present in its previous layer (the RNN layer) and trans-

forms the output of previous RNN layer into the desired label vector, which generates the final

prediction results. RethinkNet can well consider label correlation before the final prediction.

Besides, the framework leverages cost-sensitive re-weighted loss function during learning

phase and weights each label in the loss function according to the importance of the label.

The proposed method: Att-RethinkNet. Our proposed Att-RethinkNet, a novel deep

learning architecture for multi-label classification, was designed based on the RethinkNet. To

emphasize the more important genes, we embedded the attention mechanism in the model.

The core idea of attention mechanism is to learn a weight distribution from existing data and

then focus on the more important features, which enables the network to obtain better feature

representation.

In our experiment, we implemented the attention mechanism between input layer and the

RNN layer. To improve the performance, we used a modified version of RNN, Long Short-

Term Memory (LSTM) networks, in the proposed Att-RethinkNet framework. The architec-

ture of our proposed Att-RethinkNet includes the input layer, attention block, RNN layer, and

dense layer as shown in Fig 2(a). The goal is to learn a function f : X ! Y from a given
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training data set and realize the mapping from the feature vector x 2 X � Rdim to correspond-

ing pathological findings label Y 2 Y � f0; 1gL.

The input layer contains the gene feature. The RNN layer learns T iterations, and each itera-

tion represents a thinking process. The output of RNN layer at t-th iteration is abbreviated as

ÔðtÞ, which stands for the embedding of t-th prediction label vector Ŷ ðtÞ. By the same token,

the information of ÔðtÞ will be passed to (t + 1)-th iteration in the RNN layer, that is, Att-

RethinkNet will use the temporary prediction results of the previous iteration to obtain better

label predictions Ŷ ðtþ1Þ. When T iterations are executed, Ŷ ðTÞ is the final prediction. Ŷ ðTÞ is an

accurate set of labels that has been iteratively revised, which means labels that are difficult to

predict will also have a greater probability of being classified into the correct category. In our

experiments, we set T = 5 for liver data and T = 3 for kidney data, for the reason that the

Fig 2. (a) is the architecture of the Att-RethinkNet framework, which is the specific description of our proposed deep

neural network structure of Step3 in Fig 1. (b) is the structure of the attention block in Att-RethinkNet framework. BS

means batch size. T means time step, depicting the number of iterations of each LSTM unit, without affecting the

number of parameters. ID means input dimension. The first permute layer re-organizes the input layer, which

permutes the T and ID dimensions of the input. The dense layer and the activation layer compute attention

probabilities (the weight) for the input, that is, calculate the weight corresponding to each gene feature. The activation

layer applies softmax function to the activated neurons. The second permute layer also re-organize the dimensions of

the data whose weights have been calculated so that the multiplication can be operated in the multiply layer. The

multiply layer is the last layer in attention block. In this layer, input of attention block times the probability vector of

attention, achieving the weight allocation of feature vector. The attention mechanism assigns different importance to

features which improves the result of classification greatly.

https://doi.org/10.1371/journal.pcbi.1010402.g002
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performance of our proposed model generally converges at the fixed Tth iteration of rethink-

ing. With the increase of T, the prediction accuracy of pathological findings basically did not

change. We also show the structure of the attention block in Fig 2(b).

The pseudo-code of the proposed method to predict drug-induced pathological findings in

multi-organ samples is shown in Algorithm 1.

Algorithm 1 Drug-induced pathological finding prediction using K-fold cross validation.
Input:
1: Input: Gene expression data involving all compounds and all genes.
Output:
2: Output: Model to predict drug-induced pathological findings based
on gene expression data.
3: Fit the dose-response curve based on three dose levels (low, middle
and high), and select a proper measure to represent the full biologi-
cal information of the curve.
4: Augment and balance the data.
5: Data normalization.
6: for i = 1; i < K; i++ do
7: Divide the augmented data set D into test set Dtest and training
set Dtrain.
8: Feed Dtrain into Att-RethinkNet framework.
9: Calculate attention probabilities and weight all genes
10: Predict the potential pathological findings in multiple organs,
and modify temporary prediction results iteratively.
11: Test on Dtest and record the results.
12: end for
13: Calculate the average of the K results, obtain the final evalua-
tion results, and analyze the classification effect of our proposed
model.

Step 4: Evaluation

In this paper, all experiments were evaluated by five-fold cross-validation. In single-label clas-

sification, the traditional evaluation metrics can be used. In multi-label classification, a sample

may have part of labels classified correctly, so evaluation measures are required to have an

objective view of the performance of multi-label classifiers [32–34]. Therefore, we used two

groups of evaluation metrics, one is sample-based metrics that compute the performance of

each sample separately and then average it over all samples and the other is label-based metrics

that conduct the evaluation in terms of each label and then take the macro/micro average over

all labels [35]. Sample-based metrics including subset accuracy (ACC), sample pair accuracy

(ACCpair) and accuracy of each label (ACClab) and label-based metrics including average label

accuracy (ACCavelab), macro sensitivity (SEN), macro specificity (SPE) and macro F1 score

(F1) were used to evaluate our model. Assuming x is a sample, n is the number of test sample,

and Yi and Ŷ ðxiÞ represent the true and predicted label vector for the ith sample, respectively,

these metrics are defined as follows:

ACC ¼
1

n

Xn

i¼1

FðYi ¼ Ŷ ðxiÞÞ ð1Þ

Where

Fð�Þ ¼
1; � is true ðif and only if Ŷ exactly matches Ŷ ðxiÞÞ;

0; otherwise:

8
<

:
ð2Þ
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ACCpair ¼
1

n

Xn

i¼1

jYi \ Ŷ xið Þj

jYi [ Ŷ xið Þj
ð3Þ

ACClabðlÞ ¼
1

n

Xn

i¼1

½½ŷj
l ¼ yi

l�� ð4Þ

Subset accuracy is the fraction of samples whose predicted label vector is the same as the

true label vector. For a predicted label vector of a test set, the classification result is considered

to be correct if and only if the prediction value is exactly equal to the true value of label set.

ACCpair reflects the degree of partial correctness, which is more lenient than subset accuracy.

ACClab represents the accuracy of each label, by which we can find which pathological finding

is easy to identify [33]. When calculating label-based metrics, the basic statistics true positive

(TP), false positive (FP), true negative (TN), and false negative (FN) for label l is defined as fol-

low:

TPl ¼ jfxi j yl 2 Yi ^ yl 2 Ŷ ðxiÞ; 1 � i � n; 1 � l � Lgj ð5Þ

FPl ¼ jfxi j yl =2 Yi ^ yl 2 Ŷ ðxiÞ; 1 � i � n; 1 � l � Lgj ð6Þ

TNl ¼ jfxi j yl =2 Yi ^ yl =2 Ŷ ðxiÞ; 1 � i � n; 1 � l � Lgj ð7Þ

FNl ¼ jfxi j yl 2 Yi ^ yl =2 Ŷ ðxiÞ; 1 � i � n; 1 � l � Lgj ð8Þ

ACCavelab ¼
1

L

XL

l¼1

TPl þ TNl

TPl þ TNl þ FPl þ FNl
ð9Þ

SEN ¼
1

L

XL

l¼1

TPl

TPl þ FNl
ð10Þ

SPE ¼
1

L

XL

l¼1

TNl

TNl þ FPl
ð11Þ

F1 ¼
1

L

XL

l¼1

2TPl

2TPl þ FPl þ FNl
ð12Þ

Here L and yl denote the number of labels and the lth true label, respectively. Additionally,

we also adopted the receiver operating characteristics curve (ROC) and area under the curves

(AUC) to get a multiple perspective on evaluation and assessment.

Results

Here we firstly look into the features produced by the Att-RethinkNet based on LSTM and the

outcome confusion matrix. Then we discussed the prediction performance of LSTM and SRN

algorithms of the RNN layer. We compared the proposed method with the original RethinkNet

and the traditional BR and CC. Additionally, we compared with the integrative model pro-

posed by Kim et al. [22], which is the state-of-the-art work for drug-induced pathological find-

ing prediction. We conducted all the experiments on Open TG-GATES in vivo liver and
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kidney data. In addition, in order to further verify the generalization of the model, we used an

unseen and independent test set on the in vitro data set of rats.

Visualization and confusion matrix of the prediction results

Firstly, we performed t-distributed stochastic neighbor embedding (t-SNE) to visualize the

data in a low dimension space. Raw features (genes) and features produced after RNN layer

are shown in Fig 3. Here we show pathological findings cellular infiltration, necrosis and kupf-

fer cell proliferation from liver data and cyst, lymphocyte cellular infiltration and necrosis

from kidney data.

As can be seen from Fig 3, positive and negative samples with the raw features are mixed

and have much overlapping. But after the Att-RethinkNet, the 0–1 classes can be better sepa-

rated. This has indicated that the generated features are more distinctive and informative than

the raw features.

To have a more granular understanding of the results of the proposed model, we show the

confusion matrix of the pathology classification results in Fig 4. The values of the rows and col-

umns represent the true and predicted labels on test data, respectively. From the confusion

matrix, it is clear that the model has quite small values of FP and FN compared to TP and TN,

and therefore low FP and FN rate. This has shown an impressive performance of the proposed

model.

Comparison between Att-RethinkNet with LSTM and SRN

In our experiment, the RNN layer of Att-RethinkNet adopts the LSTM network. Its advantage

is that it not only attaches multiple relevant pathological findings to an input data and stores

temporary predictions from earlier operations through memory mechanism, but also selec-

tively forgets the prediction of previous labels through forget gate. In order to prove the effec-

tiveness of applying LSTM algorithm in improving the classification effect, we compared and

analyzed the methods of using LSTM and simple recurrent network (SRN) in RNN layer.

Table 1 lists the classification results of the two algorithms on the liver data and kidney data. In

the prediction of pathological findings of hepatotoxicity, the proposed Att-RethinkNet model

implemented by LSTM algorithm obtained an ACC of 89.4%, which was 1.9% higher than that

of the model using SRN, and obtained higher values in all evaluation metrics except SPE. The

classification results of nephrotoxic pathological findings showed that the classification results

of LSTM were also higher than SRN, and the improvement level of ACC exceeded 1.0%.

The reason for the promising classification accuracy is that the gate structure within LSTM

and the internal complex training parameters improve the processing ability of the model for

long sequence data and avoid the problem of vanishing gradients in RNN. More specifically,

in the process of building Att-RethinkNet for predicting drug-induced pathological findings

in multiple organ, LSTM algorithm provides a new improvement strategy for rethinking of

RNN layer. When a group of pathological finding prediction labels are obtained through one

iteration, one part is produced as the temporary result of the current iteration, and the other

part of the information continues to be transmitted. And at the beginning of the next iteration,

LSTM no longer directly uses the results of the previous iteration for better prediction, but

determines the forgetting degree of the information through the forget gate. Finally, through

selective T times iterative thinking, our Att-RethinkNet model based on LSTM can better ana-

lyze the implicit association between gene expression data and corresponding pathological

findings, as well as the internal impact between different pathological findings, and then itera-

tively polish the multi-label prediction results, provide a more accurate label set and show

more accurate classification results.
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Tables 2 and 3 show the ACClab values of the RNN layer of our proposed model in the liver

and kidney data sets using two algorithms respectively. It can be seen that Att-RethinkNet

based on LSTM has higher ACClab for the drug test set, and the prediction accuracy of 20 path-

ological labels is basically more than 97%, which shows that Att-RethinkNet based on LSTM

Fig 3. The t-SNE visualization of features for different pathological findings (from one fold). (a) and (b) shows the

raw features and features generated after RNN layer, respectively. Three pathological findings cellular infiltration, necrosis

and kupffer cell proliferation from liver data are involved. (c) and (d) shows the raw features and features generated after

RNN layer, respectively and three pathological findings cyst, lymphocyte cellular infiltration and necrosis from kidney

data are involved. The blue points represent 0 (no findings) and the yellow points represent 1 (with findings). The

visualization of all targeted pathological findings using t-SNE can be found in S1 Fig for liver and S2 Fig for kidney.

https://doi.org/10.1371/journal.pcbi.1010402.g003
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can give reasonable prediction accuracy for each label. The more intuitive comparison of

ACClab is shown in Fig 5. Although there is no significant difference in the prediction accuracy

of each label between the proposed model implemented by LSTM and SRN, compared with

the experiments based on SRN, we used LSTM algorithm as the core of classifier in RNN layer

and still obtained a slightly higher accuracy in most tasks of drug pathological findings

prediction.

Fig 4. The confusion matrix of the pathology classification. The top-left represents the TN, the top-right represents

FP, the bottom-left is FN and the bottom-right is TP. (a) shows the confusion matrix on liver data and (b) shows the

confusion matrix on kidney data. The results were obtained from the first fold. The results of other folds are shown in

S3 Fig.

https://doi.org/10.1371/journal.pcbi.1010402.g004
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The ROCs obtained from the liver and kidney data sets are shown in Fig 6. The results

show that the two algorithms have obtained high AUC values on different data sets, and the

model based on LSTM is slightly higher than the model based on SRN. Therefore, the selective

memory function of LSTM for historical information improves the ability of the model to

identify whether a specific drug has potential pathological findings.

In a word, using LSTM neural network as the specific implementation algorithm of RNN

layer to complete the early recognition and classification of drug-induced pathological findings

obtains more satisfactory performance than the multi-label classification model based on SRN.

Therefore, all Att-RethinkNet model mentioned in the follow-up experiments was imple-

mented by using LSTM algorithm in RNN layer.

Comparison between Att-RethinkNet and RethinkNet

This section aims to implement our proposed Att-RethinkNet and compare it with the baseline

RethinkNet framework for drug-induced pathology classification based on gene expression

data. For fair comparison, the two models share the same data splitting method and cross vali-

dation procedure. The results of the two methods in different organs are shown in Table 4.

According to most of the evaluation metrics, it shows that the predictive power of Att-Rethin-

kNet is stronger than that of the RethinkNet. For the rat liver data, the baseline model reached

an ACC of 87.2% and an ACCpair of 90.2%, while our proposed model achieved an ACC of

89.4%, an ACCpair of 92.2%, a SEN of 94.2%, a SPE of 98.2% and an AUC of 0.99. In terms of

kidney data, Att-RethinkNet has an ACC of 97.5%, an ACCpair of 98.1%, a SEN of 99.1%, a

SPE of 99.5% and an AUC of 0.99, which are all higher than the RethinkNet’s results. The

Table 1. Comparison between Att-RethinkNet based on LSTM and SRN algorithms.

ORG1 ALG2 ACC (%) SEN (%) SPE (%) F1 (%) AUC ACCpair(%) ACCavelab(%)

Liver SRN 87.6 91.9 98.3 92.5 0.9921 90.2 97.4

LSTM 89.4 94.2 98.2 93.8 0.9930 92.2 97.8

Kidney SRN 96.4 98.7 99.4 98.9 0.9947 97.6 99.1

LSTM 97.5 99.1 99.5 99.2 0.9949 98.1 99.3

1 ORG means the data set of target organ.
2 ALG represents the network structure actually adopted in RNN layer.

https://doi.org/10.1371/journal.pcbi.1010402.t001

Table 2. ACClab of all pathological findings for Att-RethinkNet based on LSTM and SRN for liver data set.

ALG/PF1 CI EC HY IM NL MI NE HN KCP SCN SW CV

SRN 96.2 98.9 98.3 97.4 97.4 97.1 95.3 98.3 96.6 97.3 97.3 98.6

LSTM 96.2 99.0 98.3 98.0 97.6 97.6 96.1 98.6 97.4 97.9 97.7 98.9

1 ALG represents the network structure actually adopted in RNN layer. Values of columns 2 to 13 indicate the ACClab (%) of the corresponding pathological finding.

https://doi.org/10.1371/journal.pcbi.1010402.t002

Table 3. ACClab of all pathological findings for Att-RethinkNet based on LSTM and SRN for kidney data set.

ALG/PF1 HC LCI BC CY DI CD NE RE

SRN 99.6 99.2 98.8 98.5 99.2 99.3 99.6 98.6

LSTM 99.4 99.4 98.9 99.1 99.5 99.3 99.7 99.1

1 ALG represents the network structure actually adopted in RNN layer. Values of columns 2 to 9 indicate the ACClab (%) of the corresponding pathological finding.

https://doi.org/10.1371/journal.pcbi.1010402.t003
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Fig 5. The ACClab of deep learning experiments in liver data (a) and kidney data (b).

https://doi.org/10.1371/journal.pcbi.1010402.g005

Fig 6. ROC curves of Att-RethinkNet using LSTM and SRN algorithms on liver data (a) and kidney data (b).

https://doi.org/10.1371/journal.pcbi.1010402.g006

PLOS COMPUTATIONAL BIOLOGY Predicting drug-induced pathology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010402 September 7, 2022 14 / 28

https://doi.org/10.1371/journal.pcbi.1010402.g005
https://doi.org/10.1371/journal.pcbi.1010402.g006
https://doi.org/10.1371/journal.pcbi.1010402


reasons why the subset accuracy of kidney data is higher than that of liver data may be that

subset accuracy is a rigid measurement, that is, if one element of one sample’s label vector is

falsely predicted, the sample is considered falsely predicted. Therefore, high dimensional label

vector may be more easily to be falsely predicted. The liver data set has a higher label dimen-

sion than that of the kidney, so it is more likely to be judged as a false prediction.

To compare the classification performance on each label, the ACClab of RethinkNet and

Att-RethinkNet is illustrated in Fig 7. The detailed values of ACClab are summarized in Tables

5 and 6. As expected, obvious improvement of each label’s prediction can be seen for most of

Table 4. Comparison between the proposed method and the baseline model.

ORG1 CLF2 ACC (%) SEN (%) SPE (%) F1 (%) AUC ACCpair(%) ACCavelab(%)

Liver RethinkNet 87.2 91.1 98.5 92.3 0.99 90.2 97.4

Att-RethinkNet 89.4 94.2 98.2 93.8 0.99 92.2 97.8

Kidney RethinkNet 96.2 98.4 99.5 98.9 0.99 97.5 99.0

Att-RethinkNet 97.5 99.1 99.5 99.2 0.99 98.1 99.3

1 ORG means the data set of target organ.
2 CLF means classifier.

https://doi.org/10.1371/journal.pcbi.1010402.t004

Fig 7. The ACClab of deep learning experiments in liver data (a) and kidney data (b).

https://doi.org/10.1371/journal.pcbi.1010402.g007
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the labels with our proposed model, except four findings, cellular infiltration, eosinophilic

change, hypertrophy and kupffer cell proliferation in liver, and one finding, necrosis, in kid-

ney. It also shows that eosinophilic change in liver is easier to be recognized compared with

other findings for liver and necrosis in kidney is easier to be identified compared with other

findings in kidney.

The ROCs of both methods are shown in Fig 8. According to the ROCs, Att-RethinkNet

has a slightly larger AUC than that of RethinkNet and lies in the left-top of RethinkNet, mean-

ing that our proposed model has a better classification performance than the baseline model.

Comparison between Att-RethinkNet and the traditional method

Traditional classification algorithms normally reduce the feature dimension and eliminate

irrelevant information to optimize the results at the beginning. We applied some feature

Table 5. ACClab of all pathological findings for RethinkNet and Att-RethinkNet in liver data.

CLF/PF1 CI EC HY IM NL MI NE HN KCP SCN SW CV

RethinkNet 96.2 99.0 98.6 97.2 96.9 97.0 94.6 98.2 97.6 97.1 97.5 98.3

Att-RethinkNet 96.2 99.0 98.3 98.0 97.6 97.6 96.1 98.6 97.4 97.9 97.7 98.9

1 CLF means classifier and PF means pathological finding. Values of columns 2 to 13 indicate the ACClab (%) of the corresponding pathological finding.

https://doi.org/10.1371/journal.pcbi.1010402.t005

Table 6. ACClab of all pathological findings for RethinkNet and Att-RethinkNet in kidney data.

CLF/PF1 HC LCI BC CY DI CD NE RE

RethinkNet 99.3 99.2 98.7 98.1 99.4 99.3 99.7 98.6

Att-RethinkNet 99.4 99.4 98.9 99.1 99.5 99.3 99.7 99.1

1 CLF represents classifier and PF means pathological finding. Values of columns 2 to 9 indicate the ACClab (%) of the corresponding pathological finding.

https://doi.org/10.1371/journal.pcbi.1010402.t006

Fig 8. ROC curves of RethinkNet and Att-RethinkNet on liver data (a) and kidney data (b).

https://doi.org/10.1371/journal.pcbi.1010402.g008
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ranking techniques and found that multi-label F-statistic algorithm show better and more sta-

ble accuracy in feature subset. So we calculated the F-statistic score of each gene and picked

the TOPN-best performed genes by deleting ranked features gradually. We used a fitness func-

tion to evaluate the performance of each feature subset [36]. Since the number of features in

the selected subset is significantly smaller than the number of all features, we improved the fit-

ness function by adding an amplification factor λ in order to maximizes the accuracy of classi-

fication and minimizes the number of selected genes. In the fitness function, we increased the

selected feature subset to λ times to make the fitness value meaningful. The improved fitness

function is defined as:

Fitness ¼ a� ACCþ ð1 � aÞ �
Dtotal � Dselected � l

Dtotal
ð13Þ

Where ACC is the accuracy. Dtotal and Dselected represent the size of the total features and the

size of the selected features, respectively. α is a weight in the range [0, 1], which describes the

degree of importance of ACC and Dselected. λ is an amplification factor. In our experiments, we

tried multiple sets of parameters and finally set α = 0.6 and λ = 10 which had the highest ACC.

In this paper, we applied the improved fitness function to seek an optimal subset of relevant

features. The intermediate results of selecting the optimal feature subset are presented in Fig 9,

where x-axis shows the number of selected features that were used for machine learning model

construction and y-axis shows the subset accuracy when classifying unknown samples using

the selected feature sets. Here we combined the BR/CC with LR, RF and SVM, which are all

popular classifiers in relevant areas [37–41].

From Fig 9, for liver data, BR based on SVM selected the most features, and CC based on

RF selected the least features, approximately only one-half of the other methods. CC based on

SVM achieved the highest accuracy. For feature selection in kidney data, BR and CC methods

based on SVM selected the same number of genes and CC based SVM achieved the highest

accuracy.

We further show the classification comparison of BR, CC and Att-RethinkNet in Table 7.

From Table 7, we found that the prediction accuracy of traditional machine learning-based

models for liver data ranges from 69.86% to 83.71% and for kidney data, 88.74% to 94.66%.

Fig 9. Intermediate results of selecting the optimal feature subset for BR and CC. The numbers of selected features are marked with dashed lines.

https://doi.org/10.1371/journal.pcbi.1010402.g009
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Among these methods, it can be seen that BR using LR as base classifier has the lowest accu-

racy on both data sets. BR and CC, with RF as the base classifiers, gained the best AUCs in all

data sets. In CC approach, when SVM was used as a base classifier, the classifiers always come

with the highest accuracy score, 83.71% in liver and 94.66% in kidney respectively. In general,

all these machine learning-based methods retain considerable small feature subsets and the

result on kidney data is better than that on the liver data. Besides, when using the same base

classifiers, CC outperforms BR in most times because CC takes label correlations into account.

In terms of the Att-RethinkNet, the Att-RethinkNet achieves the highest ACC, ACCpair and

ACCavelab for both liver and kidney data. One important reason is that our model not only

considers label correlations but also applies proper weights to both labels and features, and

solves the issue caused by label order as well.

Furthermore, the detailed ACClab of each label for the Att-RethinkNet and these machine

learning-based models are shown in Fig 10, Tables 8 and 9. For liver pathological findings, the

Att-RethinkNet maintains a high value on average compared with other methods. For kidney

pathological findings, the ACClab of each label of Att-RethinkNet is the highest in comparison

with all other referring traditional classification methods.

We show the ROC curves of Att-RethinkNet and all the traditional models in Fig 11. We

obtain the highest AUC values of the AttRethinkNet among all the methods.

Comparison between Att-RethinkNet and the integrative model

We also compared the proposed approach with a method, that we called “integrative model”

in our study [22]. This model was also developed for drug-induced pathological finding pre-

diction. Different from our method, which builds a multi-label prediction model, this model

trains a model for each pathological finding and combined all the pathology prediction

models.

Table 7. The performance of BR, CC and Att-RethinkNet on liver and kidney data.

ORG1 CLF2 BCLF3 FN4 ACC (%) SEN (%) SPE (%) F1 (%) AUC ACCpair (%) ACCavelab (%)

Liver BR LR 58 69.9 85.3 96.5 87.3 0.98 78.3 95.5

BR RF 51 81.5 92.0 98.3 95.0 0.99 87.2 98.0

BR SVM 82 78.7 88.7 97.0 89.5 0.99 84.1 96.5

CC LR 66 76.0 84.0 96.4 85.4 0.96 79.2 95.0

CC RF 37 79.6 89.6 98.2 93.4 0.99 85.2 97.6

CC SVM 78 83.7 88.0 97.0 88.5 0.97 85.5 96.1

Att-RethinkNet - - 89.4 94.2 98.2 93.8 0.99 92.2 97.8

Kidney BR LR 75 88.7 97.4 95.6 96.3 0.99 92.1 96.6

BR RF 40 92.6 99.5 97.0 98.2 0.99 93.9 98.3

BR SVM 51 91.8 98.9 96.5 97.5 0.99 93.9 97.7

CC LR 85 91.8 98.5 96.2 97.2 0.99 92.9 97.4

CC RF 43 92.0 99.2 97.4 98.2 0.99 93.9 98.3

CC SVM 51 94.7 99.4 97.4 98.2 0.99 95.5 98.3

Att-RethinkNet - - 97.5 99.1 99.5 99.2 0.99 98.1 99.3

1 ORG means the data of target organ.
2 CLF means classifier.
3 BCLF means base classifier.
4 FN means selected feature subset size.

https://doi.org/10.1371/journal.pcbi.1010402.t007
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We trained the presented integrative model of 5-nearest neighbor classifiers. The pathology

similarities matrix that describes co-occurrences of two pathological findings within training

set of each fold were reported in S4 Fig. Tables 10, 11 and 12 list the performance of the inte-

grative model and the proposed drug toxicity prediction model. From the tables, we can see

Fig 10. Accuracy of each label of Att-RethinkNet and the traditional machine learning-based methods in liver (a) and kidney

(b).

https://doi.org/10.1371/journal.pcbi.1010402.g010
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Table 8. Performance of all pathological findings for BR, CC and Att-RethinkNet in liver data.

CLF/PF1 BCLF2 CI EC HY IM NL MI NE HN KCP SCN SW CV

BR LR 92.5 97.9 97.9 96.2 95.9 95.0 89.4 96.5 96.1 95.5 96.1 97.0

BR RF 97.3 99.6 99.7 98.3 98.8 96.5 92.2 98.9 98.6 98.3 99.5 98.7

BR SVM 94.2 97.9 98.5 96.4 97.3 95.5 92.5 97.4 97.1 96.4 97.5 97.3

CC LR 92.7 97.8 97.8 95.9 95.6 93.3 89.0 95.4 95.7 94.2 96.1 96.1

CC RF 96.9 99.5 99.8 97.6 97.5 96.4 92.0 97.9 98.4 97.8 99.5 98.2

CC SVM 94.4 98.0 98.1 96.2 96.9 95.6 91.8 96.5 96.8 95.0 96.9 97.3

Att-RethinkNet - 96.2 99.0 98.3 98.0 97.6 97.6 96.1 98.6 97.4 97.9 97.7 98.9

1 CLF represents classifier and PF means pathological finding.
2 BCLF means base classifier. Columns 3 to 14 indicate the ACClab (%) of the corresponding pathological finding.

https://doi.org/10.1371/journal.pcbi.1010402.t008

Table 9. Accuracy of all pathological findings for established deep learning models in kidney data.

CLF/PF1 BCLF2 HC LCI BC CY DI CD NE RE

BR LR 97.8 95.6 95.5 95.6 97.2 96.8 98.4 96.2

BR RF 98.2 99.1 96.8 98.3 97.8 98.5 98.8 98.5

BR SVM 97.8 97.9 95.9 96.8 98.2 98.1 98.7 97.9

CC LR 97.4 97.8 96.6 96.4 96.9 97.6 98.1 98.0

CC RF 98.1 98.7 97.6 98.0 97.7 98.5 98.8 99.0

CC SVM 97.8 98.9 97.2 98.2 98.6 98.4 98.6 99.1

Att-RethinkNet - 99.4 99.4 98.9 99.1 99.5 99.3 99.7 99.1

1 CLF represents classifier and PF means pathological finding.
2 BCLF means base classifier. Columns 3 to 10 indicate the ACClab (%) of the corresponding pathological finding.

https://doi.org/10.1371/journal.pcbi.1010402.t009

Fig 11. The comparison of ROC curves between the proposed method and some commonly used machine learning-based models. (a) shows the liver data and (b)

shows the kidney data. In the plot, BR plus LR represents BR model that uses LR as base classifier. Other symbols are defined similarly.

https://doi.org/10.1371/journal.pcbi.1010402.g011
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that although the integrative model has obtained considerably high classification accuracy

when classifying each label (although lower than the proposed method, shown in Tables 11

and 12), the subset accuracy of the integrative model is unsatisfactory (Table 10). The low sub-

set accuracy is due to the fact that the integrative model makes predictions for each label sepa-

rately, which cannot guarantee the prediction result for each pathology correct at the same

time.

In terms of predicting each label, we specifically show the ACClab of the proposed model

and the integrative model in Fig 12. The results prove that the proposed model has a significant

improvement in correctly predicting each pathology when compared with the integrative

method. The difference of ACClab between our method and the integrative method ranges

from around 1% to around 12% for drug-induced liver toxicity except increased mitosis(IM)

and single cell necrosis(SCN), while the ACClab difference ranges from 20% to 42% for drug-

induced kidney toxicity.

The ROC curves of Att-RethinkNet and the integrative model can be found in Fig 13. From

the experimental results, we can find that the curve of Att-RethinkNet lies far above that of the

integrative model. The AUC of the integrative model is approximately half of that of the Att-

RethinkNet.

Validation on rat liver in vitro data

In order to further verify the reliability of the prediction model, we carried out experiments on

independent and invisible data, the in vitro toxicity data of rat liver. We divided the data into

two parts. One part of data was used as the training set and it was augmented and balanced,

Table 10. The performance of the integrative model and Att-RethinkNet.

ORG1 CLF2 ACC (%) SEN (%) SPE (%) F1 (%) AUC ACCpair (%) ACCavelab (%)

Liver Integra 50.3 99.3 89.8 84.9 0.50 83.0 92.6

Att 89.4 94.2 98.2 93.8 0.99 92.2 97.8

Kidney Integra 28.5 100.0 41.0 74.2 0.50 63.8 68.4

Att 97.5 99.1 99.5 99.2 0.99 98.1 99.3

1 ORG means the data set of target organ.
2 CLF means classifier. Integra means integrative model. Att means Att-RethinkNet.

https://doi.org/10.1371/journal.pcbi.1010402.t010

Table 11. ACClab of the integrative model and Att-RethinkNet for liver data.

CLF1 CI EC HY IM NL MI NE HN KCP SCN SW CV

Integrative model 83.3 95.8 90.1 98.5 88.2 86.6 91.9 90.0 95.0 97.9 95.0 98.7

Att-RethinkNet 96.2 99.0 98.3 98.0 97.6 97.6 96.1 98.6 97.4 97.9 97.7 98.9

1 CLF means classifier. Columns 2 to 13 indicate the ACClab (%) of the corresponding pathological finding.

https://doi.org/10.1371/journal.pcbi.1010402.t011

Table 12. ACClab of the integrative model and Att-RethinkNet for kidney data.

CLF1 HC LCI BC CY DI CD NE RE

Integrative model 56.8 68.0 79.1 64.7 73.4 62.2 76.8 66.0

Att-RethinkNet 99.4 99.4 98.9 99.1 99.5 99.3 99.7 99.1

1 CLF represents classifier. Columns 2 to 9 indicate the ACClab (%) of the corresponding pathological finding.

https://doi.org/10.1371/journal.pcbi.1010402.t012
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and the remaining data was used as the test set. We selected the corresponding gene expression

levels of rat liver in vitro at the time point of 24 hours after a single dose administration. Pre-

processing operations including dose-response curve fitting was operated on this data.

Table 13 lists the classification results on liver in vitro data set. For liver pathology, our Att-

RethinkNet model based on LSTM achieved relatively high accuracy, with a value of 73.0%.

The SEN and SPE are all above 80%. And the SPE achieves 94.8% which is 10% higher than the

SEN. Therefore, our approach can be used in the very first step of toxicity evaluation. Drugs

are determined safe with high accuracy by predicting them without any pathological findings.

However, if the results show that the drug can induce a certain pathological finding, further

safety screening may still be needed. The experimental results show that our proposed model

is applicable to new drugs and it is able to reduce the over-fitting, and make predictions for the

invisible test data.

Table 14 further shows the performance of the model on each label. It can be clearly seen

that our proposed model has the ability to predict the specific pathological findings corre-

sponding to 12 drug-induced liver toxicity, and can achieve high accuracy in predicting the

pathology finding hepatodiaphragmatic nodule, while the prediction ability of pathology

(a) Liver

(b) Kidney

Fig 12. ACClab comparison of the proposed model with the integrative model using liver samples (a) and kidney

samples (b).

https://doi.org/10.1371/journal.pcbi.1010402.g012
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finding necrosis needs to be improved. In general, Att-RethinkNet can provide auxiliary func-

tions for the process of drug development.

The ROCs of the results are shown in Fig 14. It can be seen from the ROCs that the area

under the curve of the proposed model is 0.9, which shows that the model can predict the path-

ological findings on invisible and independent data.

In conclusion, our proposed model is generalized, which is able to predict toxic pathologi-

cal findings of unknown drugs. The subset accuracy of each fold and standard deviation of pre-

diction results corresponding to the above cross-validation experiments are put in S2 Table,

and the parameter settings of the proposed deep neural network model are put in S3 Table.

Conclusion and discussion

Our proposed Att-RethinkNet framework can achieve excellent performance in predicting

drug-induced pathology in multiple organs based on toxicogenomics data, which is helpful to

Fig 13. The ROC curves of the Att-RethinkNet and the integrative method. (a) is for liver data and (b) is for kidney data.

https://doi.org/10.1371/journal.pcbi.1010402.g013

Table 13. Classification results on the liver in vitro data set.

ORG1 CLF2 ACC (%) SEN (%) SPE (%) F1 (%) AUC ACCpair(%) ACCavelab(%)

Liver Att-RethinkNet 73.0 84.3 94.8 84.8 0.90 80.1 89.5

1 ORG means the dataset of target organ.
2 CLF means classifier.

https://doi.org/10.1371/journal.pcbi.1010402.t013

Table 14. ACClab of Att-RethinkNet for liver in vitro data.

CLF1 CI EC HY IM NL MI NE HN KCP SCN SW CV

Att-RethinkNet 84.1 92.9 85.1 94.7 91.2 89.9 69.7 99.0 88.4 91.0 94.8 92.9

1 CLF means classifier. Columns 2 to 13 indicate the ACClab (%) of the corresponding pathological finding.

https://doi.org/10.1371/journal.pcbi.1010402.t014
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detect and diagnose organ-specific toxicity in early stage, and provides a cost effective solution

for drug industry.

Our study proposed an attention-based RethinkNet framework for drug-induced patholog-

ical finding prediction based on gene expression profile. This model mimics the human

rethinking procedure, and the attention mechanism before LSTM layer focuses on more

important features. Our model has shown impressive performance on both liver and kidney.

The accuracy of the proposed Att-RethinkNet model is 89.4% for in vivo liver data and is

97.5% for in vivo kidney data, higher than those of the BR, CC, RethinkNet, and the “integra-

tive model”. The running time of Att-RethinkNet only takes a few hours, which is much faster

than the traditional method BR and CC which takes nearly a week.

In the current work, we find that the classification results are already good enough to show

the effectiveness of the proposed Att-RethinkNet. However, our experiment still has several

limitations. For example, pathological findings relies on manual labeling. When the collection

of labels or the number of drugs is large, the definition of labels corresponding to each instance

can take a lot of time. Moreover, we only targeted on liver and kidney without additional target

organs due to the difficulty in obtaining gene expression data and pathological information, so

there is no verification on other kinds of organs in our study.

For our proposed deep neural network model, there is still room for improvement and

scope for expansion. Next work, we will consider the analysis of gene selection [42], our net-

work model can be optimized to identify genes highly associated with potential toxicity. In

fact, our model is not limited to liver and kidney and can be easily extended to other organs. In

the future, we aim to construct a more generalized model which is suitable for all organs and

incorporate multi-omics data.

Additionally, the proposed method provides a new and interesting insight to multi-label

classification problems, which is applicable to a spectrum of domains, such as sound classifica-

tion, image classification, and text categorization. It would be an interesting future work to

explore the application scope of our multi-label classification model in the field of

Fig 14. The ROC curves of the Att-RethinkNet for liver in vitro data.

https://doi.org/10.1371/journal.pcbi.1010402.g014
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bioinformatics, such as prediction of compound-protein interactions [43], identification of

human protein subcellular localization for understanding protein functions [44], diagnosing

cervical cancer at early stages based on multiple risk factors [45].
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