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Umbilical Cord-derived 
Mesenchymal Stem Cells Instruct 
Monocytes Towards an IL10-
producing Phenotype by Secreting 
IL6 and HGF
Yinan Deng1,2,*, Yingcai Zhang1,2,*, Linsen Ye2, Tong Zhang1,2, Jintao Cheng1,2, 
Guihua Chen1,2,3, Qi Zhang2,3 & Yang Yang1,2

Human UC-MSCs are regarded as an attractive alternative to BM-MSCs for clinical applications due 
to their easy preparation, higher proliferation and lower immunogenicity. However, the mechanisms 
underlying immune suppression by UC-MSCs are still unclear. We studied the mechanism of inhibition 
by UC-MSCs during the differentiation of monocytes into DCs and focused on the specific source and 
the role of the involved cytokines. We found that UC-MSCs suppressed monocyte differentiation into 
DCs and instructed monocytes towards other cell types, with clear decreases in the expression of 
co-stimulatory molecules, in the secretion of inflammatory factors and in allostimulatory capacity. 
IL6, HGF and IL10 might be involved in this process because they were detected at higher levels in a 
coculture system. UC-MSCs produce IL-6 and HGF, and neutralization of IL-6 and HGF reversed the 
suppressive effect of UC-MSCs. IL10 was not produced by UC-MSCs but was exclusively produced by 
monocytes after exposure to UC-MSCs, IL-6 or HGF. In summary, we found that the UC-MSC-mediated 
inhibitory effect was dependent on IL6 and HGF secreted by UC-MSCs and that this effect induced 
monocyte-derived cells to produce IL10, which might indirectly strengthen the suppressive effect of  
UC-MSCs.

Mesenchymal stem cells (MSCs) are were first identified in bone marrow. Bone marrow-derived MSCs 
(BM-MSCs) are capable of differentiation into bone, cartilage and other mesenchymal tissues1. Importantly, they 
display striking immunological characteristics, including low immunogenicity and immunoregulatory proper-
ties2–4, that have been the subject of many studies over the past decade, making BM-MSCs ideal candidates for 
treating immunological diseases.

It has been widely shown that BM-MSCs suppress NK-cell proliferation and cytotoxicity5 and impair T cell 
activation and proliferation6–8. Soluble factors proposed to be involved in this effect include indoleamine 2, 
3-dioxygenase, prostaglandin E2, TGF-β​1, IL-6 and nitric oxide9–11.

However, aspiration of bone marrow is difficult and involves invasive procedures, which restrict the applica-
tion of BM-MSCs. Thus, there is growing interest in finding alternative sources of MSCs. Human umbilical cord 
(UC) contains multi-potent stromal cells also known as UC-MSCs12. Compared with MSCs isolated from bone 
marrow, UC-MSCs offer distinct advantages, including easier accessibility, more primitive properties, higher 
proliferation capacity and lower immunogenicity13. Due to these advantages, UC-MSCs are being explored as a 
promising candidate for many potential clinical applications. Recent studies have provided encouraging results 
regarding the utility of UC-MSCs in several disease models, such as rescuing visual functions in a rodent model 
of retinal disease14, alleviating neuropathic pain15, protect against experimental colitis16 and treating rat liver 
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fibrosis17,18. The use of UC-MSCs as a cellular therapy is currently being explored in clinical trials, including for 
the treatment of GvHD19,20.

Recent studies have shown that UC-MSCs, such as BM-MSCs, can suppress T cell activation and prolifera-
tion though a PGE2-dependent manner21. However, the immune suppression effect of UC-MSCs on DC differ-
entiation is still poorly understood. Our early studies found that UC-MSCs induced DCs to differentiate into 
tolerogenic DCs through the upregulation of SOCS1 and that IL6 in coculture supernatant was involved in the 
UC-MSC immunoregulatory effect on DC transdifferentiation22. However, neither we nor other researchers have 
identified the cells that produce these cytokines. Therefore, the specific role of these cytokines in MSC-mediated 
immune suppression is still unclear.

In the current study, we found that UC-MSCs suppressed monocyte differentiation into DCs and instructed 
monocytes towards IL10-producing cell types, with a clear decrease in the expression of co-stimulatory mole-
cules, in the secretion of inflammatory factors and in allostimulatory capacity. Furthermore, IL6, HGF and IL10 
might be involved in this process because they were detected at higher levels in coculture. UC-MSCs produced 
IL-6 and HGF, and IL-6 and HGF neutralization reversed the suppressive effect of UC-MSCs. IL10 was not pro-
duced by UC-MSCs, but was exclusively produced by monocytes after exposure to UC-MSCs, IL-6 or HGF. In 
summary, we found that the UC-MSC-mediated inhibitory effect was dependent on IL6 and HGF and that this 
effect subsequently induced monocyte-derived cells to produce IL10, which might indirectly strengthen the sup-
pressive effect of UC-MSCs.

Materials and Methods
Culture of human umbilical cord-derived mesenchymal stem cells.  Human UC-MSCs were isolated 
and identified as previously described14. Briefly, fresh human umbilical cords were obtained, cut into 0.5-cm pieces 
and floated in Dulbecco’s modified Eagle’s medium containing low glucose (Life Technologies, Carlsbad, CA),  
10% fetal bovine serum (FBS; Life Technologies, Carlsbad, CA ), 100 U/ml penicillin and streptomycin (P/S; 
Invitrogen Corp) at 37 °C in a humidified atmosphere with 5% CO2. The medium was changed every 2 d, and 
non-adherent cells were removed by washing after 7 d. When well-developed colonies of fibroblast-like cells 
appeared after 10 d, the cultures were trypsinized and transferred (without dilution) into a new flask for further 
expansion. When UC-MSCs reached confluency, the cells were detached, characterized by FACS analysis and 
used in the co-culture experiments at passage 2–5. The study was approved by the National Ethics Committee of 
the Third Affiliated Hospital of Sun Yat-sen University. The patients’ informed consent was obtained. All experi-
ments were performed in accordance with relevant guidelines and regulations.

Isolation of human CD14+ monocytes.  Peripheral blood mononuclear cells (PBMCs) were isolated 
from healthy blood by Ficoll-Paque (1.077 g/mL; Invitrogen) density gradient centrifugation. Monocytes (more 
than 90% CD14+​) were purified from PBMCs using the MACS Monocyte Isolation Kit (Miltenyi Biotec, Bergisch 
Gladbach, Germany). The study was approved by the National Ethics Committee of the Third Affiliated Hospital 
of Sun Yat-sen University. The patients’ informed consent was obtained.

Differentiation of monocytes.  Freshly isolated monocytes (CD14+​) were cultured at a concentration of 
4.0 ×​ 105 cells/well in 12-well plates containing 1 ml RPMI (Invitrogen Corp., Paisley, UK) with 100 U/ml pen-
icillin and streptomycin (P/S; Invitrogen Corp), L-glutamine (Invitrogen Corp., Paisley, UK), 10% FBS and the 
growth factors IL4 (50 ng/ml, PeproTech, USA) and GM-CSF (50 ng/ml, PeproTech, USA) for 5 days, resulting 
in the generation of immature DCs (iDCs; CD14-/CD1a+​). After the 5-day incubation, to gain mature DCs 
(mDCs), LPS (100 ng/ml, Sigma-Aldrich, USA) was added to stimulate the cells for 48 h.

To examine the effect of UC-MSCs on monocyte differentiation into mDCs, UC-MSCs treated with mitomy-
cin were cultured at a concentration of 2.0 ×​ 105 cells/well in 12-well plates containing 1 ml RPMI for 24 h, and 
then monocytes, IL4 and GM-CSF were added with direct cell-cell contact or in a transwell system (pore size 
0.4 μ​M; Corning Inc., Lowell, MA, USA) at a MSC-monocyte ratio of 1:10 for 5 days and then LPS was added to 
stimulate the cells for 48 h. After 7-day incubation, monocytes were the separated from the UC-MSCs by spinning 
the cells in suspension and then washing them.

To examine the effect of some soluble factors, IL10 (50 ng/ml), IL6 (50 ng/ml), HGF (50 ng/ml), anti-IL10  
(5 μ​g/ml), anti-HGF or anti-IL6 (5 μ​g/ml) (R&D Systems Europe Ltd., Abingdon, UK) was added every 3 days.

Flow cytometry.  The antibodies used for flow cytometry were FITC-, PE- or APC-conjugated mouse 
anti-human CD3, CD4, HLA-DR, CD1a, CD14, CD80, CD86, and CD83, all of which were purchased from 
BioLegend. The cultured cells were collected, washed twice, and resuspended in 100 μ​l of PBS containing 0.1% 
BSA. The cells were then stained and labeled with either specific antibodies or the appropriate isotype controls, 
subsequently incubated on ice for 30 min, washed with PBS containing 0.1% NaN3 and 0.5% BSA, and then fixed 
with 1% paraformaldehyde solution. Analyses were performed using a FACScan and the CellQuest software (BD 
Bioscience). For the intracellular staining of T cells, peripheral blood lymphocytes (PBLs) were stimulated for 5 h 
with phorbol 12-myristate 13-acetate (PMA) plus ionomycin (Sigma-Aldrich, USA), and brefeldin A (10 mg/ml; 
Sigma-Aldrich, USA) was added during the last 3 h. The cells were washed and stained with monoclonal antibod-
ies specific for CD4 for 20 min at 4 °C. After being washed with PBS, the cells were fixed and permeabilized with 
fixation/permeabilization solution (eBioSciences, San Diego, CA) for 15 min at room temperature. Following 
further washing, the cells were stained with monoclonal antibodies against IFN-γ​, IL2 and TNFa (eBioSciences, 
San Diego, CA) for 20 min at room temperature.

Cytokine assays.  Coculture supernatants were collected on day 7, and the concentrations of IL6, IL10, and 
HGF in the supernatants were determined using ELISA kits (R&D Systems, Minneapolis, MN).
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To determine the cytokine expression patterns of UC-MSC-treated monocytes, monocytes were collected at 
7-day incubation and cultured at a concentration of 1.0 ×​ 105 cells/well in 12-well plates containing 1 ml RPMI for 
24 h with or without LPS (100 g/ml) stimulation. Subsequently, the culture supernatants were collected, and the con-
centrations of IL17, IL10, TNFa and IL12p70 were determined using ELISA kits (R&D Systems, Minneapolis, MN).

Mixed lymphocyte reaction.  Once labeled with carboxyfluorescein diacetate succinimidyl diester (CFSE) 
(Invitrogen) and suspended in RPMI 1640 supplemented with 10% FBS, 100 U/ml penicillin, and 100 U/mL 
streptomycin, allogeneic PBLs from PBMCs were cultured at a concentration of 105 cells per 200 μ​L per well in 
96-well U-bottom plates containing 2 ×​ 104 monocytes treated with mitomycin. After 5 d, the cells were harvested 
and sorted by FACS.

RT-PCR.  Total RNA was extracted using TRIzol (Invitrogen) and then reverse transcribed using a QuantiTect 
RT Kit (Qiagen). The PCR products were analyzed by electrophoresis and ethidium bromide staining of a 2% 
agarose gel, which was subsequently photographed. In some experiments, gene expression was evaluated using a 
SYBR Green real-time PCR kit (Takara). Data were normalized to the reference gene β​-actin.

gene forward reverse
IL6 5′​-TTCAATGAGGAGACTTGCCTG-3′​ 5′​-ACAACAACAATCTGAGGTGCC-3′​
IL10 5′​-CCGAGATGCCTTCAGCAGAG-3′​ 5′​-GGTCTTGGTTCTCAGCTTGG-3′​
HGF 5′​-TACAGGGGCACTGTCAATACC-3′​ 5′​-CAGTAGCCAACTCGGATGTTT-3′​
β​actin 5′​-AGGCATCCTCACCCTGAAGTA-3′​ 5′​- CACACGCAGCTCATTGTAGA-3′​

Statistical analysis.  Statistical analyses were performed using Student’s t test. The data are depicted as the 
means ±​ SEMs, and p values ≤​ 0.05 were considered significant. *p ≤​ 0.05, **p ≤​ 0.01, ***p ≤​ 0.001. All statistical 
analyses were conducted using the Statistical Program for Social Sciences 13.0 software program (SPSS Inc., 
Chicago, IL).

Results
UC-MSCs instruct the differentiation of monocytes into CD14+CD1a− cells expressing low 
levels of co-stimulation molecules.  Circulating CD14+​ monocytes were cultured in the presence of 
GM-CSF and IL-4 with or without UC-MSC coculture. After 5 days of incubation, LPS was added for another 
48 hours to promote the maturation of DCs. As expected, the monocytes differentiated into CD1a+​CD14- iDCs 
(Fig. 1A,B) and further differentiated into fully mDCs after LPS stimulation (Fig. 1C). Following the addition 
of UC-MSCs to these cultures, the differentiation of monocytes towards DCs was inhibited. In the presence of 
UC-MSCs, monocytes retained high CD14 levels without acquiring CD1a and displayed lower levels of CD83 and 
of the costimulatory molecules CD80 and CD86 (Fig. 1).

UC-MSCs alter cytokine production patterns of monocyte-derived cells.  To further char-
acterize the regulatory effect of UC-MSCs on monocytes, we determined the cytokine expression patterns of 
monocyte-derived cells by ELISA. After 7 days of incubation, monocytes were separated from UC-MSCs and 
culturing them with or without LPS for 24 hours; the culture supernatants were then collected for ELISAs. In 
contrast to monocyte-derived DCs, the monocyte-derived population generated in the presence of UC-MSCs 
showed higher IL10 expression and lower IL12p70, TNFa and IL17 expression (Fig. 2A,D).

UC-MSCs impair the allostimulatory capacity of monocyte-derived cells.  Next, the 
monocyte-derived populations in the absence or presence of UC-MSCs were functionally analyzed for their 
ability to stimulate the proliferation of allogeneic T cells. After 7 days of incubation, monocytes were separated 
from the UC-MSCs and cultured with allogenic PBLs labeled with CFSE for 5 days. As shown in Fig. 3, the 
monocyte-derived DCs effectively induced the proliferation of allogeneic CD3+​ T cells (Fig. 3A,B). Furthermore, 
when in the presence of UC-MSCs, the monocyte-derived population exhibited a significantly decreased allostim-
ulatory capacity compared to the monocyte-derived DCs (Fig. 3A,B). Moreover, our data showed that the expres-
sion of IFN-γ​, IL2 and TNFa in CD4+​CFSElow T cells was decreased significantly in the monocyte-derived 
populations in the presence of UC-MSCs when compared to the monocyte-derived DCs in the absence of 
UC-MSCs (Fig. 3C,E).

UC-MSC-mediated inhibition of monocyte differentiation involves soluble factors.  Studies 
have shown that MSC-mediated immunomodulation involves both cell contact-dependent and cell 
contact-independent mechanisms that are mediated through the release of soluble factors. To explore whether 
the immunoregulatory properties of UC-MSCs depend on direct contact with monocytes or if they are medi-
ated by soluble factors, transwell experiments that prevented direct contact between purified CD14+​ monocytes 
and UC-MSCs were performed. Our data showed that the transwell hardly prevented the suppressive effect of 
UC-MSCs on monocyte differentiation and function (Figs 1–3), indicating that UC-MSCs might exert their 
inhibitory effects mainly through soluble factors in the culture supernatant.

The levels of IL6, IL10 and HGF are upregulated in co-cultures of monocytes and UC-MSCs.  To 
identify the key factors responsible for the UC-MSC-mediated suppression of monocyte differentiation, the solu-
ble factors present in the supernatants were analyzed. Monocytes cocultured with UC-MSCs in a transwell system 
had higher levels of HGF, IL6, and IL10 compared with monocytes alone (Fig. 4A,C).

To identify which cell population was responsible for the increased cytokine level, the mRNA expression 
of HGF, IL6 and IL10 in the UC-MSC and monocyte-derived cell populations was analyzed at day 7. Neither 
UC-MSCs nor UC-MSCs cultured in the presence of monocytes expressed IL10 mRNA (Fig. 4D). However, 
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monocyte-derived DCs expressed IL10 mRNA, and this expression level was significantly upregulated after expo-
sure to UC-MSCs (Fig. 4E). These data showed that the IL10 in the supernatants of MSC-monocyte co-cultures 
was secreted by the monocyte-derived cell population.

Next, we assessed the expression of IL6. Figure 4D shows that UC-MSCs express IL6 mRNA and that sig-
nificantly increased IL6 mRNA expression is found in UC-MSCs after co-culturing with monocytes (Fig. 4D). 
Moreover, IL6 mRNA was observed in monocyte-derived DCs (Fig. 4E). However, the increase in IL6 expression 
in DCs cocultured with UC-MSCs was not statistically significant (Fig. 4E). These data indicate that the IL6 pro-
tein detected in the supernatants of monocyte-MSC co-cultures was produced both by the monocyte-derived cell 
population and by UC-MSCs.

Finally, we investigated the expression levels of HGF. As shown in Fig. 4D, the level of HGF mRNA was observed 
in UC-MSCs, but the expression was hardly increased when UC-MSCs were co-cultured with monocytes. Neither the 
monocyte-derived DCs nor the monocytes cultured in the presence of UC-MSCs expressed HGF mRNA (Fig. 4F). 
These data indicate that the HGF in the supernatants of monocyte-MSC co-cultures was produced by UC-MSCs.

The role of HGF, IL6 and IL10 in the UC-MSC-mediated inhibition of monocyte differentiation.  
To determine the exact role of HGF, IL6 and IL10 in the inhibitory effect of UC-MSCs on monocyte differenti-
ation, blocking antibodies against HGF, IL6 and IL10 were added to the transwell co-cultures. The addition of 

Figure 1.  The effect of UC-MSCs on monocyte differentiation. After a 5-day incubation, monocytes were 
collected and analyzed by FACS. The CD14, CD1a, and CD83 expression in monocytes cultured alone (Control) 
or cocultured with UC-MSCs in direct cell-cell contact (+​MSC) or in a transwell co-culture system (+​MSC 
(transwell)) were tested (A,B). (A) One representative experiment of three is shown. (B) The data are shown 
as the means ±​ SEMs of three different healthy persons. After a 7-day incubation, monocytes were collected 
and analyzed by FACS, and the CD83, CD80, HLA-DR, and CD86 expression in monocytes cultured alone 
(Control) or cocultured with UC-MSCs in direct cell-cell contact (+​MSC) or in a transwell co-culture system 
(+​MSC (transwell)) were tested (C). The data are shown as the means ±​ SEMs of three different healthy 
persons.
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blocking antibodies against IL10 and HGF resulted in minor restoration of monocyte differentiation into CD14+​
CD1a−​ cells (Fig. 5B). However, the addition of blocking antibodies against IL6 resulted in a significant increase 
in CD1a expression and in a decrease in the expression of CD14 in the monocyte-derived population (Fig. 5B). 
The addition of both the HGF- and IL6-blocking antibodies substantially reduced the upregulation of IL10 
mRNA expression in the monocyte-derived population (Fig. 5D).

We next investigated whether addition of HGF, IL6 or IL10 would inhibit monocyte differentiation. Both 
IL6 and IL10 significantly prevented monocyte differentiation into DCs, while HGF did not inhibit this process 
(Fig. 5A). Indeed, we found that addition of IL6 induced the expression of IL10 in monocytes (Fig. 5C), similar 
to the effect of UC-MSCs. Surprisingly, the addition of HGF significantly induced IL-10 expression in monocytes 
(Fig. 5C). These data show that MSC-derived IL6 is essential for the inhibition of monocyte differentiation by 
UC-MSCs and that both IL6 and HGF derived from UC-MSCs induce IL10 expression in monocytes.

Discussion
Although BM-MSCs have outstanding immunoregulatory characteristics and thus have been used to treat 
immune diseases, their collection is difficult and involves invasive procedures. Thus, there is growing interest 
in finding alternative sources of MSCs and in exploring the therapeutic potential of these cells. UC-MSCs are of 
interest to scientists because they can be isolated and expanded easily in large quantities in vitro.

Currently, UC-MSCs are being explored as a promising candidate in clinical applications, e.g., in the treatment 
of GvHD. However, the mechanisms underlying immunoregulation by UC-MSCs are still unclear. In this study, 
we investigated the suppressive effect of UC-MSCs on monocyte differentiation into DCs and focused on the 
specific source and role of the involved cytokines.

Recent studies have shown that BM-MSCs might induce mature DCs to differentiate into regulatory DCs 
through the activation of the Notch pathway. Moreover, BM-MSCs might inhibit the differentiation and function 
of DCs23,24. In accordance with these findings, UC-MSCs suppressed monocyte differentiation into DCs in our 
system. The data derived from in vitro co-culture experiments of BM-MSCs and monocytes have shown that 
monocyte differentiation towards DCs can be inhibited by IL625. Similarly, our data suggested that IL6 plays a 
role in the inhibitory effect of UC-MSCs on the differentiation of monocytes to DCs. To identify the source of 
IL6, we analyzed IL6 expression in monocytes and UC-MSCs and found that both are capable of IL6 production; 

Figure 2.  UC-MSCs alter cytokine production patterns of monocyte-derived cells. After a 7-day incubation, 
monocytes were collected and cultured with or without LPS for 24 h. The culture supernatants were then 
collected, and the concentrations of IL10 (A), IL12p70 (B), TNFa (C) and IL17 (D) were determined using 
ELISA kits. The data are shown as the means ±​ SEMs of three different healthy persons.
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therefore, the source of IL6 remained unclear. Because the suppressive effect of UC-MSCs, e.g., IL10 production 
and CD1a expression, could be reproduced by IL6, we considered UC-MSC-derived IL6 to be responsible for the 
MSC-induced inhibition. Indeed, the addition of IL6-blocking antibodies significantly reversed the suppressive 
effect of UC-MSCs. These data clearly indicated that UC-MSC-derived IL6 regulated monocyte differentiation  

Figure 3.  UC-MSCs impair the allostimulatory capacity of monocyte-derived cells. After a 7-day 
incubation, monocytes were collected and cultured with PBLs labeled with CFSE for 5 days. The cells were 
the collected, and the proliferation of CD3+​ T cells was analyzed by FACS (A,B). (A) One representative 
experiment of three is shown. (B) The data are the proliferation numbers of CD3+​ cells and the means ±​ SEMs 
of three different healthy persons. The ability of CD4+​ T cells to produce IFNγ​ (C), IL2 (D), and TNFa (E) were 
tested by FACS. The data are shown as the means ±​ SEMs of three different healthy persons.
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in vitro and thereby instructed monocytes towards an IL10-producing cell type with decreased functional mol-
ecule expression and allostimulatory capacity. However, additional factors might play a role in the suppressive 
effect of UC-MSCs because the expression of functional molecules in monocyte-derived cells was not completely 
restored by IL6-blocking antibodies.

In our study, high concentrations of HGF secreted by UC-MSCs were detected in a coculture system. In 
murine allogeneic bone marrow transplantation, HGF ameliorated acute graft-versus-host disease (aGVHD) 
through the reduction of IL12 serum levels and suppression of target organ IFNγ​ and TNFa mRNA26. Therefore, 
we speculated that HGF secreted by UC-MSCs might be another cytokine responsible for the inhibitory 
effect of UC-MSCs. Unexpectedly, the addition of HGF hardly altered the expression of functional molecules. 
Surprisingly, the addition of HGF resulted in a significant increase in the expression of IL10 in monocytes. 
Consistently, the addition of HGF-blocking antibodies did not alter the expression of functional molecules but 
significantly downregulated IL10 expression. These data indicate that UC-MSC-derived HGF can induce mono-
cytes to produce IL10, which is in accordance with a previous report on monocytes differentiated in the presence 
of HGF27,28.

Several studies have demonstrated that the regulatory properties of MSCs are mediated by IL10 because 
using antibodies to neutralize IL10 in cocultures of MSCs and immune cell types impaired the immunomod-
ulatory effect of the MSCs. However, these reports were not designed to identify the source of IL10. We found 
that UC-MSCs did not produce IL10, but that IL10 was exclusively produced by monocytes after exposure to 
UC-MSCs in our system. The addition of IL10 could block the differentiation of monocytes into DCs, but the 
inhibition of monocyte differentiation by UC-MSCs was not impaired by using IL10-blocking antibodies. Thus, 
such increased IL10 production in monocytes after co-culturing with UC-MSCs could further enhance the 
immunomodulatory effect of UC-MSCs.

In summary, our studies show that UC-MSCs play a powerful suppressive role in multiple immune responses 
though instructing the generation of IL10-producing, monocyte-derived cells. These results suggest that UC-MSCs 

Figure 4.  The source of IL6, IL10 and HGF in co-cultures was identified. After a 7-day incubation, coculture 
supernatants were collected, and the concentrations of IL6, IL10, and HGF in the supernatants were determined 
using ELISA kits (A,C). The data are shown as the means ±​ SEMs of three independent experiments. After 
a 7-day incubation, UC-MSCs (D) and monocytes (E) were collected to determine the mRNA levels of IL6, 
IL10, and HGF. “n.d” refer to “not detected”. The data are shown as the means ±​ SEMs of three independent 
experiments.
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may modulate the immune system, not only through acting directly on T cells but also at the first step of the immune 
response through the inhibition of DC differentiation and maturation, which may help to explain their clinical ben-
efits. Therefore, UC-MSCs may act as powerful regulators of the immune response though triggering a suppressive 
microenvironment.
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