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Abstract

Duchenne muscular dystrophy (DMD) is a lethal X-linked disorder caused by mutations in the dystrophin gene, which
encodes a cytoskeletal protein, dystrophin. Creatine kinase (CK) is generally used as a blood-based biomarker for muscular
disease including DMD, but it is not always reliable since it is easily affected by stress to the body, such as exercise.
Therefore, more reliable biomarkers of muscular dystrophy have long been desired. MicroRNAs (miRNAs) are small, ,22
nucleotide, noncoding RNAs which play important roles in the regulation of gene expression at the post-transcriptional
level. Recently, it has been reported that miRNAs exist in blood. In this study, we hypothesized that the expression levels of
specific serum circulating miRNAs may be useful to monitor the pathological progression of muscular diseases, and
therefore explored the possibility of these miRNAs as new biomarkers for muscular diseases. To confirm this hypothesis, we
quantified the expression levels of miRNAs in serum of the dystrophin-deficient muscular dystrophy mouse model, mdx, and
the canine X-linked muscular dystrophy in Japan dog model (CXMDJ), by real-time PCR. We found that the serum levels of
several muscle-specific miRNAs (miR-1, miR-133a and miR-206) are increased in both mdx and CXMDJ. Interestingly, unlike
CK levels, expression levels of these miRNAs in mdx serum are little influenced by exercise using treadmill. These results
suggest that serum miRNAs are useful and reliable biomarkers for muscular dystrophy.
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Introduction

Duchenne muscular dystrophy (DMD) is a lethal X-linked

disorder caused by mutations in the dystrophin gene, which encodes

a cytoskeletal protein, dystrophin[1]. The absence of dystrophin

results in progressive degeneration of skeletal and cardiac muscle

with fibrotic tissue replacement, fatty infiltration, and subsequent

early death by respiratory or heart failure[2,3]. Creatine kinase

(CK) is an enzyme related to energy metabolism present in various

types of cells[4]. CK is commonly used as a blood-based

biomarker for muscular dystrophy to evaluate the level of muscle

damage and necrosis, and the efficacy of potential therapies, but it

is not always reliable since it is easily affected by stress to the body,

such as exercise[5,6,7]. Other markers for muscular dystrophy,

such as myoglobin, aldolase or lactate dehydrogenase, also have

the same problem. Therefore, more reliable biomarkers of

muscular dystrophy have long been desired.

MicroRNAs (miRNAs) are small, ,22 nucleotide, noncoding

RNAs which play important roles in the regulation of gene

expression at the post-transcriptional level[8]. Recently, it has been

reported that specific miRNAs in blood are promising biomarkers

for cancer, liver injury and heart failure [9,10,11]. These studies

showed that the levels of specific circulating miRNAs are associated

with the development of these pathological processes. It has also

been reported that miRNAs are released from cells through an

exosomal-mediated pathway[12], suggesting that circulating miR-

NAs are packaged in exosomes, which protects them from RNases.

We hypothesized that the expression levels of specific serum

circulating miRNAs may be useful to monitor the pathological

progression of muscular diseases, and therefore explored the

possibility of these miRNAs as new biomarkers for muscular

diseases. Here, we demonstrate that the serum levels of several

muscle-specific miRNAs are increased in the dystrophin-deficient

muscular dystrophy mouse model, mdx, as well as the canine

X-linked muscular dystrophy in Japan dog model (CXMDJ)

[13,14,15]. These results suggest that serum miRNAs are useful as

markers for muscular dystrophy.

Results

To explore the possibility of miRNA as a biomarker for DMD,

we quantified the expression levels of several miRNAs in the serum
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of mdx by real-time PCR. The expression levels of miRNAs are

indicated as either cycle threshold (Ct) (Figure 1a) or fold

expression compared to wild-type (Figure S1). The Ct values of

the ubiquitously expressed miR-16, brain-rich miR-132 [16] and

small nucleolar RNA 202 (sno202) did not show any significant

differences between wild-type and mdx serum (Figure 1a). In

contrast, muscle-specific miR-1, -133a and -206 [17,18,19] were

significantly increased in mdx (Figure 1a). The expression levels of

these miRNAs in mdx were 10- to 100-fold higher than in wild-type

controls (Figure S1). In Figure 1, the data are shown without

normalization by an internal control RNA. Although small

nuclear RNA U6, sno202 and ubiquitously expressed miRNA,

such as miR-16, are often used as an internal control for miRNA

analysis, there is currently no consensus for a serum internal

control miRNA for real-time PCR analysis. Indeed, we examined

the expression of U6 but found it was undetectable in serum (data

not shown), and sno202 and miR-16 revealed no significant

difference between wild-type and mdx (Figure 1a and Figure S1).

In addition, miR-16 was more abundant than sno202 in serum

(Figure 1a). Therefore, we employed miR-16 as the internal

control for normalization of muscle-specific miRNAs in serum in

the subsequent studies.

We also confirmed the accuracy of miR-16 as an internal

control by using exogeneous miRNA (spiked-in miRNA). C. elegans

miRNA-39 (cel-miR-39) was used as a spiked-in miRNA because

of the lack of sequence homology to mouse miRNAs. Synthetic

cel-miR-39 was spiked into serum after the addition of denaturing

solution including RNase inhibitors. Then, miRNAs were isolated

and the levels of cel-miR-39, miR-16, -1, -133a and -206 were

determined by real-time PCR (Figure S2). In three-repeated

experiments, the quantities of cel-miR-39 and miR-16 showed

similar levels each time (Figure S2a). Furthermore, the

expression levels of miR-1, -133a and -206 were calculated by

normalization with cel-miR-39 or miR-16, individually (Figure
S2b). The expression levels of miR-1, -133a and -206 were highly

elevated in mdx, and the results were consistent between

normalization with cel-miR-39 and miR-16.

It is conceivable that leakage or secretion from skeletal muscle

fibers is the major cause of the increase in muscle-specific miRNAs

in serum, but there remains the possibility that these miRNAs are

excessively expressed in dystrophic skeletal muscle, which then

influences serum expression levels. To investigate this possibility,

we examined the expression level of these miRNAs in the skeletal

muscle (soleus: Sol, tibialis anterior: TA and diaphragm: DIA) of

mdx (Figure S3). Levels of ubiquitously expressed miR-16 were

not different among the muscles examined, but miR-1 and miR-

133a were significantly decreased in Sol and TA of mdx, although

the differences are less than 2-fold. On the other hand, miR-206

was significantly increased in mdx TA and DIA, but not in Sol, and

this increase of miR-206 in some mdx muscles could be related to a

previously reported role for miR-206 in muscle regeneration[20].

Since miR-1 and -133a levels were highly elevated in mdx serum,

although they were not increased in mdx skeletal muscle, suggests

that the increase of muscle-specific miRNAs in mdx serum is

caused by an increase in leakage or secretion of miRNAs from

muscle.

Since it is very important to investigate whether muscle-specific

miRNA levels are affected by exercise like as CK, we compared

CK and miRNA levels in mice serum after exercise using a

treadmill. Both CK and miRNA were increased after the treadmill

exercise (Figure 1b, left, normalized to wild-type control),

however miRNAs appeared to be less affected. When the increase

in miRNAs were corrected by the data before exercise in each

group (Figure 1b, right, normalized by each control), CK showed

almost a 60-fold increase after exercise, whereas the change of

muscle-specific miRNA levels was less than 10-fold.

CXMDJ is a well characterized dog model of DMD, which

shows severe and progressive symptoms[13,14,15]. We therefore

analyzed the expression levels of miRNAs in normal, carrier

(females possessing a mutant dystrophin gene on one of two X-

chromosomes) and CXMDJ dog serum at various ages. The Ct

value of these miRNAs in CXMDJ was significantly smaller than

age-matched controls (Figure S4). Relative expression levels

corrected by miR-16 are shown in Figure 2. These miRNAs are

apparently able to distinguish CXMDJ from age-matched normal

dogs. Shimatsu et al. previously reported that the CK concentra-

tion of CXMDJ dogs do not increase with age [21]. Thus, our

results of these miRNA levels are consistent with the CK levels in

this model.

Our data indicate that the levels of miR-1, -133a and -206

relative to miR-16 are increased in the serum of two animal

models of muscular dystrophy, mdx and CXMDJ. It is very

intriguing that serum miRNA were less affected by stress, such as

exercise, compared with CK. In conclusion, muscle-specific

miRNAs in serum may be useful biological markers for muscular

dystrophy which are more reliable than CK, and further

investigations are required to clarify the molecular mechanisms

by which miRNAs are released from the inside of cells into serum.

Discussion

Recently, several studies have reported that miRNAs in serum

are promising biomarkers for diseases, such as cancers, liver injury

or heart failure [9,10,11]. CK is commonly used as a biomarker of

muscular diseases to evaluate the level of muscle damage and

necrosis, and the efficacy of potential therapies, but it is not always

reliable since it is easily affected by stress to the body, such as

exercise [5,6,7]. Therefore, more reliable biomarkers of muscular

dystrophy have long been desired. We hence investgigated

whether serum miRNAs are useful for monitoring the pathological

condition of muscular diseases. In this report, we demonstrate that

the serum levels of several muscle-specific miRNAs are increased

in two dystrophin-deficient muscular dystrophy animal models.

Importantly, we show that the levels of these miRNAs are much

less affected by stress to the body compared with CK levels.

To investigate the mechanism of the increase of miRNA

expression, we also examined the expression level of miR-1, miR-

133a and miR-206 in the skeletal muscle of mdx (Figure S3). miR-1

and -133a were significantly decreased in Sol and TA of mdx. On the

other hand, miR-206 was significantly increased in TA and DIA of

mdx. Our results suggest that the increase of muscle-specific

miRNAs in the serum of these DMD models is caused by an

increase in leakage or secretion of miRNAs from muscle, and not by

the change of expression in skeletal muscle. However, it is not yet

clear whether the increase of these miRNAs is caused by leakage or

secretion from muscle. It is conceivable that leakage from skeletal

muscle fibers is the major cause of the increase in muscle-specific

miRNAs in mdx serum, but it is hard to explain why these miRNAs

were not degraded by RNase. Mitchell et al. [10] showed that

synthetic miRNAs are immediately degraded in serum even though

endogenous circulating miRNAs are stably expressed in serum. To

explain these results, they suggested that miRNAs are released from

cells through an exosomal-mediated pathway. If circulating

miRNAs are secreted by an exosomal-mediated pathway, it is

possible that dystrophin is involved in the regulation of exosome

secretion and a lack of dystrophin results in increased miRNA

release. However, further investigation is required to clarify the

contribution of dystrophin in exosome secretion.

MicroRNAs as Biomarkers for Muscular Dystrophy
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The change of miRNA expression levels in skeletal muscle of

mdx in this report is consistent with previous reports [20,22]. It is

intriguing that TA muscle of denervated mice also showed an

increase in miR-206 and a decrease in miR-1 and -133a [23].

Yuasa et al. [20] also showed that miR-206 expression was

increased after cardiotoxin-induced muscle regeneration and that

miR-206 contributes to muscle regeneration. Interestingly, it has

been showed that the expression levels of miR-206 in DMD

patients are not increased [24] or that the increase is not as large as

in mdx [22]. Although mdx mice are deficient in dystrophin, they do

not show lethality unlike in humans. Increased miR-206

expression levels in mdx therefore contribute to the different

phenotype between humans and mice. In addition, Williams et al.

[23] showed that expression of miR-206 delayes disease progres-

sion and promotes regeneration of neuromuscular synapses in

amyotrophic lateral sclerosis (ALS) model mice. Taken together,

these results indicate that gene therapy using miR-206 may be a

useful treatment for muscular diseases.

In this report, we focused on muscle-specific miRNAs and

found that they are significantly increased in serum of DMD

models. To investigate whether such an increase can be observed

in some myopathy models which do not have any effective

diagnosis markers, we also measured these muscle-specific

miRNAs in serum of steroid treated dogs. We found that serum

level of miR-1, -133a and -206 were not increased in steroid

treated dog did not show increase compared with non-treatment

controls (data not shown). Intriguingly, Lodes et al. [25] performed

microarray analysis with circulating miRNAs and found an

increase in specific miRNAs in serum of cancer patients.

Furthermore the miRNA expression patterns were able to

discriminate between healthy controls and cancer patients. Such

a microarray analysis may be useful for identifying diagnosis

markers for muscular diseases for which effective diagnosis

markers currently do not exist.

Materials and Methods

Ethics Statement
The dog study was approved by the Ethics Committee for the

Treatment of Middle-sized Laboratory Animals of the National

Institute of Neuroscience, National Center of Neurology and

Psychiatry, approval ID: 21-02 and 22-02. The mice study was

Figure 1. Elevation of muscle-specific miRNA levels in mdx mouse serum. (a) Expression levels of miRNAs in 8-week old male wild-type and
mdx serum. Ct was determined by real-time PCR. In these graphs, the longer bars on each plot indicate the mean, and the shorter bars indicate 6
SEM, n = 5. Asterisk (*) indicates a significant difference (*, P,0.05; **, P,0.01, two-tailed Student’s t-test.). The actual P value for each test was
P = 0.797 (miR-16), 0.222 (miR-132), 0.344 (sno202), 0.011 (miR-1), 0.007 (miR-133a) and 0.001 (miR-206). (b) CK and miRNA expression levels in wild-
type and mdx serum after treadmill exercise. Running on the treadmill was continued for 20 min. About 100 ml of blood was collected from the tail
vein at 0.5, 6 and 48 h after the exercise. Six days before the test, blood was collected as a control. Expression levels were normalized to the wild-type
control (left) or each individual control (right). Data are presented as mean 6 SEM, n = 3. #: wild-type; N: mdx.
doi:10.1371/journal.pone.0018388.g001

MicroRNAs as Biomarkers for Muscular Dystrophy
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approved by the Ethics Committee for the Treatment of

Laboratory Animals of the National Institute of Neuroscience,

National Center of Neurology and Psychiatry, approval ID:

2008011.

Animals and serum samples
All animals in this study were cared for and treated in

accordance with the guidelines provided by the Ethics Committee

for the Treatment Laboratory Animals of National Institute of

Neuroscience, or the Ethics Committee for the Treatment

Laboratory Middle-sized Animals of National Institute of

Neuroscience. Skilled experimental animal technicians, who have

special knowledge of methods to prevent unnecessary excessive

pain, handled the animals and assisted in the experiments.

As Duchenne muscular dystrophy (DMD) models, the X-

chromosome-linked muscular dystrophy (mdx) mouse and canine

X-linked muscular dystrophy in Japan (CXMDJ), Beagle-based

medium-sized dystrophic dogs, were used in this study. In

Figure 1a, whole body blood of male mdx mice (n = 5) or age-

matched controls (strain C57BL/10; B10) (n = 5) at 8 weeks were

collected from the abdominal vena cava under anesthesia. Blood

collection after the treadmill test (Figure 1b), was performed from

the tail vein of mdx (n = 3) or age-matched control (n = 3) under

anesthesia. The phenotype of CXMDJ has been reported

previously[13,14,15]. For analysis of the serum of CXMDJ dogs,

mutation carrier female dogs and wild-type control dogs (n = 3, at

each age indicated in Figure 2), blood was collected from the

subcutaneous vein of the hindlimb, and whole blood was allowed

to stand for about 1 h at room temperature before centrifugation

at 1,800 g for 10 min at room temperature. The resultant serum

was dispensed into a 1.5 ml cryotube and stored at 280uC until

use.

RNA isolation and quantification of miRNA
Total RNA, including miRNA, was extracted from 50 ml of

serum using the mirVana miRNA isolation kit (Ambion, Austin,

TX, USA) according to the manufacturer’s instructions, and

finally eluted with 50 ml of elution buffer provided by the

manufacturer. Five ml of total RNA was reverse transcribed using

the TaqMan miRNA Reverse Transcription kit (Applied Biosys-

tems, Foster City, CA, USA) and miRNA-specific stem-loop

primers (part of TaqMan miRNA assay kit; Applied Biosystems).

The expression levels of miRNA were quantified by real-time PCR

using individual miRNA-specific primers (part of TaqMan

miRNA assay kit; Applied Biosystems) with 7900HT Fast Real-

Time PCR System (Applied Biosystems) according to the

manufacturer’s instructions. There is no current consensus on

the use of an internal control for real-time PCR analysis of serum

miRNA. Therefore, we used fixed volumes of starting serum

(50 ml), buffer for the elution of RNA (50 ml) from starting serum,

and input into the RT reaction (5 ml) in each assay for technical

consistency. Data analysis was performed by SDS 2.1 real-time

PCR data analysis software (Applied Biosystems). Threshold was

fixed at 0.2 in each analysis for data consistency. The similarities of

linearity of primers for each target miRNA were confirmed by

using a dilution series of synthetic miRNAs.

Figure 2. Elevation of muscle-specific miRNAs in CXMDJ dog serum. CK activity and miRNA expression in the serum of normal, carrier and
dystrophy dogs (CXMDJ) at the indicated ages were determined. Expression levels of miR-1, miR-133a, miR-206 and miR-16 were determined by real-
time PCR, and levels of each muscle-specific miRNA (miR-1, miR-133a and miR-206) was corrected by miR-16 levels. Results are indicated as relative
expression to normal dogs at each age, and are presented as mean 6 SEM, n = 3. w: weeks; m: months.
doi:10.1371/journal.pone.0018388.g002

MicroRNAs as Biomarkers for Muscular Dystrophy
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Spiked-in miRNA experiment
We followed the protocol previously reported by Mitchell et al.

[10] to determine endogenous miRNA levels with spiked-in

miRNA. Spiked-in miRNA was designed against C. elegans

microRNA-39 (cel-miR-39)(59-UCACCGGGUGUAAAUCAG-

CUU-39), and was synthesized by Sigma Aldrich Japan. Synthetic

cel-miR-39 was spiked into serum after the addition of denaturing

solution including RNase inhibitors. Isolation of total RNA,

including miRNA, and quantification of the expression levels of

miRNAs by real-time PCR were performed as described above.

Creatine kinase determination
Serum creatine kinase (CK) levels were assayed with the Fuji

Drychem system (Fuji Film Medical Co. Ltd, Tokyo, Japan)

according to the manufacturer’s instructions. Data was expressed

as units per liter (U/l).

Treadmill test
Mice were forced to run on a treadmill (MK-680S treadmill:

Muromachi Kikai, Tokyo, Japan) with an inclination of 0u at 5 m/

min for 5 min. Then, the speed was increased by 1 m/min every

minute for a further 15 min. After the running, blood was

immediately collected from the tail vein, as well as subsequently

collected at the indicated times.

Statistics
Statistical significances between groups were determined by the

two-tailed t-test, or one-way ANOVA with Bonferroni post hoc

test. Each analysis was performed by Prism 5 (Graphpad Software

Inc., San Diego, CA, USA).

Supporting Information

Figure S1 miRNA expression in 8-week old male wild-
type control and mdx serum. Expression levels of miRNAs

were determined by real-time PCR. Results are shown as relative

expression, and data are presented as mean 6 SEM, n = 5.

(TIFF)

Figure S2 (a) Confirmation of the consistency of miRNA
isolation from serum. C. elegans miR-39 (cel-miR-39) was

chemically synthesized and added to the denatured mouse serum

samples. Total RNA was isolated from the mouse serum samples,

and the quantity of exogenous cel-miR-39 and endogenous miR-

16 were determined by real-time PCR. (b) Expression levels of

miR-1, -133a and -206 in wild-type control and mdx serum, which

were individually normalized by the cel-miR-39 spiked-in control

or the endogenous control, miR-16. Results are shown as relative

expression. The longer bars on each plot indicate the mean, and

the shorter bars indicate 6 SEM, n = 3.

(TIFF)

Figure S3 miRNA expression in wild-type control and
mdx muscles. Expression levels of miR-1, -16, -133a and -206

in Soleus (Sol), tibialis anterior (TA) and diaphragm (DIA) were

determined by real-time PCR. Results are shown as relative

expression. sno202 was used as an internal control. Data are

presented as mean 6 SEM, n = 4. Asterisk (*) indicates a

significant difference (*, P,0.05; P,0.01, two-tailed Student’s t-

test.). The actual P value for each test was P = 0.024 (miR-1) and

0.010 (miR-206) in Sol; P = 0.002 (miR-1), 0.008 (miR-133a) and

,0.001 (miR-206) in TA; P = 0.006 (miR-206) in DIA.

(TIFF)

Figure S4 Expression levels of muscle-specific miRNAs
in the serum of normal, carrier and dystrophy dogs
(CXMDJ) at the indicated ages. Each Ct was determined by

real-time PCR. In these graphs, the longer bars on each plot

indicate the mean, and the shorter bars indicate 6 SEM, n = 3.

Asterisk (*) and pound (#) indicate a significant difference

(*, P,0.05; **, P,0.01; ***, P,0.001 from normal: #, P,0.05;

##, P,0.01; ###, P,0.001 from carrier, one-way ANOVA

with Bonferroni post hoc test). w: weeks; m: months.

(TIFF)
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