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Maximum type I error rate inflation
from sample size reassessment when
investigators are blind to treatment labels

Magdalena Żebrowska,*† Martin Posch and Dominic Magirr

Consider a parallel group trial for the comparison of an experimental treatment to a control, where the second-
stage sample size may depend on the blinded primary endpoint data as well as on additional blinded data from a
secondary endpoint. For the setting of normally distributed endpoints, we demonstrate that this may lead to an
inflation of the type I error rate if the null hypothesis holds for the primary but not the secondary endpoint.
We derive upper bounds for the inflation of the type I error rate, both for trials that employ random allocation
and for those that use block randomization. We illustrate the worst-case sample size reassessment rule in a case
study. For both randomization strategies, the maximum type I error rate increases with the effect size in the
secondary endpoint and the correlation between endpoints. The maximum inflation increases with smaller block
sizes if information on the block size is used in the reassessment rule. Based on our findings, we do not question the
well-established use of blinded sample size reassessment methods with nuisance parameter estimates computed
from the blinded interim data of the primary endpoint. However, we demonstrate that the type I error rate
control of these methods relies on the application of specific, binding, pre-planned and fully algorithmic sample
size reassessment rules and does not extend to general or unplanned sample size adjustments based on blinded
data. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
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1. Introduction

Blinding is a generally accepted tool to address bias in randomized clinical trials. It ensures that up to
the investigated intervention all subjects are handled equally across treatment groups and outcomes are
assessed in the same way. Furthermore, blinding of study subjects allows one to distinguish specific treat-
ment effects from potential placebo effects. Blinding is also essential to avert statistical bias in hypotheses
testing procedures if data dependent changes to the analysis strategy are made. The ICH E9 guideline
[1], for example, recommends to review (and possibly update) the statistical analysis plan based on a
blinded data review and notes that “Decisions made at this time should be described in the report, and
should be distinguished from those made after the statistician has had access to the treatment codes, as
blind decisions will generally introduce less potential for bias”. Similarly, in adaptive clinical trials where
adaptations of the trial designs such as a reassessment of sample size can be performed after an interim
analysis, blinding is important: it is well known that sample size reassessment based on unblinded interim
data may lead to inflation of the type I error by more than 100% [2, 3] if the adaptation is not accounted
for by using appropriate adaptive testing procedures [4–6]. To address the various sources of bias in adap-
tive trials, regulatory guidelines [7–9] recommend to avoid breaking the blind and to perform adaptations
based on blinded interim analyses instead. An assumption underlying these guidance documents is that
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adaptations based on blinded interim analyses are less prone to bias. Indeed, it has been demonstrated in
several settings that adaptations based on blinded interim analysis do not require an adjusted analysis to
control the type I error:

• for superiority studies comparing normally distributed endpoints in a parallel group design where the
sample size is reassessed based on the “lumped variance” (the variance of the total sample pooling
the observations from both groups), the type I error rate is essentially unaffected [10–12]),

• also for superiority studies comparing event rates, where the sample size is reassessed based on the
overall number of events across treatment groups, no relevant inflation of the type I error rate was
observed [13]. Analogous results were obtained also for count data [14],

• if permutation tests are applied, Posch & Proschan [15] and Proschan et al. [16] showed that adap-
tations based on blinded interim data will indeed control the type I error rate if the clinical trial
is restricted to a univariate testing problem where a single endpoint is observed. If adaptations are
restricted to the choice between endpoints, the result extends to trials where two endpoints are
considered simultaneously. Asymptotically, these results are also valid for t-tests.

However, blinding is not a panacea to prevent bias. If sample sizes are low, a minor increase of the
type I error rate is observed for non-inferiority trials with sample size reassessment based on the lumped
variance [17]. Also in superiority tests, Proschan et al. [16] showed that for general sample size reassess-
ment rules based on the lumped variance the type I error rate may be inflated for small sample sizes.
Furthermore, if the sample size reassessment rule may depend on more than one endpoint, type I error
rate control is no longer guaranteed: if the null hypothesis holds for the primary endpoint but not for
a secondary endpoint such as, for example, the level of drug in the blood, the secondary endpoint may
completely unblind the investigator. However, the bias can also occur in less extreme settings, where the
secondary endpoint unblinds the investigator only partially, as may be the case for a safety endpoint. In
such settings, the potential type I error rate inflation is similar to that of a clinical trial where adaptations
are performed in an unblinded interim analysis without being accounted for in the testing strategy [15].

In this paper, we investigate the potential consequences of blinded sample size reassessment
approaches that deviate from the accepted statistical practice of applying a binding, algorithmic, and
blinded sample size reassessment procedure for which type I error rate control has been demonstrated.
In particular, we consider settings where no blinded sample size reassessment has been pre-specified in
the protocol, settings where an option for blinded sample size reassessment (but no binding rule) are pre-
specified, and settings where a binding rule have been pre-specified but the data monitoring committee
decided not to follow the rule. Sponsors may argue for a more flexible approach for several reasons: for
example, the deviation of nuisance parameter estimates from planning assumptions may not have been
anticipated in the planning phase; the maximum number of available patients is unknown in advance such
that no binding rule can be pre-specified; recruitment is lower than anticipated or safety concerns arise
such that it is argued that the pre-planned sample size algorithm cannot be followed; or information from
other trials may arise that serves as an argument for a change in pre-specified strategies. Recent regu-
latory guidance documents appear to acknowledge such unplanned adaptations. For example, the FDA
adaptive designs draft guidances state, “Certain blinded-analysis-based changes, such as sample size
revisions based on aggregate event rates or variance of the endpoint, are advisable procedures that can
be considered and planned at the protocol design stage, but can also be applied when not planned from
the study outset if the study has remained unequivocally blinded.” [8] and “While it is strongly preferred
that such adaptations be preplanned at the start of the study, it may be possible to make changes dur-
ing the studys conduct as well. In such instances, the FDA will expect sponsors to be able to both justify
the scientific rationale why such an approach is appropriate and preferable, and demonstrate that they
have not had access to any unblinded data (either by coded treatment groups or completely unblinded)
and that the data has been scrupulously safeguarded.” [9]. Unplanned sample size adjustment is also
accepted by European regulators in specific settings, see, for example, Case Study 3 in [18].

We consider the setting of a superiority test of a new experimental treatment over control, with a
parallel group design and both blocked and unblocked randomization, where the sample size is reassessed
after a blinded interim analysis. We assume that blinded data of the primary and a secondary endpoint is
observed. This secondary endpoint – which may or may not be correlated with the primary endpoint –
could be a surrogate endpoint, a clinical outcome, or a biomarker. For simplicity, the joint distribution of
the two endpoints is assumed to be bivariate normal. If the null hypothesis of no treatment effect holds
for the primary but not for the secondary endpoint, then the blinded secondary endpoint data provide
the investigator with some information about the likely treatment assignment. We quantify the extent to
which this can lead to biased analysis results.
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M. ŻEBROWSKA, M. POSCH AND D. MAGIRR

In Section 2, we introduce the notation and statistical model. In Section 3, we derive an upper bound
on the type I error rate for a trial using a random allocation strategy. The case of blocked randomization
is considered in Section 4.

The results are applied to a case study in Section 5, and the impact of our investigation on the conduct
of blinded interim analyses in clinical trials is discussed in Section 6.

2. The model

Consider a parallel group comparison of an experimental treatment to a control with n subjects in total.
Denote the primary endpoint measurement of subject i = 1,… , n by Xi, and let Gi ∈ {0, 1} denote
the random treatment allocation. We assume that outcomes are normally distributed with means 𝜇Gi

and
common variance 𝜎2. A hypothesis test of

H0 ∶ 𝜇1 ⩽ 𝜇0 against H1 ∶ 𝜇1 > 𝜇0

is performed at level 𝛼. After n1 = n∕2 observations, an interim analysis is performed, and the sample
size is reassessed. The new second-stage sample size is denoted by n2, and the new total sample size
is N ∶= n1 + n2. Besides the primary endpoint Xi, we assume that the experimenter also observes a
secondary endpoint Yi for each subject i. Assume that the response of patient i, conditional on Gi, is
distributed as (

Xi
Yi

)
∣ Gi = gi ∼ N

((
0

gi𝜈1 + (1 − gi)𝜈0

)
, 𝜎2

(
1 𝜌

𝜌 1

))
,

where 𝜈1, 𝜈0 are the means of the secondary endpoint in treatment and control groups, respectively. At
the end of the trial, H0 will be rejected if ZN > z1−𝛼 where, assuming balanced group sizes,

rCl ZN = 1

𝜎
√

N

N∑
i=1

{
𝟏(Gi = 1) − 𝟏(Gi = 0)

}
Xi =

1

𝜎
√

N

N∑
i=1

(2Gi − 1)Xi.

The maximum conditional type I error rate given the first stage data from both endpoints is therefore

max
n2∈(0,∞)

P
{

ZN > z1−𝛼 ∣ (Xi,Yi)
n1

i=1

}
. (1)

3. Random allocation

Our aim is to quantify the extent of potential type I error rate inflation when the outcomes of a secondary
endpoint provide partial information about the treatment assignment. We first wish to quantify this infla-
tion for a “random allocation” strategy, where exactly n1∕2 patients received the experimental treatment,
with each of the

n1!
(n1∕2)!(n1∕2)!

(2)

possible sequences of G = (G1,G2,… ,Gn1
) equally likely. After n1 responses have been observed, a

blinded interim analysis is performed, and a second stage sample size n2 is chosen. We further assume
random allocation in the second stage such that exactly n2∕2 patients receive the experimental treat-
ment. The maximum conditional type I error rate given the first stage data from both endpoints is given
by (1). Exact evaluation of (1) is difficult for all, but the smallest n1 because the number of possible
assignments (2) grows exponentially. We approach this problem in two ways. Firstly, we use an MCMC
algorithm to simulate from the conditional distribution of G given the blinded interim data. Secondly,
we derive asymptotic results for a “simple randomization” strategy – that is, assuming each patient is
allocated to the experimental treatment independently with probability 1∕2 – and use a combination of
heuristic arguments and simulation results to show that the same asymptotic results are applicable to
random allocation.
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3.1. Computational approach

The type I error rate conditional on the unblinded data (Xi,Yi,Gi)
n1

i=1 is easy to compute:

P
{

ZN > z1−𝛼 ∣ (Xi,Yi,Gi)
n1

i=1

}
=P

{
1

𝜎
√

n2

N∑
i=n1+1

(2Gi − 1)Xi >

√
N
n2

z1−𝛼 −
√

n1

n2
Z1

}
= 1 − Φ

(√
N
n2

z1−𝛼 −
√

n1

n2
Z1

)
,

(3)

where Z1 =
∑n1

i=1(2Gi − 1)Xi∕(𝜎
√

n1). It is therefore straightforward to find

rCl P
{

ZN > z1−𝛼 ∣ (Xi,Yi)
n1

i=1

}
= ∫ P

{
ZN > z1−𝛼 ∣ (Xi,Yi,Gi)

n1

i=1

}
dP
{
(G)n1

i=1 ∣ (Xi,Yi)
n1

i=1

}
(4)

provided that we can integrate over the conditional distribution of G given the blinded data. Although
this distribution is over a large space of possible permutations, it can be sampled from using standard
MCMC techniques [19]. To maximize this conditional type I error rate, we select the N that maximizes
(4). R code is provided in the Supporting Information.

3.2. Asymptotic considerations and an upper bound for the type I error rate

While the aforementioned computational approach can tell us the maximum conditional type I error
rate given a specific blinded data set (xi, yi)

n1

i=1, it cannot tell us the overall properties of the sample size
reassessment procedure without considerable computational effort. Therefore, we study the asymptotic
conditional distribution of Z1. We first derive the conditional distribution of Z1 under simple random-
ization (instead of random allocation with fixed per group sample sizes) and then, based on heuristic
arguments and supported by simulation, we argue that the same asymptotic distribution applies also
for random allocation. If each patient is allocated to the experimental treatment independently with
probability 1∕2 then by Bayes’ theorem

P
{

Gj = 1 ∣ (Xi,Yi)
n1

i=1 = (xi, yi)
n1

i=1

}
= P

{
Gj = 1 ∣ (Xj,Yj) = (xj, yj)

}
=

𝜑𝜈1,𝜎,𝜌
(xj, yj)

𝜑𝜈0,𝜎,𝜌
(xj, yj) + 𝜑𝜈1,𝜎,𝜌

(xj, yj)
=∶ qj

(5)

for j = 1,… , n1, where 𝜑𝜈1,𝜎,𝜌
(⋅, ⋅) and 𝜑𝜈0,𝜎,𝜌

(⋅, ⋅) denote the density functions of the two dimensional
normal distribution of (Xj,Yj) under experimental treatment and control, respectively. By the central limit
theorem for the sum of independent but non-identically distributed random variables (e.g., Theorem 2.7.1
in [20]),

Z1 ∣ (Xi,Yi)
n1

i=1 = (xi, yi)
n1

i=1

is asymptotically normal with mean m1 =
∑n1

i=1(2qi − 1)xi∕(𝜎
√

n1) and variance V1 =
4(𝜎2n1)−1∑n1

i=1 x2
i qi(1−qi). We argue that this approximation is valid also under random allocation as, for

n1 large enough, the information provided by the known allocation ratio becomes negligible. In particular,

E
{

Gj ∣ (Xi,Yi)
n1

i=1 = (xi, yi)
n1

i=1

}
≈ qj, cov

{
Gj,Gk ∣ (Xi,Yi)

n1

i=1 = (xi, yi)
n1

i=1

}
≈ 0 for j ≠ k.

To add support to our claim, we simulated multiple data sets under various choices of n1, 𝜈1 and 𝜌, and
compared the normal approximation with the output of the MCMC algorithm. An example is shown
inF1 Figure 1, where the normal curve agrees well. As 𝜈1 and 𝜌 increase, it becomes easier to identify
the likely treatment assignment, making the conditional distribution of Z1 more discrete and the speed
of convergence to a normal distribution slower. This can be seen in Figure 9.1–9.3 of the supporting
information. For a sample size of n1 = 144, the approximation appears to be adequate provided that
𝜈1 ⩽ 2 and 𝜌 ⩽ 0.8.

Equation (5) is also useful to illustrate the impact of the secondary endpoint effect size 𝜈1 − 𝜈0 on the
potential to unblind the data: If 𝜈0 = 𝜈1, then qj =

1
2

and the secondary endpoint gives no information on
the treatment allocation. If, in contrast, |𝜈1−𝜈0| increases then qj(X,Y) converges in distribution either to
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Figure 1. Comparing the asymptotic results with MCMC output for an example data set.

0 (for observations in the control) or to 1 (for observations from the experimental treatment group) even if
the correlation 𝜌 is zero: Indeed, for 𝜌 = 0 and if Y is drawn, for example, from the control group then for
all 𝜖 > 0, we have P(|Y − 𝜈0| > c) ⩽ 𝜖 for c large enough. However, for y, such that |y− 𝜈0| ⩽ c, we have
q(x, y) = 𝜑𝜈1,𝜎

(y)∕
[
𝜑𝜈0,𝜎

(y) + 𝜑𝜈1,𝜎
(y)
]
= 1∕{1+exp

[
(𝜈1 − 𝜈0)(𝜈1 + 𝜈0 − 2y)∕2

]
} → 0 as |𝜈1−𝜈0|→ ∞ .

To maximize the overall conditional error rate, note that for any given blinded first-stage data set the
maximum conditional type I error rate is

max
n2∈(0,∞)

P
{

ZN > z1−𝛼 ∣ (Xi,Yi)
n1

i=1 = (xi, yi)
n1

i=1

}
= max

n2∈(0,∞)
P

{
1

𝜎
√

N

N∑
i=n1+1

(2Gi − 1)Xi +
√

n1

N
Z1 > z1−𝛼 ∣ (Xi,Yi)

n1

i=1 = (xi, yi)
n1

i=1

}

≈ max
n2∈(0,∞)

1 − Φ
⎛⎜⎜⎜⎝

z1−𝛼 −
√

n1

N
m1√

n1V1+n2

N

⎞⎟⎟⎟⎠ .
(6)

Here, we approximated the conditional distribution of Z1 by a N(m1,V1) distribution. Assume there
are minimum and maximum sample sizes nmin

2 , nmax
2 for the second stage sample size such that n2 ∈

[nmin
2 , nmax

2 ]. Then, the value of n2 maximizing (6) is (Appendix A)

ñ2(m1,V1) =
⎧⎪⎨⎪⎩

nmax
2 if m1 < z∗[(

z1−𝛼(1−V1)
m1

)2
− 1

]
n1 if m1 ∈

[
z∗, z

∗]
nmin

2 if m1 > z∗

(7)

if V1 ⩽ 1, and

ñ2(m1,V1) =
⎧⎪⎨⎪⎩

nmin
2 if m1 > z∗[(

z1−𝛼(1−V1)
m1

)2
− 1

]
n1 if m1 ⩽ z∗

(8)

if V1 > 1, where z∗ =
z1−𝛼(1−V1)√

1+nmax
2 ∕n1

, z∗ = z1−𝛼(1−V1)√
1+nmin

2 ∕n1

.

Figure 2 shows the maximum type I error rate as function of the secondary endpoint effect size for dif-
ferent correlations between the primary and the secondary endpoint 𝜌 ∈ {0, 0.5, 0.8, 0.9, 1}. The worst
case conditional error rate was determined by simulation (200,000 simulation runs if not indicated oth-
erwise) setting 𝜎 = 1, a nominal one-sided significance level of 2.5%, and n1 = 144 (which is half the
total sample size required for a z-test with power 80% to detect an absolute treatment effect of 1/3 in
the primary endpoint). We consider effect sizes in the secondary endpoint ranging from 0 to 2. On first
sight, the latter may appear large for trials with the chosen sample size; however, effects in secondary or

1976
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Figure 2. Maximum type I error rate as a function of the secondary endpoint effect size with and without restric-
tions for the second stage sample size. Here, the first stage sample size n1 = 144 and 𝜎 = 1. (Black) solid lines
denote unrestricted results, and (red) dashed lines results for restricted case with nmin

2 = n1∕2 and nmax
2 = 4n1.

𝜌 ∈ {0, 0.5, 0.8, 0.9, 1} and the larger the 𝜌 the thicker the line.

safety endpoints (such as, for example, laboratory parameters) are typically not relevant for the power
calculation and may substantially differ from the treatment effect in the primary endpoint the study is
powered for.

In each simulation run, primary and secondary endpoint data were simulated from a bivariate normal
distribution, and the maximum conditional error rate was computed based on the approximation (6) with
the second stage sample size as defined by (7) and (8). The final maximum type I error rate was then
calculated based on the total Z-test statistics ZN for the unrestricted case with nmin

2 = 0 and nmax
2 = ∞

and for the restricted case with nmin
2 = n1∕2 and nmax

2 = 4n1 Figure 2(a). For both cases, the maximum
type I error rate increases with the correlation 𝜌 between the primary and the secondary endpoint. If this
correlation is 𝜌 = 1, and providing that a secondary endpoint effect is present, the maximum type I error
rate under unrestricted case is 𝛼max = 0.062, which equals the maximum type I error rate inflation for an
unblinded analysis reported by [2].

Careful examination of Figure 2(a) reveals that the type I error rate is already inflated when the sec-
ondary endpoint effect size is zero. This is an artifact of assuming the variance 𝜎2 to be known. In this
case, m1 = 0 and V1 is proportional to

∑
x2

i . Rules (7) and (8) reduce to choosing n2 as small as pos-
sible when V1 > 1, that is, when there is excess variation in the blinded data, and as large as possible
when V1 < 1. Intuitively, this is because a larger variance increases the chance of obtaining a significant
result. In an attempt to remove this artifact, we re-ran the simulations, but this time performing a t-test
at the final analysis Figure 2(b). In this case, the procedure becomes slightly conservative at a secondary
endpoint effect size of zero. Again, this makes sense for a reassessment procedure that tends to produce
a high variance estimate (since this term appears in the denominator of the t statistic).

4. Block randomization

Often, randomization is performed in blocks to guarantee that the treatment allocation frequencies in
the earlier and later phases of a trial are balanced (e.g., Miller et al. (2009) [21]). Consider a trial with
block randomization with blocks of length 𝜏, where 𝜏 is even and the treatment allocation is balanced
(P(Gi = 0) = P(Gi = 1) = 1∕2). In this section, we investigate the extent to which the additional
information on the treatment allocation provided by the blocking allows one to introduce additional bias
by sample size reassessment.

For example, for a block size of 𝜏 = 2, for each block, there are only two possible allocation sequences,
AB and BA. Both have probability 1/2. Obviously, the conditional probability, given the blinded data,
that the first subject has been assigned to group A is equal to the conditional probability of the allo-
cation sequence AB, conditional on the data of the primary and secondary endpoints of both subjects
in the block. As we now use data from two patients to estimate probability of the allocation sequence
AB (which is the allocation probability of the first subject) and there are only two possible sequences,
we obtain a more informative estimate than in the random allocation scenario, where the allocation
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probability of each patient was estimated based on its own data only. However, the additional informa-
tion on allocation probabilities provided by the consideration of the allocation sequences decreases with
the block size. For a block size of four, for example, there are

(4
2

)
= 6 possible allocation sequences:

AABB,ABAB,ABBA,BABA,BBAA,BAAB. Each has (unconditional) probability 1∕6. To compute the
conditional probability that the first patient is in group A, given the blinded data of the four patients in
the block, we need to sum the conditional allocation probabilities of the first three allocation sequences.
While for block size two, we used data from two patients to estimate the probabilities of two possible
allocation sequences; for a block size of four, we used the data of four patients to estimate the probabil-
ities of six possible allocations. In general, for block length 𝜏, there are K =

(
𝜏

𝜏∕2

)
possible allocation

sequences, each with unconditional probability 1∕K, and we need to estimate K allocation probabilities
based on the blinded data of 𝜏 patients. Because K >> 𝜏 for larger 𝜏, it is intuitively clear that for larger
block length the additional information provided by blocking decreases (see also [21]).

To compute the worst case sample size reassessment rule in case of blocked randomization, we need
to introduce some notation. Let T = {1, 1 + 𝜏, 1 + 2𝜏,… , n − 𝜏 + 1} denote the set of indices where
a new block starts. For i ∈ T let 𝐛i = (xj, yj)i+𝜏−1

j=i , denote the observations in the block starting with

the ith patient. Let 𝝎(i)
k = (𝜔(i)

k,j)
𝜏

j=1, k = 1… ,K denote the indicator vectors of the K possible treatment

allocations for block 𝐛i, i ∈ T, where 𝜔
(i)
k,j ∈ {0, 1} and

∑𝜏

j=1 𝜔
(i)
k,j = 𝜏∕2 for all i ∈ T. Here, 𝜔(i)

k,j = 0
denotes that in the kth treatment allocation for ith block the jth patient in the block was allocated to group
A (control), and 𝜔

(i)
k,j = 1 denotes that this patient was allocated to group B (treatment). Under block

randomization, each allocation is equally likely, such that P
(
𝝎
(i)
k

)
= 1∕K for k = 1, 2,… ,K and i ∈ T

and the joint density for the observations bi in block i is given by

f (bi) =
1
K

K∑
k=1

f
(

bi|𝝎(i)
k

)
,

where f (bi|𝝎(i)
k ) =

∏𝜏−1
l=0 f (xi+l, yi+l|gi+l = 𝜔

(i)
k,l+1), and f (xi+l, yi+l|gi+l = 𝜔

(i)
k,l+1) denotes a bivariate nor-

mal density with mean vector (𝜈0, 𝜔
(i)
k,l+1𝜈1 + (1 − 𝜔

(i)
k,l+1)𝜈0), variances 𝜎2, and correlation 𝜌. Then, the

conditional probability of each treatment allocation, given the data of block bi, is given by

P
(
𝝎
(i)
k |bi

)
=

f
(

bi|𝝎(i)
k

)
⋅ P(𝝎(i)

k )

f (bi)
=

f
(

bi|𝝎(i)
k

)
∑K

k=1 f
(

bi|𝝎(i)
k

) , k = 1, 2,… ,K.

To derive the sample size reassessment rule that maximizes the type I error rate, we compute the
conditional expectation and conditional variance of the first stage test statistics Z1, conditional on the
blinded first stage observations (Xi, Yi)

n1

i=1 ∶

mZ1
= E
(
Z1|(Xi,Yi)

n1

i=1 = (xi, yi)
n1

i=1

)
= 1

𝜎
√

n1

∑
i∈T

E
(
m𝜏,i|bi

)
=

∑
i∈T
∑K

k=1 P
(
𝝎
(i)
k |bi

)
m(k)

𝜏,i√
n1

,

vZ1
= Var

(
Z1|(Xi,Yi)

n1

i=1 = (xi, yi)
n1

i=1

)
= 1

𝜎2n1

∑
i∈T

⎛⎜⎜⎝
K∑

k=1

P
(
𝝎
(i)
k |bi

)(
m(k)

𝜏,i

)2
−

(
K∑

k=1

P
(
𝝎
(i)
k |bi

)
m(k)

𝜏,i

)2⎞⎟⎟⎠ ,

where m𝜏,i =
∑𝜏−1

l=0 (2Gi+l − 1)Xi+l , and m(k)
𝜏,i is a realization of m𝜏,i at kth treatment allocation of ith block

at (Xi,Yi) = (xi, yi). As in the random allocation case, the conditional distribution of Z2 given the blinded
first stage observations (Xi, Yi)

n1

i=1 is standard normal, and we approximate the conditional distribution of
Z1 by a normal distribution with mean mZ1

and variance vZ1
. As in the unblocked case, we can express

the overall test statistic ZN as a weighted sum of the stage wise test statistics such that the conditional
error rate is given by

PH0

(
ZN > z1−𝛼|(Xi,Yi)

n1

i=1 =
(
xi, yi

)n1

i=1

)
= 1 − Φ

⎛⎜⎜⎜⎝
z1−𝛼 −

√
n1

N
mZ1√

n1

N
vZ1

+ n2

N

⎞⎟⎟⎟⎠ . (9)1978
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Figure 3. Maximum type I error rate without restrictions for the second stage sample size and for blocked ran-
domization with block sizes 2, 4, 6 and the unblocked design (n1 = 144, 𝜌 = 0 , 𝜎 = 1 , and 2.5 ⋅ 105 (2 ⋅ 105)

simulation runs for block size 2 (4, 6, unblocked design)).

If there are restrictions for the second stage sample size that is n2 ∈ [nmin
2 , nmax

2 ] for some nmin
2 and nmax

2 ,
then (Appendix A) the value of n2 maximizing (9) can be calculated as in the unblocked case by (7) or
(8) with m1 and V1 replaced by mZ1

and vZ1
, respectively.

Figure 3 shows the maximum type I error rate of the trial with block randomization, with block sizes
{2, 4, 6} (and per group sample size 72) for 𝜌 = 0 and unrestricted second stage sample size (i.e., n2 ∈
[0,+∞)). Results for other correlations for both unrestricted and restricted second stage sample size are
given in the Supporting Information Figure 9.4. As expected, using the additional information on the
blocking of observations increases the maximum type I error rate. The smaller the block size the better
the data can be unblinded, and the larger is the maximal type I error rate.

To implement the aforementioned worst case sample size adaptation rule, one must know the block
size. However, also if the block sizes are not known, the type I error rate may be inflated. Consider a
clinical trial where block randomization is used, but the worst case sample size reassessment rule for
random allocation (7, 8) is applied (which does not require knowledge of the block sizes). To estimate
the type I error rate for such a setting, simulation studies for different block sizes were performed as in
the preceding text. In all considered scenarios, the simulated maximum type I error rate is very close to
the maximum error rate observed in the setting of Section 3, where the same sample size reassessment
rule for random allocation (7, 8) is applied, but random allocation is used to allocate patients (Figure
9.7–9.10 in the Supporting Information).

5. A clinical trial example

As an illustrative example, consider a Phase III clinical trial to asses efficacy and safety of Fingolimod
in patients with relapsing-remitting multiple sclerosis along the lines of the FREEDOMS trial [22, 23].
While in the original trial, 1,272 patients were randomized to receive oral Fingolimod doses of 0.5 or
1.25 mg or placebo daily; for simplicity, we consider a trial with two parallel groups, comparing only the
higher dose with placebo with N = 800 patients in total, randomly allocated to groups (such that the per-
group sample size is similar to the original trial). The annualized aggregate relapse rate (ARR) during
months 0 to end of study was set as a primary endpoint and is defined as the number of confirmed relapses
in a year. Among the additionally measured parameters is the mean lymphocyte count. It is known from
earlier studies that Fingolimod lowers the lymphocyte count compared wtih placebo. Based on the results
in [24], we assume a mean 𝜈0 = 1.8 [×109 cells/L] for the placebo group and 𝜈1 = 0.55[×109 cells/L] for
the 1.25 mg Fingolimod group with a common standard deviation of 𝜎x = 𝜎y = 0.31[×109 cells/L] for
the mean lymphocyte counts at day 7 (values approximated based on Figure 6 in [24]). Furthermore, it is
known that the lymphocyte counts are causally related to the primary endpoint through the mechanism of
action of Fingolimod. Lee JY et al. (2013)[25] investigated the relation between the predicted lymphocyte
count to ARR. Because no correlation coefficient is given in [25], and we do not have access to the raw
data; we computed the maximum inflation of the type I error rate and the correlation between the blinded
and unblinded effect size estimates for a grid of 𝜌 in [0, 0.9].

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1972–1984
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Assume that in the Phase III trial an interim analysis is performed after n1 = 400 subjects have been
randomized. By (6), the maximum type I error rate for 𝜌 ∈ [0, 0.9] ranges from 𝛼max = 0.054 to 𝛼max =
0.059 and if we restrict the second stage sample size such that ñ2 ∈ [200, 1600] the maximum type I
error rate ranges from 𝛼max = 0.035 to 𝛼max = 0.036 (see Supporting Information Figure 9.6 (a)).

As another example, assume that instead of the lymphocyte counts the mean total white blood cell
counts (WBC) are used. The mean WBC count for the placebo group at 24 months is 𝜈0 = 6.5 ×109

cells/L with a standard deviation of 1.8, the mean for Fingolimod 1.25 mg group 𝜈1 = 3.8 ×109 cells/L
with a standard deviation of 1.3 (estimated from the Supporting Information Figure 1 C in [26]). As we
are not aware of published data on the correlation of WBC and ARR, we computed the maximum inflation
of the type I error rate and the correlation between the blinded and unblinded effect size estimates for a
grid of 𝜌 in [0, 0.9]. Then, pooling the group wise standard deviations to 𝜎 = 1.57, the upper bound for
the type I error rate for 𝜌 ∈ [0, 0.9] ranges from 𝛼max = 0.041 to 𝛼max = 0.054 for unrestricted second
stage sample size and from 𝛼max = 0.031 to 𝛼max = 0.035 if the second stage sample size is restricted to
the interval [200, 1600] (see Supporting Information Figure 9.6 (b)).

6. Discussion

In this work, we demonstrated that even blinded sample size reassessment may lead to an inflation of
the type I error rate if there are secondary endpoints for which the alternative holds. This implies that
unscheduled sample size reassessment, even in a blinded setting, may damage the integrity of the trial.
The numerical results give an upper bound for the inflation of the type I error that may occur due to
blinded sample size reassessment in a setting where the distribution of a secondary endpoint is known to
the experimenter, for example from historical data. While this is a simplifying assumption, the impact of
a treatment on surrogate endpoints is often known from Phase II trials before a Phase III trial is started.

However, the approach can be extended to settings where no prior information on the distribution of the
secondary endpoint is available. In this case, the distribution of the secondary endpoint can be estimated
from the blinded data based on a mixture model with an expectation–maximization (EM) algorithm as in
[27] or [28]. It has been shown that such estimators, when applied to the data of the primary endpoint, are
only reliable for very large effect or sample sizes [29] and perform poorly for effect sizes usually occurring
in clinical trials. However, while large treatment effects in the primary endpoint do occur rarely, this does
not necessarily apply to effect sizes for secondary or safety endpoints (see, for example, the clinical trial
example in Section 5), which are relevant for the setting considered in this manuscript. Overall, depending
on the effect size in the secondary endpoint, the type I error rate resulting from sample size reassessment
based on expectation–maximization algorithms will still be affected, albeit on a lower scale.

In the computation of the worst case sample size reassessment rule, we used only the information from
a single secondary endpoint to estimate the treatment allocation. Instead, one could use the data from
several endpoints: to derive the resulting maximum type I error rate, one needs to replace the bivariate
normal densities in (5) by the respective multivariate densities. To extend the setting of a single interim
analysis to multiple blinded interim analyses, one can derive worst case adaptation rules and the resulting
maximum type I error rate with a backwards induction approach.

We investigated the impact of different randomization procedures on the maximum type I error rate and
found that block randomization, especially with small block sizes, increases the type I error rate inflation,
if the information on the block size is used in the sample size adjustment. If the latter information is not
used, blocking leads to essentially the same inflation as under random allocation. These findings support
current recommendations against too small block sizes and inclusion of information on block sizes in
study protocols [30].

Wang et al. [31] consider a related problem and derive the maximum type I error rate for sample size
reassessment rules based on unblinded interim effect size estimates of a secondary endpoint that is cor-
related with the primary endpoint, but assuming that the primary endpoint is not observed in the interim
analysis. The maximum type I error rate in this setting depends only on the correlation 𝜌 of the primary
and the secondary endpoints, and there is no inflation of the type I error rate if 𝜌 = 0. In contrast, in the
blinded setting considered in this paper, even if the correlation between the primary and the secondary
endpoint is zero, the type I error rate may be inflated. This holds because we assume that the primary
endpoint is observed and the blinding is partially lost due to a treatment effect in the secondary endpoint
that gives information on the treatment allocation. The potential inflation of the type I rate is related
to the fact that this partial loss of blinding allows one to estimate the unblinded first stage effect size
estimate in the primary endpoint X̄ = [

∑n1

i=1 2(2Gi − 1)Xi]∕n1: if the unknown Gi are replaced by qi as
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© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1972–1984
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defined in (5), a blinded estimate is given by X̄b = [
∑n1

i=1 2(2qi − 1)Xi]∕n1 . The correlation r between
X̄ and X̄b (not to be confused with the correlation 𝜌 between primary and secondary endpoint) can be
interpreted as a measure of unblinding and increases with the effect size in the secondary endpoint and
𝜌. In the clinical trial of Section 5, for example, r ranges from 0.97 up to nearly 1 in the first and from
0.68 to 0.96 in the second example for 𝜌 ∈ [0, 0.9] (see Figure 9.5 in the Supporting Information Figures
and Section 8.1 in the Supporting Information for computational details).

Our findings do not contradict the well established use of blinded sample size reassessment based
on aggregate event rates or variance estimates computed from blinded primary endpoint interim data.
However, they demonstrate that the type I error rate control of these methods relies on the application
of specific, binding, pre-planned, and fully algorithmic sample size reassessment rules (as recommended
for data monitoring committee charters, see for example [32]) for which type I error control has been
demonstrated. The type I error rate control does not extend to general sample size adjustments based
on blinded data. Therefore, including only a non-binding option for blinded sample size reassessment in
clinical trial protocols is not sufficient to guarantee type I error rate control. In particular, we quantify the
maximum type I error rate inflation when a worst case adaptation rule is applied that also uses information
from a secondary endpoint.

Our work also implies that post hoc adjustments of the sample size may lead to type I error rate
inflations, even if justified by post hoc scientific arguments (as required in the guideline quoted in the
Introduction). Consider, for example, a scenario where blinded outcome data is available and adaptations
following the rule in Section 3.3 are applied whenever a post hoc selected sample size reassessment rule
(or scientific arguments external to the trial) can be found that justifies that choice. Otherwise, the pre-
specified sample size is used. Because the conditional error rate is increased in all instances where the
sample size is adapted but is unchanged otherwise, the overall type I error rate will be inflated by such
a strategy. Furthermore, note that even aggregate statistics (as referred to in the quoted guidelines) may
contain information on the unblinded treatment effect estimate and therefore may lead to type I error
rate inflation. Examples are the correlation coefficient of the primary endpoint and a secondary or safety
endpoint (if there is a treatment effect in the latter), or per group means of subgroups whose definition is
based on such secondary or safety endpoints. While the assumption that a worst case sample size rule is
applied in an actual clinical trial may not be realistic, it is a means to derive an upper bound for the type
I error rate in settings where no binding sample size reassessment procedure is pre-specified, or post hoc
adaptations are performed, and secondary endpoint data has been available. While the actual type I error
may be substantially lower than this upper bound, it can not be computed because it depends not only
on the realized sample sizes but also on the sample sizes that would have been applied had other interim
data been observed.

In settings where no sample size adjustment algorithm has been pre-specified, alternatives to fixed
sample hypothesis tests are tests based on combination functions or the conditional error rate principle
[2,4,33,34] that control the type I error rate even without pre-specified adaptation rules. The conditional
error rate based procedures even control the type I error rate if no adaptations were pre-planned but are
introduced during the conduct of the study.

Appendix A: Computation of the sample size reassessment rule maximizing the
type I error rate.

To maximize the type I error rate in the second stage sample size ñ2, one needs to maximize the
corresponding conditional error rate, which is (6) for the random allocation case and (9) for the blocked
case. For computational convenience, let us express both conditional error rates as functions of R = ñ2

n1
.

Then, in both considered cases, the conditional error rate can be expressed as 1 − Φ(f (R)), where

f (R) =
z1−𝛼

√
1 + R − m√
v + R

with m = m1 and v = V1 for (6) and with m = mZ1
and v = vZ1

for (9). Finding the ñ2 that maximizes the
conditional error rate is then equivalent to determining the R that minimizes f . The latter can be found
by taking the derivative of f in R. We consider the general case where the second stage sample size may
be restricted that is ñ2 ∈ [nmin

2 , nmax
2 ] for some nmin

2 ≥ 0 and nmax
2 ⩽ ∞. This translates to boundaries
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M. ŻEBROWSKA, M. POSCH AND D. MAGIRR

Rmin,Rmax for R where Rmin = nmin
2 ∕n1 and Rmax = nmax

2 ∕n1. In the unrestricted case, we set nmin
2 = 0 and

nmax
2 = ∞ such that Rmin = 0 and Rmax = ∞. The first derivative of f is given by

𝜕f (R)
𝜕R

=
z1−𝛼(v − 1) + m

√
1 + R

2
√

1 + R(v + R)3∕2
.

Assume first that v < 1. To determine extrema of f , we consider the following cases:

(1) m ⩽ 0. Then, 𝜕f (R)
𝜕R

< 0 and f (R) is minimized at R̃ = Rmax;

(2) m ∈
(

0, z1−𝛼(1−v)√
1+Rmax

)
. Then,

𝜕f (R)
𝜕R

<

z1−𝛼(1 − v)
[√

1+R
1+Rmax

− 1
]

2
√

1 + R(v + R)3∕2
,

and because
√

1+R
1+Rmax

⩽ 1, 𝜕f (R)
𝜕R

< 0 for R ∈ [Rmin,Rmax] and f (R) is minimized at R̃ = Rmax;

(3) m ∈
[

z1−𝛼(1−v)√
1+Rmax

,
z1−𝛼(1−v)√

1+Rmin

]
.

Then, 𝜕f (R)
𝜕R

= 0 for

R̃ =
(

z1−𝛼(1 − v)
m

)2

− 1 ;

R̃ is indeed a local minimum because the second derivative of f

z1−𝛼(1 − v)(3 + v + 4R) − 3m(1 + R)3∕2

4(1 + R)3∕2(v + R)5∕2
,

evaluated at R̃ is equal to

− m6(v − 1)

4z2
1−𝛼

(
(v − 1)3

(
m2 + (v − 1)z2

1−𝛼

))3∕2
> 0 .

Furthermore,

f (R̃) =

√
z2

1−𝛼(v − 1) + m2

v − 1
.

(4) m >
z1−𝛼(1−v)√

1+Rmin

. Then,

𝜕f (R)
𝜕R

>

z1−𝛼(1 − v)
[√

1+R
1+Rmin

− 1
]

2
√

1 + R(v + R)3∕2
,

and because
√

1+R
1+Rmin

> 1, 𝜕f (R)
𝜕R

> 0 for R ∈ [Rmin,Rmax] and f (R) is minimized at R̃ = Rmin.

Taking all the four cases together, we obtain for v < 1 that the R̃ minimizing f (R) is

R̃(m, v) =
⎧⎪⎨⎪⎩

Rmax if m < z∗[(
z1−𝛼(1−v)

m

)2
− 1

]
if m ∈

[
z∗, z

∗]
Rmin if m > z∗

, (A.1)

where z∗ =
z1−𝛼(1−v)√
1+nmax

2 ∕n1
, z∗ = z1−𝛼(1−v)√

1+nmin
2 ∕n1

.
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Now, taking ñ2(m, v) = n1R̃, we obtain the sample size reassessment rule (for v < 1)

ñ2(m, v) =
⎧⎪⎨⎪⎩

nmax
2 if m < z∗[(

z1−𝛼(1−v)
m

)2
− 1

]
n1 if m ∈

[
z∗, z

∗]
nmin

2 if m > z∗

, (A.2)

If now v > 1, then consider the following cases:

• m ≥ 0 : then, 𝜕f (R)
𝜕R

> 0 and f (R) is minimized at R̃ = Rmin,

• m ∈ (z∗, z∗): then, 𝜕f (R)
𝜕R

> 0 and f (R) is minimized at R̃ = Rmin,

• m ⩽ z∗ : then, f (R) is minimized at R̃ =
(

z1−𝛼(1−v)
m

)2
− 1,

• m > z∗: then, 𝜕f (R)
𝜕R

> 0 and f (R) is minimized at R̃ = Rmin.

Summarizing for v > 1 the R̃ minimizing f (R) is

R̃(m, v) =
⎧⎪⎨⎪⎩

Rmin if m > z∗[(
z1−𝛼(1−v)

m

)2
− 1

]
if m ⩽ z∗

, (A.3)

Taking ñ2(m, v) = n1R̃, we obtain the sample size reassessment rule (for v > 1)

ñ2(m, v) =
⎧⎪⎨⎪⎩

nmin
2 if m > z∗[(

z1−𝛼(1−v)
m

)2
− 1

]
n1 if m ⩽ z∗

. (A.4)
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