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Abstract

The human transcription factor (TF) CGGBP1 (CGG-binding protein) is conserved only in amniotes and is believed to
derive from the zf-BED and Hermes transposase DNA-binding domains (DBDs) of a hAT DNA transposon. Here, we show
that sequence-specific DNA-binding proteins with this bipartite domain structure have resulted from dozens of inde-
pendent hAT domestications in different eukaryotic lineages. CGGBPs display a wide range of sequence specificity,
usually including preferences for CGG or CGC trinucleotides, whereas some bind AT-rich motifs. The CGGBPs are almost
entirely nonsyntenic, and their protein sequences, DNA-binding motifs, and patterns of presence or absence in genomes
are uncharacteristic of ancestry via speciation. At least eight CGGBPs in the coelacanth Latimeria chalumnae bind distinct
motifs, and the expression of the corresponding genes varies considerably across tissues, suggesting tissue-restricted
function.
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Transposons can contribute to the evolution of regulatory
networks by providing novel DNA, and in some cases, such as
the hAT family of DNA transposons, being co-opted as
sequence-specific DNA-binding proteins (DBPs), such as tran-
scription factors (TFs) (Feschotte and Pritham 2007; Atkinson
2015). The hAT N-terminal region encodes a BED zinc finger
(zf-BED) and the Hermes transposon DNA-binding and pro-
tein dimerization domain, which are involved in sequence-
specific DNA binding to both subterminal repeat sequences
and inverted terminal repeats (Hickman et al. 2005; Hickman
et al. 2014). The ZBED family of vertebrate TFs is an example
of hAT domestication, having arisen from two different exap-
tations (Hayward et al. 2013). Human CGGBP1 provides an-
other example; it was first identified in a survey of proteins
that bind to the Fragile X (CGG)n repeat expansion (Deissler
et al. 1996, 1997) and it bears remote homology to the N-
terminal region of hATs (Singh and Westermark 2015). I

Transposons often evolve quickly (Khan et al. 2006;
Feschotte and Pritham 2007; Kofler et al. 2015; Arkhipova
2017), and their domain models, which are based on amino
acid (AA) sequence alignments, may not generalize across all
instances of a transposon family. The same is presumably true
of host proteins derived from transposons. Indeed, no signif-
icant domains are detected in CGGBP1 by Pfam (El-Gebali
et al. 2019) and SMART (Letunic and Bork 2018) database
searches, even though CGGBP1 contains an apparent zf-BED
and Hermes DNA-binding domain (DBD). The Panther (Mi
et al. 2019) and Interpro (Mitchell et al. 2019) databases do
contain a CGGBP1 superfamily definition, however.

Intriguingly, this domain model identifies high-scoring host
sequences (CGGBPs) in several bony fish, the sea lamprey
Petromyzon marinus, as well as several insects and fungi.
The CGGBP1 domain model also identifies 29/824 hATs in
the RepeatMasker database, mainly in the hAT-19 subclass
(13/16), suggesting that the CGGBP1 domain model corre-
sponds only to specific hAT subtypes. There is considerable
overlap between species containing hAT-19 RepeatMasker
hits and those with host genes encoding CGGBPs (supple-
mentary table S1, Supplementary Material online). Strikingly,
the genome of the coelacanth Latimeria chalumnae includes
62 CGGBP genes, with 47 containing the full zf-BED and
Hermes DBDs (Amemiya et al. 2013; Yates et al. 2020).

These CGGBP proteins are largely unstudied and undoc-
umented, except for CGGBP1, and the presence in various
databases of proteins with matches to the CGGBP1 domain
model. Here, we present several lines of evidence indicating
that the nonamniote CGGBPs represent a previously undoc-
umented class of bona fide DBPs that have arisen many times
through independent hAT integrations.

CGGBPs Possess Diverse DNA Sequence
Preferences
Determining what sequences DBPs bind is often a starting
point in their characterization (Lambert et al. 2018). We que-
ried the sequence specificity of 101 host CGGBPs (from
Ensembl; Yates et al. 2020) and five CGGBP-like hAT proteins,
using two independent universal protein-binding microarray
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(PBM) designs (Berger et al. 2006). The two arrays (“ME” and
“HK”) (Badis et al. 2008) each contain all possible DNA 10-
mers, but each is embedded within a completely different 35-
mer relative to the other array. The CGGBPs were selected on
the basis of sequence diversity (supplementary fig. S1,
Supplementary Material online). As the vast majority contain
introns and/or are truncated (<200 AAs), they are likely to be
transcribed as mRNA and are not functional hATs (supple-
mentary fig. S3, Supplementary Material online). PBM data
were processed to obtain estimates of significance of binding
to 8-base sequences (represented by multiple spots on the
array), known as 8-mer “E-scores” (Berger et al. 2006) as well as
motifs that summarize the top scoring 8-mers (Ray et al. 2013).

Eighteen of the CGGBPs and four hAT proteins (including
variants of hAT-19_Crp) displayed clear sequence preferen-
ces, that is, a set of high-scoring 8-mers with related

sequences, that were shared between the two array designs
and yielded a clear motif. These 22 proteins all had relatively
long N-terminal extensions (and thus a longer linker between
the GST tag and the CGGBP domain), and most contained
both Cys and His residues that complex zinc in the zf-BED, a
leucine two positions N-terminal to the zf-BED, and two pro-
lines that are widely conserved in the Hermes domain, sug-
gesting that these residues are required for DNA sequence
specificity. Supplementary figure S2, Supplementary Material
online, contains an alignment of all CGGBPs tested, with key
residues annotated. Conditioned on having five of the seven
conserved residues and a 14-AA minimum linker, 36% (22/
61) of the constructs were successful, consistent with previ-
ous results from many bona fide DBD classes (Weirauch et al.
2014).
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FIG. 1. DNA 8-mer preferences of CGGBPs. Heatmap shows E-scores for 8-mers enriched (E � 0.45) in at least one PBM assay. Cell values are scaled
E-scores (10ðE�10Þ�3, then normalized between 0 and 100) and are grouped by hierarchical agglomerative clustering with average linkage. Green
labels represent coelacanth; blue labels represent hAT transposases. Dendrograms were produced through complete-linkage hierarchical clus-
tering of Pearson distances. Silhouettes were obtained from PhyloPic, or created using Public Domain or Creative Commons images.
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Figures 1 and 2 summarize the data for these 22 proteins.
In figure 1, the scores obtained for individual 8-mers are clus-
tered. The groups formed, therefore, reflect only the DNA-
binding data, irrespective of the protein sequences or the
genomes in which they are found. In figure 2, the protein
phylogram reflects the AA replacement rate, with DNA-
binding motifs shown as sequence logos. The groups of
closely related CGGBPs in figure 2, therefore, presumably re-
flect recent shared ancestry.

Several observations support the accuracy of the PBM
data. Human CGGBP1 had highest preference to CGGCGG-
containing sequences, reflecting how it was initially identified
(Deissler et al. 1997). In addition, the DNA-binding motifs for
all four hAT-encoded CGGBPs have high-scoring matches
within subterminal regions of the corresponding Repbase
model (supplementary fig. S3, Supplementary Material

online). Also, in several cases, there are clear similarities be-
tween DNA-binding motifs obtained from CGGBPs with re-
lated protein sequences, even from distantly related genomes.
The coelacanth gene Coel_14934 and the coelacanth hAT-
13_LCh transposon encode similar protein sequences and
yield very similar DNA-binding motifs, suggesting that
Coel_14934 may be a recently co-opted hAT-13_LCh copy.
Sea lamprey, which is >515 Ma distant (Kumar et al. 2017),
also contains a related CGGBP with similar sequence specif-
icity. A similar relationship is found between the CGGBPs
from kanglang fish and climbing perch, which diverged
>200 Ma, and the CGGBPs from spiny chromis and the kil-
lifish Austrofundulus limnaeus, which diverged >80 Ma.

Most CGGBPs possess unique DNA sequence specificity
(figs. 1 and 2): The 8-mer preferences from the ME and HK
arrays for each CGGBP correlate more highly with each other
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than to any other protein (fig. 1). The only clear exceptions
are the human and chicken CGGBP1 orthologs, and the three
single-residue variants of crocodile hAT-19_Crp. Most of the
motifs contain a CGG trinucleotide, but several of the coela-
canth CGGBPs in fact prefer GCGC-containing sequences,
whereas AT-rich motifs were obtained from hAT transposons
in the insects Rhodnius prolixus (kissing bug) and Locusta
migratoria (migratory locust), and the one CGGBP-
containing protein in the fungus Rhizophagus irregularis
(fig. 2). Thus, the CGGBPs display diverse sequence specificity
signatures.

Similarity among CGGBP DNA sequence specificity and
AA sequence often deviate from what would be expected
from the species tree (figs. 1 and 2). To explore this issue more
closely, we examined orthology relationships among the
CGGBPs.

Lack of Synteny among Nonamniote CGGBP-
Containing Proteins Indicates Distinct hAT
Domestications
To ask whether the CGGBPs are orthologs (i.e., related by
common ancestry in the host genome), we examined the
homology of nearby genes at their chromosomal locations,
because common descent is often reflected in shared order-
ing of genes (synteny). Gene order is typically preserved be-
tween human and bony fish, for example (Jaillon et al. 2004).
In contrast, few of the CGGBPs are found at syntenic posi-
tions (based on the presence of at least two nearby homo-
logs), even within bony fish (fig. 3). Three coelacanth proteins
are adjacent on the chromosome, however (shown in fig. 3; all
others are on different scaffolds), and these proteins have
similar sequences, consistent with tandem duplication follow-
ing initial integration. Two of these three yielded motifs
(fig. 2), with no high-scoring 8-mers in common (fig. 1), sug-
gesting that diversification in DNA sequence specificity may
have promoted retention following duplication.

Lack of synteny is consistent with the CGGBPs originating
from distinct hAT integration events. Several other observa-
tions are consistent with this notion. One is that the intron/
exon structures of the CGGBPs differ from each other (sup-
plementary fig. S4, Supplementary Material online). Another
is that CGGBPs show a spotty distribution, absent from many
(and perhaps most) fish and insect genomes, and apparently
most fungi, in a pattern that does not strictly reflect estab-
lished clades (supplementary table S1, Supplementary
Material online). Likewise, as noted above, protein sequence
relationships among CGGBPs often deviate from the species
tree, as do CGGBP DNA sequence specificities (figs. 1 and 2).
Coelacanth CGGBPs, for example, are distributed throughout
trees of both CGGBP AA sequence similarity (fig. 2) and DNA-
binding similarity (fig. 1), suggesting that they may derive
from different hAT subtypes. In another example, CGGBPs
of the spiny chromis and the killifish are similar to each other
and bind very similar motifs, but their AA sequences are more
related to CGGBPs from kissing bug and migratory locust
than to those of other fish, suggesting that they may have
originated from horizontal transfer of related hATs. Likewise,

the CGGBP from yellow fever mosquito is more closely re-
lated to crocodile hAT-19_Crp than it is to the hAT-19 pro-
teins we analyzed from other insects, and these two proteins
also have similar DNA sequence specificity.

Varied Expression of Coelacanth CGGBPs
Suggests Tissue-Restricted Function
Collectively, these observations indicate that many indepen-
dent domestications of the hAT CGGBP domain have
spawned a relatively large family of DBPs with distinct se-
quence preferences, which are present in a variety of fish
and insects and some fungi. In particular, the coelacanth
CGGBPs have highly disparate sequences, relative to other
CGGBPs, and we speculate that they originate from different
hAT-19 families, or other related hATs. It is known that DNA
transposons have been recently active in coelacanth (Naville
et al. 2014), and indeed, relatively few of the 62 CGGBPs
present in L. chalumnae can be found in the transcriptome
shotgun assembly of the other extant coelacanth species,
L. menadoensis, which diverged �22 Ma from L. chalumnae
(Amemiya et al. 2013) (we identified only eight CGGBPs using
reciprocal BLAST and scanning with the Panther HMM).

Lack of orthology presents a challenge in examining evo-
lutionary pressures on the CGGBPs. The fact that the non-
amniote CGGBPs are found entirely in nonmodel species also
complicates functional analysis. Nonetheless, the
L. chalumnae CGGBPs are often expressed in different tissues
from each other (supplementary fig. S5, Supplementary
Material online), suggesting that their functions may be tissue
restricted in addition to being differentiated by distinct bind-
ing specificities.

Finally, the fact that the CGGBP domain model represents
only a small subset of hATs, mainly the hAT-19 subclass, raises
two intriguing possibilities. First, the observation that both
the CGGBPs and hAT-19 are found mainly among a few dis-
parate classes of eukaryotes suggests horizontal movement of
hATs between very different branches, even though these
classes (e.g., Rhizophagus and bony fish) inhabit very different
environments. Second, the narrow coverage of the CGGBP
domain model among hATs (29/824) raises the possibility
that domain models corresponding to the same regions of
other hAT subclasses may uncover additional classes of host
DBPs.

Materials and Methods
We designed and built expression constructs for the 114
CGGBP proteins to include the entire domain plus 50 flanking
AAs on both sides (unless the end of the protein was
reached), fused to an N-terminal GST tag and driven by a
T7 promoter. Three proteins with unknown AA residues (X)
were run as all possible variants consistent with correspond-
ing codon sequences. PBM data were generated as described
(Weirauch et al. 2014), with motifs derived using
Top10AlignZ (Ray et al. 2013). Orthologs, gene family mem-
bers, and synteny were determined through manual exami-
nation of Ensembl and NCBI gene tracks, with homology
called according to Ensembl Compara, NCBI orthology
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predictions for A. limnaeus, or the NCBI-annotated identity of
inferred kanglang fish genes.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Data Availability
Raw and normalized PBM data are deposited on GEO under
accession GSE157085. Motifs and PBM construct sequences
are available at http://hugheslab.ccbr.utoronto.ca/supple-
mentary-data/CGGBP1.
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