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Abstract

Hyposalivation reduces the patient quality of life, as saliva is important for maintaining oral

health. Current treatments for hyposalivation are limited to medications such as the musca-

rinic receptor agonists, pilocarpine and cevimeline. However, these therapies only provide

temporary relief. Therefore, alternative therapies are essential to restore salivary gland func-

tion. An option is to use bioengineered scaffolds to promote functional salivary gland regen-

eration. Previous studies demonstrated that the laminin-111 protein is critical for intact

salivary gland cell cluster formation and organization. However, laminin-111 protein as a

whole is not suitable for clinical applications as some protein domains may contribute to

unwanted side effects such as degradation, tumorigenesis and immune responses. Con-

versely, the use of synthetic laminin-111 peptides makes it possible to minimize the immune

reactivity or pathogen transfer. In addition, it is relatively simple and inexpensive as com-

pared to animal-derived proteins. Therefore, the goal of this study was to demonstrate

whether a 20 day treatment with laminin-111-derived peptide conjugated fibrin hydrogel pro-

motes tissue regeneration in submandibular glands of a wound healing mouse model. In

this study, laminin-111-derived peptide conjugated fibrin hydrogel significantly accelerated

formation of salivary gland tissue. The regenerated gland tissues displayed not only struc-

tural but also functional restoration.

Introduction

Hyposalivation is the condition of having insufficient or reduced saliva production [1]. There

are several causes of hyposalivation, including the use of medication, radiation therapy for

head and neck cancer treatment and autoimmune disorder (e.g. Sjögren’s syndrome) [2].

Salivary gland damage caused by blunt injury, chemotherapy and radiotherapy leads to
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hyposalivation thereby reducing the quality of life of many patients, as saliva is important for

maintaining oral health [3, 4]. Current treatments for hyposalivation are limited to medica-

tions such as the muscarinic receptor agonists, pilocarpine, and cevimeline [5]. However, these

therapies only provide temporary relief. Therefore, alternative therapies are essential to restore

salivary gland function. Tissue damage, as a result of injury or disease, is a major health prob-

lem that can lead to irreversible organ failure [6, 7]. A possible treatment to completely restore

tissue function is the use of bioengineering approaches [8]. The use of natural polymeric

hydrogels are promising scaffolds for tissue engineering because of their biocompatibility, bio-

degradability and biological functions. Fibrin is the major extracellular matrix protein involved

in blood clotting. Fibrin hydrogel (FH) can be easily made by mixing fibrinogen with throm-

bin at 37˚C. The mechanical properties of FH can be controlled by changing the concentration

of fibrinogen [9] and can be decorated with bioactive signals making it an ideal scaffold for tis-

sue engineering and regenerative medicine [10–13]. Moreover, fibrinogen and thrombin can

be harvested from the patient’s own blood, therefore FH can eliminate the immune rejection

and viral transmission [14]. Additionally, FH can be used for drug delivery, cell therapy, and

gene therapy to the damaged tissues [15–18].

Previous studies have shown that laminin proteins from the basement membrane play a

key role in embryonic epithelium development [19]. Particularly, laminin-111 (L1) is signifi-

cantly upregulated during embryogenesis in a variety of tissues to allow for cell attachment

and promote tissue remodelling [20]. However, L1 expression is downregulated shortly after

birth and becomes limited to few tissues such as the brain and kidney. Our previous studies

demonstrated that that highly purified L1 improved growth, organization, and differentiation

of salivary cell clusters grown in vitro [21]. However, L1 is not suitable for clinical applications

as some protein domains are known to promote immunogenic response that may outweigh

the potential benefits provided by the whole molecule [22, 23]. Therefore, we used several L1

peptides to evaluate their ability to promote formation of three-dimensional salivary cell clus-

ters using FH as scaffold in vitro. Particularly, two L1 peptides, YIGSR and A99 demonstrated

improved lumen formation and increased cell attachment, respectively [21]. Furthermore,

when using a combination of these peptides in vivo, a damaged mouse submandibular gland

(mSMG) was able to grow and partially differentiate after 8 days. Despite these encouraging

findings, however, several key indicators of intact salivary gland functioning were not noted,

which was thought to be attributable to the limited duration of the observation period [24]. In

response to these concerns, the current study expands on our previous work by extending the

duration of the prior experiments (i.e., from 8 days to 20 days), thereby allowing for saliva

secretion to occur and for acinar functional markers (i.e., AQP5 and TMEM16) as well as indi-

cators of blood vessel and nerve formation (PECAM-1 and β-tubulin III, respectively) to be

detected.

Materials and methods

Materials

Lyophilized fibrinogen from human plasma and Millex syringe filter (0.22 μm) were purchased

from EMD Millipore (Billerica, MA). Lyophilized thrombin from bovine plasma, calcium

chloride, ε-aminocaproic acid (εACA), and Alcian Blue 8GX were purchased from Sigma-

Aldrich (St. Louis, MO). Peptides were synthesized by University of Utah DNA/Peptide syn-

thesis core facility. Spectra/Por 7 dialysis membrane (MWCO = 3.5 kDa) was purchased from

Spectrum Laboratories (Rancho Dominguez, CA). Coomassie Brilliant Blue R-250 was pur-

chased from Genlantis (San Diego, CA). Sulfosuccinimidyl 6-(3’-(2-pyridyldithio)propiona-

mido)hexanoate (Sulfo-LC-SPDP) and DyLight 680 NHS-ester were purchased from Thermo
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Fisher Scientific (Newington, NH). Mini-PROTEAN TGX precast electrophoresis gel was pur-

chased from Bio-Rad (Hercules, CA). TO-PRO-3 iodide, Alexa Fluor 488 conjugated anti-rab-

bit IgG secondary antibody and Alexa Fluor 568 conjugated anti-mouse IgG secondary

antibody were purchased from Invitrogen (Carlsband, CA). Rabbit anti-aquaporin 5 (AQP5),

rabbit anti-TMEM-16A, rabbit anti-PECAM-1, mouse anti-cytokeratin 7, mouse anti- β-tubu-

lin III, rabbit anti-Ki67 and Picrosirius Red Stain Kit were purchased from Abcam (Cam-

bridge, MA). Mouse Na+/K+-ATPase antibody was purchased Santa Cruz Biotechnology

(Santa Cruz, CA).

Synthesis of peptide or DyLight 680 conjugated fibrinogen

Peptide and DyLight 680 conjugated fibrinogen were prepared as previously described [21,

24]. Briefly, two L1 derived peptides (A99: CGGALRGDN-amide, YIGSR: CGGADPGYIGSR

GAA-amide) were synthesized on a peptide synthesizer using Fmoc solid-phase peptide. In

order to create a thiol-reactive fibrinogen, the primary amine groups were activated with 7.2

equivalents of sulfo-LC-SPDP for 1 h at room temperature. Then, the excess cross linker and

its by-products were removed by dialysis (molecular weight cut-off (M.W.C.O) = 3.5 kDa).

For peptide conjugation, LC-SPDP activated fibrinogen was reacted with 2 equivalents of pep-

tide for 18 h at room temperature. Finally, peptide conjugated fibrinogen was dialyzed against

ultrapure water (M.W.C.O. = 3.5 kDa) and filtered using a 0.22 μm syringe filter. Then, the

product was lyophilized. To monitor fibrin hydrogels stability, fluorescently conjugated fibrin-

ogen was also produced. Lyophilized fibrinogen was reacted with DyLight 680 for 1 h at room

temperature. Non-reacted reagent was removed by dialysis (M.W.C.O = 3.5 kDa). Then, the

product was filtered using a 0.22 μm syringe filter and lyophilized. All fibrinogens were stored

at −80˚C until use. The reactions were monitored and confirmed using thin-layer chromatog-

raphy, UV-Vis spectrum and static light scattering data, as described previously [21]. Based

on these data, six peptides and five DyLight 680 were conjugated to a fibrinogen molecule. In

addition, the final percent yields for YIGSR conjugated fibrinogen, A99 conjugated fibrinogen,

and DyLight 680 conjugated fibrinogen were 83.32%, 86.73%, and 78.15%, respectively.

Hydrogel preparation

Laminin-111-derived peptides conjugated fibrin hydrogel (L1p-FH) was fabricated by mixing

YIGSR-conjugated fibrinogen (1 mg/mL) and A99-conjugated fibrinogen (1 mg/mL), DyLight

680 conjugated fibrinogen (0.5 mg/mL) and plasma-derived bovine thrombin (2.5 U/mL) in

TBS with CaCl2 (2.5 mM) and εACA (2 mg/mL). For the FH treated group, fibrinogen (2 mg/

mL), DyLight 680 conjugated fibrinogen (0.5 mg/mL) and plasma-derived bovine thrombin

(2.5 U/mL) in TBS with CaCl2 (2.5 mM) and εACA (2 mg/mL) were used.

Rheological parameters

The rheological properties are highly dependent on the macromolecular structure, which in

turn affects the mechanical of hydrogels [25]. To this end, rheological measurements were per-

formed on a stress-controlled AR 2000ex rheometer (TA Instruments, Crawley, UK) using a

stainless-steel cone and plate geometry (4˚ cone angle; 20 mm cone diameter and truncation

height of 114 μm) at 37˚C with a continuous strain value of 0 to 100. One hundred microliter

of mixture was applied to the bottom plate, and a solvent trap filled with water was used to pre-

vent sample evaporation. Then, the modulus of elasticity (G’) and the strain (%) were recorded

for 5 min.
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Animals

Female C57BL/6 mice 5-7-weeks-old, weighing 17–22 g, were purchased from the Jackson

Laboratory (Bar Harbor, ME). Then, 28 mice were randomly distributed into 4 groups:

untreated, FH treated, L1p-FH treated and sham surgery control. Animals were housed in

cages in a room with a controlled environment (12-hour day/night cycles) and provided with a

standard pellet diet and water. All animal management, anesthesia, and surgeries followed the

protocol (protocol number: 17–05001) approved by the Institutional Animal Care and Use

Committee (IACUC) at the University of Utah. Carprofen (5 mg/kg/day) was used to manage

incision-induced pain after surgery.

Surgical procedure and scaffold stability

C57BL/6 mice were anesthetized with 3% isoflurane with an oxygen flow rate set at 2.0 L/

min. Then, a skin incision of approximately 1 cm in length was made along the anterior sur-

face of the neck (Fig 1A). Subsequently, mSMGs were exposed and the surgical wounds were

created using a 3-mm diameter biopsy punch (Fig 1B). To determine the effects of FH, 20 μL

Fig 1. Procedure to create wounded SMG model. (A) A skin incision of approximately 1 cm in length was

made along the anterior surface of the neck, mSMG were exposed, (B) a 3-mm diameter biopsy punch was

performed, surgical wounds were completed, (C) wounds were filled with or without L1p-FH or FH and (D) the

skin incision was sutured.

https://doi.org/10.1371/journal.pone.0187069.g001
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of this scaffold was added at the surgical wounds where a coverslip was placed underneath

to prevent leakage (Fig 1C). The different scaffolds used in the experiments are listed in

Table 1. Finally, the skin incision was sutured and post-surgical studies at day 20 were per-

formed (Fig 1D).

To monitor scaffold stability in vivo, FH were conjugated with Dylight 680. Fluorescent

intensity of the scaffold was monitored in a Xenogen IVIS 100 Bioluminescent Imager (Uni-

versity of Utah, Center for Quantitative Cancer Imaging) at post-surgery day 1, 3, 8 and 20.

Fluorescent images were acquired with a filter set using excitation/emission at 692/712 nm.

Measurement of body weight

In order to monitor post-surgery body mass, mice were weighed at the start of each experi-

ment and data was collected for 20 days. Statistical significance was assessed by two-way

ANOVA (p< 0.01) and Dunnett’s post-hoc test for multiple comparisons to the untreated

group.

Salivary secretion rate

Mice were anesthetized with ketamine (100 mg/kg) and xylazine (5 mg/kg), and injected with

pilocarpine (10 mg/kg) via intraperitoneal injection to stimulate saliva secretion. Then, whole

saliva was collected and measured using a 200 μl pipette. Statistical significance was assessed

by one-way ANOVA (p< 0.01) and Dunnett’s post-hoc test for multiple comparisons to the

untreated group.

Saliva protein composition

To determine the saliva composition of each condition, 15 μg of saliva protein from each group

were fractionated by SDS-PAGE. Saliva samples were denatured at 95˚C for 5 min in a sample

loading buffer. The denatured samples were loaded onto the Mini-PROTEAN TGX precast

electrophoresis gel (Any kD™, Bio-Rad) and subjected to electrophoresis in 25 mM Tris/192

mM Glycine buffer with 0.1% SDS (w/v) at 100 V for 70 min. The electrophoresis gel was fixed

in a solution of 25% ethanol, 15% formaldehyde, 60% water for 1 h and re-fixed with 50%

methanol, 40% water, 10% glacial acetic acid for overnight. For general protein staining, the gel

was stained with 0.25% Coomassie Brilliant Blue R-250 in 50% (v/v) methanol, 10% (v/v) gla-

cial acetic acid for 1 h and destained overnight in 20% (v/v) methanol and 10% (v/v) acetic

acid. For mucin staining, the fixed gel was stained with 0.5% Alcian Blue 8GX in 2% (v/v) acetic

acid for 1 h. Then, the gel was destained overnight in 20% (v/v) methanol and 10% (v/v) acetic

acid. Protein images of gels were captured using a Chemi Docmp imaging system (Bio-Rad).

ImageJ was used to perform the image analysis. All statistical analyses were performed with

GraphPad Prism 6.

Table 1. Composition of fibrin hydrogels.

Hydrogels Composition (picomole)

Fibrinogen DyLight 680 YIGSR A99

FH 146.3 144.9 - -

L1p-FH 143.6 144.9 342.6 345.5

Twenty microliter of mixture was added at the surgical wounds.

https://doi.org/10.1371/journal.pone.0187069.t001
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Histological studies

mSMG tissues were immersed in 10% formalin at room temperature for one day, dehydrated

in serial ethanol solutions (50%, 70% and 100% for 2 h each), embedded in paraffin wax and

cut into 7 μm sections. mSMG sections from each group were deparaffinized with xylene and

rehydrated with serial ethanol solutions (100%, 70% and 50%) and distilled water. Then, hema-

toxylin and eosin (H&E) and picrosirius red staining were performed, and tissue sections were

subjected to a blind histopathological analysis using a Leica DMI6000B inverted microscope

(Leica Microsystems, Wetzlar, Germany) as well as an Olympus BX53 Light Microscope

(Olympus America, Center Valley, PA). In addition, the ratio of acinar structures to ductal

structures was analyzed using ImageJ and GraphPad Prism 6.

Confocal microscopy

Deparaffinized sections were incubated in sodium citrate buffer (10 mM sodium citrate, 0.05%

Tween 20, pH 6.0) at 95˚C for 30 min for antigen retrieval. Then, sections were washed with

distilled water, and permeabilized with 0.1% Triton X-100 in PBS at room temperature for 45

min. Sections were blocked in 5% goat serum in PBS for 1 h at room temperature and incu-

bated for overnight at 4˚C with primary antibody solution as described in Table 2. The follow-

ing day, tissue sections were washed three times with PBS and incubated with secondary

antibody solution (Table 2) for 1 h at room temperature. Sections were then washed three

times with PBS and counter-stained with TO-PRO-3 iodide at room temperature for 15 min

(1:1000 dilution). Finally, tissue samples were analyzed using a confocal Zeiss LSM 700 micro-

scope using a 40× objective.

Proliferation assay

Confocal images of Ki67 stained tissue samples were captured at 40× magnification using a

confocal Zeiss LSM 700. The number of Ki67 positive cells was counted using ImageJ software.

Statistical significance was assessed by one-way ANOVA (p< 0.01) and Dunnett’s post-hoc

test for multiple comparisons to the sham control group.

Results

Scaffold mechanical property and stability

Rheology measurements showed that L1p-FH display a significant decrease in elasticity as

compared to unconjugated FH thereby making a softer structure (Fig 2A). Moreover, the

Table 2. List of antibodies.

Antibody Dilutions

Rabbit anti-aquaporin 5 200

Mouse anti-cytokeratin 7 500

Rabbit anti-TMEM-16A 100

Mouse anti-Na+/K+-ATPase α antibody 200

Rabbit anti-PECAM-1 100

Mouse anti-β-tubulin III 100

rabbit anti-Ki67 200

Alexa Fluor 488 conjugated anti-rabbit IgG 500

Alexa Fluor 568 conjugated anti-mouse IgG 500

Antibodies used for antigen detection in the immunohistochemistry.

https://doi.org/10.1371/journal.pone.0187069.t002
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Fig 2. L1p-FH successfully attach to mSMG and are degraded over time in vivo. (A) Rheology

measurements were performed for FH alone as well as L1p-FH. Data represent the elasticity (G’) versus strain

(%) of unmodified FH (�) and L1p-FH (□). The in vivo stability of L1p-FH was monitored using a Xenogen IVIS

100 Bioluminescent Imager at days (B) 1, (C) 3, (D) 8 and (E) 20. Radiant Efficiency: (p/sec/cm2/sr)/(μW/

cm2).

https://doi.org/10.1371/journal.pone.0187069.g002
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fluorescent intensity of FH at day 3 (Fig 2C) was similar with the post-surgery day 1 group (Fig

2B). However, the fluorescent intensity of the FH at day 8 (Fig 2D) was approximately 6 times

lower as compared to post-surgery day 1 or day 3 groups (Fig 2B and 2C). Moreover, the fluo-

rescent intensity of FH at day 20 (Fig 2E) was undetectable. These results suggest successful

attachment of FH scaffold in the wounded tissue (i.e., high stability) and likely degradation

over time in vivo.

Measurement of body weight

Since saliva is important in eating, swallowing, and digestion, we sought to determine the

ability of the mice to eat by measuring body weight at different times after surgery. We

found no significant weight difference between untreated mice and FH alone treated mice

(Fig 3). However, mice treated with L1p-FH had similar weights as the sham control group,

which were significantly higher as compared to untreated mice and FH alone treated mice

(p< 0.01).

Saliva flow rate

As shown in Fig 4, animals with no scaffold (untreated) or with FH alone displayed a signifi-

cant decrease in saliva secretion rates (44% vs sham). In contrast, mice treated with L1p-FH

showed a significant increase in saliva secretion rates as compared to untreated and FH alone-

treated mice. Moreover, L1p-FH-treated mice showed increased saliva flow rates (75%) to levels

close to sham controls (open incision but no surgical wound).

Fig 3. L1p-FH applied to mSMG increased body weight. Changes in body weight (%) of FH alone (■) or

L1p-FH (▲) treated mice groups were compared with untreated mice group (●) and sham control group (�)

over 20-day period. Data represent the means ± SD of n = 7 mice per condition and statistical significance was

assessed by two-way ANOVA (p < 0.01) and Dunnett’s post-hoc test for multiple comparisons to the

untreated group.

https://doi.org/10.1371/journal.pone.0187069.g003
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Saliva protein composition

We analyzed the protein composition in the stimulated saliva using SDS-PAGE. The total pro-

tein (Fig 5A) and mucin (Fig 5B) composition of the saliva from untreated and FH alone

group showed clearly different patterns compared to the saliva from sham control group. The

untreated group displayed decreased proline rich protein (15 kDa ~ 30 kDa) and cystatin (10

kDa) levels. In addition, animals with no scaffold or with FH alone displayed a significant

decrease in MUC7 (p< 0.0001). However, the protein patterns of the L1p-FH treated group

showed comparable protein patterns to sham control (Fig 5C). Moreover, the ratio of MUC5B

and MUC7 in the saliva slightly differed between sham and L1p-FH treated group (p = 0.0111).

These results indicate that the L1p-FH treated SMG could produce a similar quality of saliva as

compared to sham controls.

Histopathological studies

To determine whether L1p-FH promoted tissue regeneration of mSMG surgical wounds in
vivo, mSMG tissue sections were stained with H&E and picrosirius red. As shown in Fig 6,

mSMG surgical wounds covered with L1p-FH displayed organized round acinar (red arrows)

and ductal structures (yellow arrows) (Fig 6E) with organized collagen formation (Fig 6F). In

contrast, wounded mSMG treated with no scaffold and FH alone formed disorganized colla-

gen and failed to form organized round structures (Fig 6A–6D). A single blind histopatholog-

ical analysis revealed that all mSMG treated with FH in general showed no differences in

Fig 4. L1p-FH applied to mSMG improved saliva secretion over untreated and FH alone-treated mice.

Mice were anesthetized and stimulated with pilocarpine at day 20. Then, saliva was collected for 5 min. Data

represent the means ± SD of n = 5 mice per condition and statistical significance was assessed by one-way

ANOVA (p < 0.01) and Dunnett’s post-hoc test for multiple comparisons to the untreated group. * = significant

difference from the untreated group; n.s. = no significant difference from the untreated group.

https://doi.org/10.1371/journal.pone.0187069.g004
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proliferation rates between the different groups and lack of evidence for cellular atypia. Addi-

tionally, the ratio of acinar and ductal structures is comparable to sham controls (Fig 6I).

Confocal microscopy

To verify whether mSMG surgical wounds covered with L1p-FH regenerated salivary epithe-

lium, mSMG sections were stained with following markers: aquaporin 5 (water channel pro-

tein, acinar marker), cytokeratin 7 (ductal epithelial marker), TMEM16A (apical chloride

transporter), Na+/K+-ATPase (basolateral membrane marker), PECAM-1 (endothelial cell

marker) and β-Tubulin III (neuronal cell marker). As shown in Fig 7, the apical acinar cell

marker (aquaporin 5, green) and the ductal cell marker (cytokeratin 7, red) were detected in

the L1p-FH treated group (Fig 7C) and sham control group (Fig 7D). Conversely, untreated

(Fig 7A) or FH alone treated (Fig 7B) wounds displayed very weak aquaporin 5 and disorga-

nized cytokeratin 7 staining. Moreover, surgical wounds covered with L1p-FH showed apical

TMEM16A (green) and basolateral Na+/K+-ATPase localization (red) (Fig 7G) but untreated

(Fig 7E) or FH alone treated (Fig 7F) wounds displayed very weak expression or no staining at

Fig 5. L1p-FH applied to mSMG restored saliva composition. Fifteen microgram of saliva protein from

each group was fractionated by SDS-PAGE. The gel was stained with (A) 0.25% Coomassie Brilliant Blue R-

250 for total proteins and (B) 0.5% Alcian Blue 8GX for mucins. (C) The mucin compositions were analysed

using ImageJ. The white bar indicates MUC5B and the gray bar indicates MUC7. Statistical significance was

assessed by one-way ANOVA (p < 0.01) and Dunnett’s post-hoc test for multiple comparisons to the sham

group. * = significant difference from the sham group; n.s. = no significant difference from the sham group.

https://doi.org/10.1371/journal.pone.0187069.g005
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all. For endothelial and neuronal markers, untreated wounds displayed poor staining (Fig 7I)

and FH alone treated wounds showed disorganized structure (Fig 7J). Interestingly, L1p-FH

treated wounds showed endothelial marker signals (green) and some line structure of β-tubu-

lin III (red) indicating the presence of small capillaries and neurons (Fig 7K).

Proliferation assay

Our previous studies demonstrated that L1p-FH treated tissues displayed a significantly higher

number of Ki67 positive cells as compared with untreated and FH treated controls on post-

surgery day 8 [24]. However, L1p-FH, FH alone -treated tissues as well as no-scaffold controls

showed no significant differences as compared to sham controls on post-surgery day 20 (Fig

8). Moreover, our statistical analyses showed no significant difference in cell proliferation

between the different groups.

Fig 6. Surgical wounds treated with L1p-FH displayed organized mSMG. Rehydrated sections were

stained with hematoxylin-eosin (A, C, E, G) or picrosirius red (B, D, F, H) stains and analyzed using a Leica

DMI6000B at 10×magnifications. Shown are wounded mSMG without scaffold (A, B), wounded mSMG with

FH alone (C, D), wounded mSMG with L1p-FH (E, F), and sham control (G, H). (I) The ratio of acinar and

ductal structures was analyzed using ImageJ. Red arrows indicate acinar structures and yellow arrows

indicate ductal structures. Scale bars = 200 μm.

https://doi.org/10.1371/journal.pone.0187069.g006
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Discussion

Recently, we published a study utilizing a mouse model for wounded mSMG to demonstrate

that L1 peptide conjugated FH contributes to tissue regeneration [24]. In the previous study,

regenerated tissue showed a strong expression of structural protein cell markers; however, the

signals for functional cell markers were weak indicating incomplete wound healing. We

believe this was due to a short monitoring time-frame. Therefore, we decided to test whether

L1p-FH could restore both tissue structure organization and function when treatments lasted

for longer periods. In fact, the monitoring of L1p-FH over time indicates that even though L1p-

FH was significantly softer than FH (Fig 2A), it can still successfully attach to wounded SMG,

is stable for several days and the gel is degraded over time in vivo (Fig 2B–2E). Moreover, our

results indicated that L1p-FH are able to almost completely restore functional markers in the

wounded mSMG as compared to previous studies [24]. While the mechanisms by which this

process occurs are not fully understood, previous studies have shown that L1 peptides bind to

α3β1, α6β1, α6β4 and α7β1 integrins, while fibrinogen binds to αIIbβ3 and α5β1 integrins [26–

28]. These integrins are present in epithelial tissues and their activation induces cell migration,

proliferation, and adhesion [29–32].

The main clinical concern in patients with salivary gland damage is the reduction of salivary

flow [33]. Moreover, salivary gland defects are highly related to weight loss as saliva is neces-

sary for eating, chewing, swallowing and digesting [34, 35]. Therefore, in this study we

Fig 7. Acinar and ductal markers were expressed in the regenerating mSMG. Salivary structural and

functional marker organization in wounded mSMG without scaffold (A, E, I), wounded mSMG with FH alone

(B, F, J), wounded mSMG with L1p-FH (C, G, K), and sham control (D, H, L) was determined using Confocal

microscopy as follows: (A-D; green) rabbit anti-aquaporin 5 and (A-D; red) mouse anti-cytokeratin 7, (E-H;

green) rabbit anti-TMEM-16A and (E-H; red), mouse anti-Na+/K+-ATPase, (I-L; green) rabbit anti-PECAM-1

and (I-L; red) mouse anti-β-tubulin III. Scale bars = 50 μm.

https://doi.org/10.1371/journal.pone.0187069.g007
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demonstrated that animals with untreated with untreated SMG wounds not only showed sig-

nificant reduction of saliva flow (Fig 4) but also displayed significant weight loss (Fig 3), while

treatment with L1p-FH completely abolished these problems. These results suggest that L1p-FH

was effective in promoting salivary gland function. To prevent misinterpretation of the data

shown above, we were able to use a sham control group that was comparable to healthy mice

that showed no weight loss or signs of infection (data not shown).

Mucins are high molecular weight glycoproteins secreted by salivary glands. The best stud-

ied mucins in the human saliva are a) MUC5B (a larger salivary gland mucin) which is present

in submandibular gland (SMG) secretions and is thought to be related to the perception of dry

mouth (i.e., by retaining moisture in the mucosa) and b) MUC7 (a smaller salivary gland

mucin) appears to have a role in preventing bacterial attachment to the enamel and mucosal

surfaces [36]. Moreover, MUC7 is less abundant in the gel-phase, making saliva less viscous

and therefore contributing to the natural saliva rheology [37]. MUC7 appears to be undetect-

able in saliva from minor glands; however, it is present in saliva from SMG and sublingual

glands [38]. In this study, we found that animals with no scaffold or with FH alone displayed a

significant increase of MUC5B protein levels and a significant decrease MUC7 protein levels

as compared to the sham control group while treatment with L1p-FH restored MUC5B and

MUC7 expression to levels comparable to sham controls (Fig 5). This result indicates that L1

peptides are able to restore saliva component and saliva rheology.

Fig 8. L1p-FH does not promote abnormal cell proliferation. The proliferation marker Ki67 showed similar staining patterns in wounded

mSMG without scaffold (A), wounded mSMG with FH alone (B), wounded mSMG with L1p-FH (C), and sham control (D). Statistical

significance was assessed by one-way ANOVA (p < 0.01) and Dunnett’s post-hoc test for multiple comparisons to the sham group (E). Scale

bars = 50 μm.

https://doi.org/10.1371/journal.pone.0187069.g008
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Collagen acts as a structural scaffold in epithelial tissues, also controls many cellular func-

tions (e.g. cell migration, differentiation, and synthesis of proteins) [39, 40]. Therefore, colla-

gen organization plays a critical role in the wound healing process [41, 42]. Our results showed

that L1p-FH was able to promote organized cell structure and collagen formation (Fig 6). We

speculate that these effects are due to L1p-FH’s ability to bind and attract stem/progenitor cells

through interactions with integrins described above, and thus accelerating wound healing.

However, when wound healing is incomplete or excessive it may can cause unwanted side

effects. Specifically, it was reported that inflammation pathways during wound healing may

promote growth and survival of cancer stem cells [43]. However, our results showed no differ-

ences in cell proliferation between the studied groups (Fig 8). Moreover, a single blinded histo-

pathological study described an absence of cellular atypia. Together these results indicate that

the regeneration process using L1p-FH is controlled and could be used safely in other species.

Regarding the expression of functional cell markers, we found a strong aquaporin 5 signal

in the regenerated mSMG (Fig 7C). Since this protein transports water across the cell mem-

brane during fluid secretion, its expression is also essential for SMG regeneration [44, 45]. In

addition, TMEM16A (apical chloride transporter), Na+/K+-ATPase (basolateral antiport trans-

porter) were expressed in the regenerated mSMG (Fig 7G). These proteins are responsible for

maintaining the proper ionic composition for saliva secretion and are also critical for SMG

functioning [46, 47]. Finally, we detected PECAM-1 and β-Tubulin III signal in the regenerat-

ing gland (Fig 7K), indicating formation of blood and nerves, respectively, which have been

shown to regulate SMG development [48]. Our results indicate that L1p-FH are able to pro-

mote SMG regeneration in vivo and are consistent with previous studies [21, 24, 49]; however,

here we found better regeneration endpoints due to longer treatments times. These studies

are highly significant as they could offer viable path forward for advancing the treatment of

hyposalivation.

Conclusion

In summary, we demonstrated that FH modified with L1 peptides facilitated salivary gland

tissue healing. Our results suggest that L1p-FH is suitable for in vivo applications (as it is both

biodegradable and biocompatible and significantly accelerates formation of new tissue as com-

pared to FH alone or no scaffold). The regenerated gland tissues displayed not only structural

but also functional similarities to normal gland tissues. As stated, the increased duration of the

current experiment allowed for additional developments to occur and for more definitive data

to emerge. The current results suggest that L1p-FH may have activated multiple cellular pro-

cesses that contributed to tissue regeneration.
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