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Background and Purpose Multiphase computed tomographic angiography (mCTA) provides time 
variant images of pial vasculature supplying brain in patients with acute ischemic stroke (AIS). To 
develop a machine learning (ML) technique to predict tissue perfusion and infarction from mCTA 
source images.
Methods 284 patients with AIS were included from the Precise and Rapid assessment of collater-
als using multi-phase CTA in the triage of patients with acute ischemic stroke for Intra-artery 
Therapy (Prove-IT) study. All patients had non-contrast computed tomography, mCTA, and com-
puted tomographic perfusion (CTP) at baseline and follow-up magnetic resonance imaging/non-
contrast-enhanced computed tomography. Of the 284 patient images, 140 patient images were 
randomly selected to train and validate three ML models to predict a pre-defined Tmax threshold-
ed perfusion abnormality, core and penumbra on CTP. The remaining 144 patient images were 
used to test the ML models. The predicted perfusion, core and penumbra lesions from ML models 
were compared to CTP perfusion lesion and to follow-up infarct using Bland-Altman plots, con-
cordance correlation coefficient (CCC), intra-class correlation coefficient (ICC), and Dice similarity 
coefficient. 
Results Mean difference between the mCTA predicted perfusion volume and CTP perfusion volume 
was 4.6 mL (limit of agreement [LoA], –53 to 62.1 mL; P=0.56; CCC 0.63 [95% confidence interval 
[CI], 0.53 to 0.71; P<0.01], ICC 0.68 [95% CI, 0.58 to 0.78; P<0.001]). Mean difference between 
the mCTA predicted infarct and follow-up infarct in the 100 patients with acute reperfusion (mod-
ified thrombolysis in cerebral infarction [mTICI] 2b/2c/3) was 21.7 mL, while it was 3.4 mL in the 
44 patients not achieving reperfusion (mTICI 0/1). Amongst reperfused subjects, CCC was 0.4 (95% 
CI, 0.15 to 0.55; P<0.01) and ICC was 0.42 (95% CI, 0.18 to 0.50; P<0.01); in non-reperfused sub-
jects CCC was 0.52 (95% CI, 0.20 to 0.60; P<0.001) and ICC was 0.60 (95% CI, 0.37 to 0.76; 
P<0.001). No difference was observed between the mCTA and CTP predicted infarct volume in the 
test cohort (P=0.67).
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Introduction

Infarct predicted using computed tomographic perfusion (CTP) 
at admission is often used in treatment decision making in pa-
tients with acute ischemic stroke (AIS).1-4 CTP classifies core 
(predicted infarction) and penumbra using tissue perfusion es-
timates derived using a deconvolution algorithm from serial 
imaging of the brain. The mismatch ratio between salvageable 
tissue (penumbra) volume and core volume is used for select-
ing patients presenting beyond 6 hours and up to 24 hours 
from last known well.3 Although widely used, CTP has longer 
acquisition times and consequent susceptibility to patient mo-
tion, concerns about radiation dose and limited z axis coverage, 
especially with some older scanners.5-8 Multiphase computed 
tomographic angiography (mCTA) is an alternative imaging 
technique that has been similarly used to select patients with 
AIS for endovascular therapy (EVT) in recent clinical trials.9,10 It 
generates whole brain time-resolved (three phases) images of 
pial arteries and veins beyond an occlusion while also deter-
mining thrombus location, size, vessel patency and tortuosi-
ty.11,12 mCTA has a simpler image acquisition protocol, lower ra-
diation exposure and less need for intravenous contrast in spite 
of its requirements for expertise to interpret when compared 
to a CTP based acute stroke imaging protocol.11 Due to its lim-
ited temporal resolution however, this technique has not been 
used to predict ischemic tissue fate on a voxel-by-voxel basis, 
in the same way as CTP imaging is used. Recent studies how-
ever show that mCTA can be used to semi-quantitatively pre-
dict tissue fate at a regional level, similar to CTP.13-15 An ability 
to harness the advantages of mCTA while producing brain 
maps that estimate tissue perfusion and predict tissue fate like 
CTP is likely to be of significant clinical utility. 

We therefore aim to develop a machine learning (ML) based 
technique to estimate brain tissue perfusion abnormality and 
predict core and penumbra similar to what CTP does in pa-
tients with AIS.

Methods

Data were from the Precise and Rapid assessment of collaterals 
using multi-phase CTA in the triage of patients with acute 

ischemic stroke for Intra-artery Therapy (Prove-IT) study,11,13 a 
multicenter study that acquired acute multimodal CT imaging 
including non-contrast-enhanced computed tomography 
(NCCT), mCTA imaging (three phases), and CTP at baseline 
among ischemic stroke patients.11,13 This study was approved by 
the local Institutional Review Board. Written informed consent 
by the patients was waived due to a retrospective nature of 
our study.

Study participants 
Subjects who had (1) baseline NCCT and mCTA; (2) baseline 
CTP imaging with ≥8 cm z axis coverage; (3) had reperfusion 
assessed on conventional angiography after thrombolysis 
treatment (intravenous tissue plasminogen activator, EVT, or 
both) with the modified thrombolysis in cerebral infarction 
[mTICI]); and (4) had 24/36-hour follow-up imaging on diffu-
sion magnetic resonance imaging or NCCT were included in 
this analysis. Patient inclusion and exclusion are shown in Fig-
ure 1. We included 284 patients, of whom, 196 patients had 
acute reperfusion (mTICI 2b/2c/3) and 88 patients did not 

(mTICI 0/1).

Conclusions A ML based mCTA model is able to predict brain tissue perfusion abnormality and fol-
low-up infarction, comparable to CTP.

Keywords Ischemic stroke; Multiphase computed tomography angiography; Cerebral infarction; 
Perfusion; Machine learning 

Figure 1. Patient inclusion chart. CTP, computed tomographic perfusion.
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Figure 2. Training and testing strategy of machine learning models to predict core, penumbra and perfusion status. (A) Derivation and testing of penumbra 
model and infarction model using follow-up infarct as reference standard. (B) Derivation and testing of the perfusion model using time-dependent Tmax 
thresholded map as reference standard. mCTA, multiphase computed tomographic angiography.
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Figure 3. Multiphase computed tomographic angiography (mCTA) predicted infarct map compared to computed tomographic perfusion (CTP) time-dependent 
Tmax thresholded map when compared to follow-up infarct. (A) Patient who achieved reperfusion (modified thrombolysis in cerebral infarction [mTICI] 2b), (B) 
patient who did not achieve reperfusion, and (C) patient who achieved reperfusion (mTICI 3). Columns: mCTA phase 1 to 3, mCTA predicted perfusion maps, 
mCTA predicted core (red in column 5) and penumbra (blue in column 5) overlaid on the mCTA predicted perfusion map, CTP Tmax maps, CTP time-dependent 
Tmax threshold predicted infarct, infarct contoured in follow-up imaging, respectively. The penumbra is shown as affected tissue from the penumbra model 
minus affected tissue from the core model.
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Imaging protocol

NCCT and mCTA
NCCT with 5 mm slice thickness was obtained, followed by 
mCTA with arch to vertex coverage in the first (arterial) and 
skull base to vertex coverage the second (peak venous) and 
third (late venous) phase. Detailed mCTA acquisition parame-
ters have been published previously.11 Axial images with 1 mm 
overlap and multiplanar axial, coronal, and sagittal reconstruc-
tions with 3 mm thickness, 1 mm intervals and 1 mm overlap 
for the first phase were obtained, along with axial maximum 
intensity projections for all three phases with 24 mm thickness 
and 4 mm intervals.

CTP
Iodinated contrast agent 45 mL were injected at a rate of 4.5 
mL/sec followed by a 40 mL saline bolus injected at a rate of 6 
mL/sec. Image acquisition started 5 seconds after contrast in-
jection and 24 passes over 66 seconds were performed with 5 
mm section thickness and a cranio-caudal coverage of 8 cm.

Image preprocessing
Each CTP study was processed using commercially available 
delay-insensitive deconvolution software (CT Perfusion 4D, GE 
Healthcare, Waukesha, WI, USA). Absolute maps of cerebral 
blood flow (mL/min/100 g), cerebral blood volume (mL/100 g), 
and Tmax (seconds) were generated. Average maps were creat-
ed by averaging the dynamic CTP source images. Time-depen-
dent Tmax thresholds confirmed previously (Supplementary Ta-
ble 1), were used to generate baseline CTP thresholded maps 

(perfusion volume).6-8 
NCCT and mCTA images were first skull stripped.16 Three 

phase computed tomographic angiography (CTA) images were 
then aligned using rigid-body registration to account for pa-
tient movement. The aligned 3-phase CTA images were regis-
tered onto NCCT images using affine registration. Two radiolo-
gists (>5 years’ experience) used ITK-SNAP (http://www.itk-
snap.org) and consensus to manually delineate the infarct re-
gion on follow-up diffusion-weighted imaging (DWI)/NCCT 
imaging.17 The follow-up images along with manual infarct 
segmentations and CTP average maps were registered onto 
NCCT images, thus bringing all images into the same image 
space. When registration was sub-optimal, manual refinement 
of the registered infarct segmentations was attempted. The 
NiftyReg tool was used for all image registration tasks.18

Machine learning model 
The perfusion map used in this analysis was a Tmax map 
thresholded using previously published time-dependent thresh-
olds.6-8 We defined core as tissue that is infarcted on follow-up 
imaging even with successful reperfusion (defined as mTICI 
score 2b/3). Penumbra was defined as ischemic tissue that is 
not infarct core but infarcts on follow-up imaging when reper-
fusion is not achieved (mTICI score 0–1).6,19,20

We developed three ML models: (1) core model; (2) penum-
bra model; (3) perfusion model. A 2-stage training mechanism 
was developed to train two ML models to predict core and 
penumbra respectively. The detailed training and testing strat-
egy is shown in Figure 2. Of 88 patients without acute reperfu-
sion (mTICI 0/1), 44 patients (35 for training and nine for inter-

Table 1. Patient characteristics in the derivation and test cohorts in the study

Characteristic Derivation cohort (n=140) Test cohort (n=144) P

Age (yr) 73 (62–79) 72 (62–80) 0.73

Male sex 80 (57) 77 (53) 0.56

Baseline NIHSS 17 (7–23) 14 (6–18) 0.12

Baseline ASPECTS 9 (8–10) 9 (8–10) 0.15

Onset-to-imaging time (min) 131 (94–226) 139 (88–294) 0.35

Imaging-to-reperfusion time (min) 90 (68–115) 87 (64–125) 0.97

Onset-to-reperfusion time (min) 245 (172–330) 240 (181–377) 0.71

Follow-up infarct volume (mL) 22.2 (10.3–59.4) 25.9 (10.1–60.6) 0.60

Site of occlusion

ICA 22 (16) 26 (18) 0.76

MCA:M1 73 (52) 70 (48) 0.64

Distal M2, M3, M4, P2, P3, A2, A3, vertebral artery, basilar artery 45 (32) 48 (33) 0.63

Values are presented as median (interquartile range) or number (%). 
NIHSS, National Institutes of Health Stroke Scale; ASPECTS, Alberta Stroke Program Early CT score; ICA, internal carotid artery; MCA, middle cerebral artery. 
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nal validation) were randomly selected to derive a random for-
est classifier at the first stage for prediction of follow-up in-
farction in the non-reperfused patients (penumbra model), 
while the remaining 44 patients were used to test this derived 
penumbra model. Of the 196 patients who achieved reperfu-
sion (mTICI 2b/2c/3), 96 patient images (70 for training and 26 
for internal validation) randomly selected were first processed 
by the 1st stage penumbra model, generating penumbra prob-
ability maps. These probability maps along with mCTA images 
were then used as inputs to derive the second random forest 
classifier at the second stage for infarct prediction (core model) 
using follow-up infarct manually segmented as reference stan-
dard, while the remaining 100 patients were used to test the 
derived core model. The final predictions are shown as core and 
penumbra where penumbra is affected tissue from the penum-
bra model minus affected tissue from the infarct core model 
(Figure 3).

Further, the 140 patient images used for training and inter-
nally validating the penumbra and core models were reused to 
train and internally validate the third random forest classifier 
(perfusion model). For deriving and testing this model, time-de-
pendent Tmax thresholded maps from CTP were used as refer-
ence standard.6-8 The 144 images used for testing the penumbra 
and core models were also used to test the perfusion model. 

All three random forest models shared the same self-de-
signed features as inputs. NCCT Hounsfield units (HU) values 
were first subtracted from 3-phase CTA images, leading to a 
3-point time intensity curve (TIC) for each voxel. Several fea-
tures were extracted from the TIC for each voxel and used for 
deriving and testing the three random forest classifiers. These 
were: (1) average and standard deviation of HUs across 
3-phase CTA images; (2) coefficient of variance of HUs in 
3-phase CTA images; (3) changing slopes of HUs between any 

two phases; (4) peak of HUs in 3-phase CTA images; (5) time of 
peak HU. All these features were calculated in the neighbor-
hood centered at each voxel at three scales (3×3×3, 7×7×7, 
and 11×11×11 voxels) and then normalized using z-score 
method. The hyper-parameters for each random forest model, 
such as the number of trees in the forest and the maximum 
depth of trees, etc., were optimized using 5-fold cross valida-
tion using the respective validation cohort. Class weight was 
set to account for the imbalanced sample distribution based on 
the ratio of positive and negative samples. The random forest 
classifiers derived from the training and internal validation 
dataset was then applied to the test cohort to generate a prob-
ability map for each patient. The probability map was then 
thresholded by a fixed value of 0.35 (determined from the vali-
dation cohort), followed by isolated island removal and mor-
phological operation, to generate the mCTA predicted volume.

Statistical methods
T test for normally distributed data, Fisher’s exact test for cate-
gorical data and the Rank sum test for non-normally distribut-
ed data was used to analyze any differences between groups. 
Time-dependent Tmax thresholded volumes (CTP volume) were 
used as reference standard to evaluate the mCTA predicted 
perfusion volume in the test cohort.6,8 Expert contoured fol-
low-up infarct volume were used as reference standard to 
evaluate mCTA predicted core and penumbra volume in the 
test cohort. Bland-Altman plots were used to illustrate mean 
differences and limit of agreement (LoA) between mCTA pre-
dicted and reference standard volumes. Literal and relative vol-
ume agreement between mCTA predicted and reference stan-
dard volumes were also assessed using concordance correlation 
coefficient (CCC) (Appendix 1) and intra-class correlation coef-
ficient (ICC) (Appendix 1), respectively. Spatial agreement be-

Figure 4. Bland-Altman plots of (A) multiphase computed tomographic angiography (mCTA) infarct volume predicted using the penumbra model versus fol-
low-up infarct volume for the 44 patients who did not achieve acute reperfusion; (B) mCTA infarct volume predicted using core model versus follow-up in-
farct volume for the 100 patients who achieved reperfusion; and (C) mCTA perfusion volume predicted using perfusion model versus time-dependent Tmax 
predicted infarct volume for all 144 patients in the test cohort. CTP, computed tomographic perfusion; SD, standard deviation.
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tween mCTA predicted lesion and reference standard was as-
sessed using Dice similarity coefficient (DSC) (Appendix 1). All 
statistical analyses were performed using MedCalc version 17.8 
(MedCalc Software, Mariakerke, Belgium) and MATLAB R2018a 
(The MathWorks Inc., Natick, MA, USA). A two-sided alpha 
<0.05 was considered as statistically significant.

Results

Study participants
Patient characteristics are summarized in Table 1. No differ-
ences were observed between the derivation and test cohorts 
(all P>0.05). Patient characteristics in patients with mTICI 2b/3 
and 0/1 are summarized in Supplementary Table 2.

Accuracy of mCTA in predicting tissue perfusion 
status
Figure 4A illustrates a Bland-Altman plot showing agreement 
between the mCTA predicted perfusion volume and pre-speci-
fied CTP Tmax thresholded perfusion volume for 144 patients 
in the entire test cohort. The mean difference between the 
mCTA perfusion volume (median, 40.5 mL; interquartile range 
[IQR], 22.9 to 59) and CTP volume (median, 26.9 mL; IQR, 6.7 
to56.7) was 4.6 mL (LoA, –53 to 62.1; P=0.56), CCC was 0.63 
(95% confidence interval [CI], 0.53 to 0.71; P<0.01) and ICC 
was 0.68 (95% CI, 0.58 to 0.78; P<0.001). The median DSC be-
tween mCTA predicted perfusion and CTP perfusion was 40.5% 
(IQR, 25.7% to 52.7%).

Accuracy of mCTA in predicting follow-up 
infarction
Figure 4B illustrates a Bland-Altman plot between mCTA pre-
dicted infarct volume and follow-up infarct volume in the 44 
patients who did not receive acute reperfusion (mTICI 0/1) in 
the test cohort. The mean difference between this mCTA pre-
dicted infarct volume (median, 33.2 mL; IQR, 20.6 to 53.2) and 

follow-up infarct volume (median, 26.8 mL; IQR, 12.3 to 54.8) 
was 3.4 mL (LoA, –66 to 72.9; P=0.69). The CCC between the 
two volumes was 0.52 (95% CI, 0.20 to 0.60; P<0.001) while 
the ICC was 0.60 (95% CI, 0.37 to 0.76; P<0.001). The median 
DSC between the mCTA predicted infarct and follow-up infarct 
was 26.5% (IQR, 12.9% to 39.3%).

Figure 4C illustrates a Bland-Altman agreement between 
the mCTA predicted core volume and follow-up volume for 
100 patients who achieved acute reperfusion (mTICI 2b/2c/3) 
in the test cohort. The mean difference between the mCTA 
predicted core volume (median, 37 mL; IQR, 23 to 58) and 
follow-up volume (median, 26 mL; IQR, 13 to 54) was 21.7 
mL (LoA, –41.0 to 84.3; P=0.48), CCC was 0.4 (95% CI, 0.15 
to 0.55; P<0.01) and ICC 0.42 (95% CI, 0.18 to 0.50; P<0.01). 
The median DSC between the mCTA predicted core and fol-
low-up infarct was 24.7% (IQR, 13.8% to 30.4%).

Comparing mCTA machine learning models to 
CTP in predicting follow-up infarction
Infarct volumes predicted by the mCTA models and those by 
CTP versus the reference standard (follow-up infarct volume) in 
the test cohort (n=144) are shown in Table 2 and showed no 
statistically significant differences for any measure (all P>0.05). 
CCC and ICC for the core model, mCTA penumbra model, and 
time-dependent Tmax thresholding predicted volumes com-
pared to follow-up infarct volume between 136 patients with 
anterior circulation (internal carotid artery, middle cerebral ar-
tery, and anterior cerebral artery) and eight patients with pos-
terior circulation (vertebral and basilar) occlusions are summa-
rized in Supplementary Table 3.

Discussion

mCTA with its simple three phase image acquisition protocol is 
a quick and easy-to-implement imaging tool used in patients 
with AIS.11 The ML technique described in this study shows that 

Table 2. Statistical comparison between infarct volumes predicted by the mCTA machine learning models versus those by CTP (time-dependent Tmax thresh-
olds as per literature6,8) in the test cohort (n=144)

Variable mCTA core and penumbra model mCTA tissue perfusion model CTP Tmax thresholded model (CTP)6,8 P

Predicted volume (median [IQR], mL) 37.3 (21.3 to 57.8) 40.5 (22.9 to 63) 38.3 (15.0 to 65.5) 0.67

Volume difference* (mean [LoA], mL) 21.7 (–44 to 86.3) 20.4 (–51.3 to 92.1) 22.3 (–42.6 to 87.2) 0.45

DSC (median [IQR], %) 22.5 (13.8 to 30.4) 21.7 (10.9 to 31.2) 23.2 (13.9 to 33) 0.55

CCC (95% CI) 0.43 (0.18 to 0.58) 0.41 (0.16 to 0.62) 0.45 (0.32 to 0.54) NA

ICC (95% CI) 0.5 (0.29 to 0.64) 0.47 (0.3 to 0.56) 0.54 (0.3 to 0.64) NA

mCTA, multiphase computed tomographic angiography; CTP, computed tomographic perfusion; IQR, interquartile range; LoA, limit of agreement; DSC, Dice 
similarity coefficient; CCC, concordance correlation coefficient; CI, confidence interval; NA, not applicable; ICC, intra-class correlation coefficient. 
*Volume difference is defined as follow-up infarct volume minus model prediction, generated from Bland-Altman analysis. 
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tissue perfusion status can be automatically estimated from 
the mCTA, a technique with limited temporal resolution, just as 
it is currently done using CTP imaging that has a much higher 
temporal resolution. In addition, the mCTA ML models de-
scribed in this study are able to predict tissue fate in patients 
with AIS similar to what current CTP techniques can do.6-8 The 
mCTA ML models could therefore help support physicians in 
making clinical decisions regarding acute stroke treatment, es-
pecially in hospitals without CTP capabilities. 

Imaging paradigms currently used for selecting patients with 
AIS for treatment include non-contrast CT, single-phase CTA, 
or CTP. Although CTP is widely used in large comprehensive 
stroke centers, its adoption in smaller, less academic hospitals 
and in primary stroke centers continues to be limited. Concerns 
about technical expertise needed for its implementation and, 
the additional radiation and contrast needed when compared 
to a stroke protocol based on NCCT and single-phase CTA limit 
its acceptability in smaller hospitals. CTP is also sensitive to 
patient motion, a feature that invalidates that tool in almost 
10 to 25% of patients.21 As an example, eleven patients were 
excluded from this study as CTP maps generated by the soft-
ware were corrupted due to excessive patient motion during 
acquisition (Figure 5). mCTA is a simple extension (two addi-
tional phases) of single-phase CTA that is used as standard 

Tmax CBF CBV mCTA prediction Follow-up infarct

Figure 5. An example shows the computed tomographic perfusion (CTP) maps (column 1–3) due to the excessive movement of the patient during CTP acqui-
sition, versus multiphase computed tomographic angiography (mCTA) prediction (column 4) that correlates well with follow-up imaging (column 5). CBF, ce-
rebral blood flow; CBV, cerebral blood volume.

Phase 1 Phase 2 Phase 3
mCTA predicted 
perfusion map Tmax Follow-up infarct

Figure 6. An example shows the multiphase computed tomographic angiography (mCTA) prediction, computed tomographic perfusion map, and follow-up 
imaging of a patient with posterior circulation occlusion.

Figure 7. Failure cases from multiphase computed tomographic angiography 
(mCTA) prediction. (A) Row shows images from a patient who presented ultra-
early with an onset-to computed tomography time of 21 minutes. The mCTA 
model significantly over-predicts follow-up infarct. (B) Row shows images from 
a patient without obvious occlusion; the mCTA model shows a false positive per-
fusion abnormality in the left posterior occipital region. (C) Row shows images of 
a patient with an internal carotid artery occlusion; the mCTA model under-esti-
mates the perfusion abnormality. Column 1–3: mCTA predicted follow-up infarct, 
Tmax, and follow-up infarct imaging. NCCT, non-contrast-enhanced computed 
tomography; DWI, diffusion-weighted imaging.
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care in all hospitals imaging patients with acute stroke. It 
therefore has whole brain coverage, involves no additional use 
of intravenous contrast, involves very limited radiation increase 
and is less prone to patient motion.12,13,16 It has been used in 
clinical trials such as The Endovascular Treatment for Small 
Core and Anterior Circulation Proximal Occlusion with Empha-
sis on Minimizing CT to Recanalization Times (ESCAPE) and ES-
CAPE NA1 to select patients for EVT.22,23 ML models such as 
those developed in this study have the potential to harness 
these advantages of mCTA while generating tissue perfusion 
and tissue fate prediction maps similar to CTP; thus, potentially 
increasing physician confidence in decision making in hospitals 
that currently do not do CTP. Of note, unlike conventional 
mCTA but similar to CTP, the technique described in this study 
is capable of detecting smaller perfusion lesions in the entire 
brain including the posterior circulation (Figure 6). 

A strength of the developed ML technique is that it does not 
rely on deconvolution algorithms, which plays an essential role 
in current CTP processing. Although deconvolution methods 
can appropriately model perfusion status, the introduction of 
physiological variations in arterial delivery of contrast, the ef-
fects of collateral flow, and venous outflow components of ce-
rebral perfusion, greatly increase the computational complexi-
ty.24,25 The number of variables and the algorithms used to cal-
culate these variables results in variability in generating CTP 
threshold values for estimating core and penumbra across dif-
ferent vendor software. Additionally, numerical solutions to de-
convolution greatly rely on accurate selection of artery input 
function, a parameter that is case dependent and sensitive to 
noise, especially given the low signal to noise ratio of perfusion 
images, even when preprocessing, such as motion correction, 
temporal and spatial smoothing, and deconvolution regulariza-
tion are applied.26,27 The deconvolution free approach developed 
in this study can be easily integrated into any imaging para-
digm using NCCT and mCTA as a post-processing step, poten-
tially obviating the need for CTP. Of note, the random forest 
classifiers used in this study to predict tissue fate at vox-
el-by-voxel basis generally works well with a mixture of nu-
merical and categorical features and with a large amount of 
data points. Such large amount of data points can be challeng-
ing for traditional machine leaning techniques like support 
vector machines and logistic regression models.28 The average 
processing time per patient is around 5 to 6 minutes including 
co-registering three phase CTA and NCCT images. Deep learn-
ing techniques, such as convolutional neural network (CNN), 
are also promising tools for the type of image analysis we at-
tempted here.29 Implementing CNNs however has some chal-
lenges. These include limitations in dealing with imbalanced 

samples (e.g., small objects [infarct region] vs. background) or 
with small training datasets that lack diversity. 

The correlation between the mCTA predicted core and pen-
umbra volume and follow-up infarct volume are moderate 
with CCC and ICC ranging 0.4 to 0.5. The correlation between 
the mCTA perfusion volume and CTP perfusion volume is stron-
ger with CCC and ICC of >0.6. The spatial overlap between the 
ML predicted volume or the CTP predicted volume and fol-
low-up infarct volume appears weak with DSC of <30%. The 
moderate volume correlation and weak DSC can be partially 
attributed to infarct growth, which can occur despite endovas-
cular reperfusion because of delay between imaging and reper-
fusion or incomplete reperfusion. Moreover, accurate quantifi-
cation of ischemic infarct and penumbra in patients with AIS is 
complex and likely influenced by many pathophysiological fac-
tors, such as cerebral autoregulation, collateral responsiveness, 
tissue tolerance to ischemia and hypoxia, leukoaraiosis, etc. 
Weak DSC can also be explained by the limitations of co-regis-
tering different imaging modalities.30 Both DWI and follow-up 
infarct approaches involve registration of DWI to CT, which has 
inherent spatial inaccuracies due to echoplanar image distor-
tion and differing slice thicknesses.

This study has several limitations. First, accurate quantifica-
tion of ischemic infarct and penumbra in patients with AIS is 
complex and likely influenced by infarct location, time factors 
including stroke symptom onset-to-imaging and imag-
ing-to-reperfusion time, and many pathophysiological factors, 
such as cerebral autoregulation, collateral responsiveness, tis-
sue tolerance to ischemia and hypoxia, leukoaraiosis, etc.7,8,31,32 
Our current models were derived using imaging information 
only. Previous studies have suggested that adding clinical in-
formation, such as time8,9 and patient characteristics33 to the 
models may improve prediction accuracy. Integrating this in-
formation into mCTA based prediction models should be inves-
tigated further.7 Second, the mCTA machine leaning models 
need to be improved in patients who present very early, have 
no or very distal occlusions, or have posterior circulation occlu-
sions (Figure 7), etc. Increasing the amount and diversity of 
training data to include more such patients would help to fur-
ther improve the accuracy and robustness of the model. Third, 
although the data used for deriving and validating the models 
in this study were acquired from multiple centers, testing the 
models externally in larger more diverse datasets is necessary 
to translate these results into clinical practice.

Conclusions

In conclusion, as with CTP, core, penumbra, and perfusion sta-
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tus can be automatically predicted from mCTA imaging using 
ML. This work, therefore, has future potential for assisting phy-
sicians in making treatment decisions in clinical settings where 
CTP is not available.

Supplementary materials

Supplementary materials related to this article can be found 
online at https://doi.org/10.5853/jos.2020.05064.
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Appendix 1

Time depended Tmax thresholds using GE CTP 4D
The Tmax thresholds for defining core and penumbra were initially derived on the Prove-IT data6 and externally validated on the 
HERMES data.8 Specifically, GE computed tomographic perfusion (CTP) 4D Tmax (GE Healthcare, Waukesha, WI, USA) >10 was used 
to define the penumbra. Optimal Tmax thresholds for defining core are dependent on stroke onset-to-computed tomography (CT) 
time and CT-to-reperfusion time, which are reproduced in the Table 1.

Criteria for the judgment on CCC, ICC, and DSC values
Both concordance correlation coefficient (CCC; –1 to 1) and interclass correlation coefficient (ICC; –1 to 1) measure the strength 
and direction of a linear relationship between two variables. Basically, CCC and ICC are close to

• 0. No linear relationship
• 0.30. A weak positive linear relationship
• 0.50. A moderate positive relationship
• 0.70. A strong positive linear relationship
• Exactly +1. A perfect positive linear relationship

Dice similarity coefficient (DSC; 0 to 1) measures the spatial overlap of two regions. DSC is close to,
• 0. No overlap
• 0.30. A weak overlap
• 0.50. A moderate overlap
• 0.70. A strong overlap
• Exactly +1. A perfect overlap

Supplementary Table 1. Optimal Tmax thresholds for infarction when reperfused <90, 90 to 180 minutes, and not reperfused

Onset to CTP time (min) CTP to reprefusion time (min) Tmax (sec)

<180 <90 15.8

90–180 12.0

Non-reperfuser 10.1

>180 <90 13.8

90–180 11.8

Non-reperfuser 10.0

CTP, computed tomographic perfusion.
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Supplementary Table 2. Patient characteristics in patients with mTICI 2b/3 and 0/1

Characteristic Patients with mTICI 2b/3 (n=196) Patients with mTICI 0/1 (n=88) P

Age (yr) 73 (62–77) 75 (63–82) 0.53

Male sex 101 (52) 46 (52) 0.51

Baseline NIHSS 14 (7–19) 17 (8–23) 0.11

Baseline ASPECTS 9 (8–10) 8 (7–10) 0.16

Onset-to-imaging time (min) 134 (95–222) 141 (90–300) 0.25

Imaging-to-reperfusion time (min) 88 (68–114) 97 (66–127) 0.77

Onset-to-reperfusion time (min) 237 (170–340) 245 (185–387) 0.61

Follow-up infarct volume (mL)* 18.2 (9.2–49.4) 46.5 (42.1–70.6) 0.02

Site of occlusion

ICA 33 (17) 18 (20) 0.46

MCA:M1 96 (49) 46 (52) 0.44

Distal M2, M3, M4, P2, P3, A2, A3, vertebral artery, basilar artery 67 (34) 24 (28) 0.53

Values are presented as median (interquartile range) or number (%).
mTICI, modified thrombolysis in cerebral infarction; NIHSS, National Institutes of Health Stroke Scale; ASPECTS, Alberta Stroke Program Early CT score; ICA, 
internal carotid artery; MCA, middle cerebral artery. 
*P<0.05.

Supplementary Table 3. Predicted volumes of different models compared to follow-up infarct volume between the patients with anterior circulation (ICA, 
MCA, ACA) and with posterior circulation (vertebral and basilar) occlusions 

Variable
Patients with AC occlusion (n=136) Patients with PC occlusion (n=8)

CCC (95% CI) ICC (95% CI) CCC (95% CI) ICC (95% CI)

mCTA core model 0.44 (0.16–0.58) 0.48 (0.27–0.58) 0.43 (0.15–0.57) 0.46 (0.28–0.61)

mCTA penumbra model 0.45 (0.18–0.60) 0.50 (0.29–0.61) 0.45 (0.20–0.61) 0.45 (0.28–0.59)

Time dependent Tmax thresholding prediction 0.47 (0.20–0.57) 0.56 (0.31–0.66) 0.48 (0.21–0.65) 0.50 (0.29–0.61)

ICA, internal carotid artery; MCA, middle cerebral artery; ACA, anterior cerebral artery; AC, anterior circulation; PC, posterior circulation; CCC, concordance 
correlation coefficient; CI, confidence interval; ICC, intra-class correlation coefficient; mCTA, multiphase computed tomography angiography.


