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ABSTRACT

Combinatorial interplay among transcription
factors (TFs) is an important mechanism by which
transcriptional regulatory specificity is achieved.
However, despite the increasing number of TFs for
which either binding specificities or genome-wide
occupancy data are known, knowledge about
cooperativity between TFs remains limited. To
address this, we developed a computational frame-
work for predicting genome-wide co-binding
between TFs (CCAT, Combinatorial Code Analysis
Tool), and applied it to Drosophila melanogaster
to uncover cooperativity among TFs during embryo
development. Using publicly available TF binding
specificity data and DNaseI chromatin accessibility
data, we first predicted genome-wide binding sites
for 324 TFs across five stages of D. melanogaster
embryo development. We then applied CCAT in
each of these developmental stages, and identified
from 19 to 58 pairs of TFs in each stage whose pre-
dicted binding sites are significantly co-localized.
We found that nearby binding sites for pairs of TFs
predicted to cooperate were enriched in regions
bound in relevant ChIP experiments, and were
more evolutionarily conserved than other pairs.
Further, we found that TFs tend to be co-localized
with other TFs in a dynamic manner across devel-
opmental stages. All generated data as well as
source code for our front-to-end pipeline are avail-
able at http://cat.princeton.edu.

INTRODUCTION

Transcriptional regulation controls a diverse range of
biological processes, from development to response to
external stimuli (1,2). Recent progress in profiling the
binding landscape of transcription factors (TFs) has
revealed that a single TF can bind thousands or tens of

thousands of regions in a genome (3–5), and it is clear
that the binding of a single TF cannot achieve the
complex and precise control of gene expression exhibited
in organisms (6). Combinatorial cooperativity among
TFs is a central mechanism by which regulatory specificity
is achieved (1,7–10). Distinct modes of cooperativity
between TFs have been identified, including physical inter-
actions between TFs for proximal co-binding (11), collab-
orative competition of two TFs with a nucleosome for
DNA binding (12) and changes in the local conformation
of DNA by one TF’s binding to assist the binding of other
TFs (13,14). Further, a TF may have different sequence
specificities when interacting with different cofactor
TFs (15–19).
In many studies of TF cooperativity, it has been

observed that certain pairs or groups of TFs tend to col-
laborate not only in a single region, but across many
promoter or enhancer regions, following certain rules of
binding motif positioning (20–24). For example, the yeast
TF MCM1 interacts with several cofactor TFs to com-
binatorially regulate cell cycle and mating (11,22). Its
binding motif is found near those of its cofactor TFs in
many regulons and in several yeast species (22). Another
example comes from the Drosophila TF dl, which works
with the TF twist. Binding sites for dl and twist are
observed close to each other in the enhancer regions of
several genes and across several Drosophila species
(20,21), and binding motifs for other TFs, including
Su(H), also co-locate with them (24).
Given the prevalence of TF cooperativity, several com-

putational approaches have been developed to analyze
genome-scale experiments to reveal interactions between
TFs. For example, ChIP experiments for TFs have been
analyzed to find overlapping binding profiles (25–28) and
to uncover enriched TF motifs corresponding to cofactors
in distinct biological contexts (29–31) or among related
species (32). Several studies have also computationally
predicted TF binding sites in gene promoters from avail-
able positional weight matrices (PWM), and used these to
predict combinatorial TF interactions (33–36). A common
first step for all of these methods is to collect genomic
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binding sites for TFs. Computational methods using ChIP
experiments clearly require the availability of ChIP data
sets (25–27,29–32); however, ChIP data is context-specific,
and given the large number of TFs in higher eukaryotes
[e.g. 753 in Drosophila melanogaster (37) and 1700–1900 in
Homo sapiens (38)], it is currently prohibitive to perform
these experiments for all TFs in each biological context of
interest. On the other hand, the large numbers of TFs in
model organisms for which binding specificities are known
(e.g. 364 in D. melanogaster and 722 in H. sapiens) provide
a promising means for predicting binding sites for a sig-
nificant fraction of TFs at the genome-scale. However,
given the short lengths of binding sites for most TFs and
the degeneracy in sites that a TF can bind, matches to
PWMs are frequently found by chance in long genomic
regions. To make higher quality predictions, binding sites
are typically required to be conserved across organisms,
and searched for within regions upstream of genes (39,40)
or within a small set of experimentally verified enhancer
regions (41,42). However, for higher eukaryotes, only a
small fraction of TF binding sites are located in regions
proximal to genes and a larger number of binding sites
are located further away and presumably regulate tran-
scription by higher order genome organization (43–46).
For example, <20% of the D. melanogaster TF ChIP
binding regions included in the modENCODE project
overlap gene promoter regions (25). Thus, predicting
binding sites only within promoter regions may miss the
majority of regulatory binding sites in higher eukaryotes.
Recently, DNaseI digestion has been coupled with mas-

sively parallel sequencing to measure genome-wide chro-
matin accessibility and the occupancy patterns of DNA
binding proteins (47–50). The binding of multiple regula-
tors within a genomic region will increase its local chroma-
tin accessibility to DNaseI nuclease digestion. Thus,
finding DNaseI hypersensitive sites has proven to be a
powerful means for mapping regulatory binding sites
without requiring prior knowledge of specific DNA
binding proteins. DNaseI digestion patterns have already
been measured at the genome scale by high-throughput
sequencing for five stages of Drosophila embryo develop-
ment (48,49) as well as for 125 diverse cell and tissue types
for human (50). Thus, the rapid progress of DNaseI experi-
ments, when combined with predictions of TF binding
sites, provides new opportunities for profiling genome-
wide condition-specific TF occupany (51,52) as well as
TF cooperativity under different conditions.
In this study, we develop a computational pipeline

CCAT (Combinatorial Code Analysis Tool) to uncover
combinatorially interacting motif pairs, which is designed
to overcome difficulties in previous studies, including the
requirement for ChIP data sets for the condition of interest
or limited searching within promoter regions. We concen-
trate our efforts on the process of Drosophila embryo
development, which involves extensive cooperativity
among many TFs (1). We leverage known binding site
specificities for hundreds of D. melanogaster TFs
(3,4,39,53–60), full genome sequences for 12 Drosophila
species and genome-scale chromatin accessibility data as
determined by DNaseI experiments (48,49) across five con-
ditions of embryo development. We first predict conserved

binding sites for 324 TFs in these five conditions by
focusing on accessible genomic regions in each condition.
We show that our predictions exhibit good agreement with
ChIP experiments, and are comparable in quality to high-
throughput ChIP experiments, as judged via functional
measures. We next search for pairs of TF regulatory
motifs whose binding sites are significantly co-localized,
by comparing real occurrences of binding motifs with
randomized controls. We find that nearby pairs of
binding sites for TFs predicted to cooperate are more
evolutionarily conserved than those for TF pairs that are
not predicted to cooperate, and that they tend to be found
in regions bound in relevant ChIP experiments. Further,
our predicted combinatorial pairs tend to be used in
specific stages of embryo development, which is consistent
with the dynamic nature of combinatorial regulation. The
source code for our front-to-end pipeline, from predicting
evolutionarily conserved genomic binding sites for TFs to
uncovering preferentially co-occuring binding motifs, is
available online at http://cat.princeton.edu.

MATERIALS AND METHODS

Searching for conserved binding sites in accessible regions

Multiple genome alignments of D. melanogaster and 11
other sequenced Drosophila species were downloaded
from the UCSC genome browser (http://genome.ucsc.
edu). Each PWM was searched on both strands of the gen-
ome sequences via the algorithm fimo from the MEME
package (http://meme.nbcr.net) (61), using the default
P-value threshold 1E-4. We excluded all binding sites in
protein coding exons, as annotated by the Flybase
database (http://flybase.org/).

For each match to a PWM on the D. melanogaster
genome, we looked for matches in the other 11 genomes
on either strand within an offset of 10 nt. These additional
matches were considered conserved instances, and were
used to calculate a branch length score (BLS) (39) as
follows. We obtained the minimum phylogenetic subtree
that included all conserved instances. The BLS was
computed as the total branch length of this subtree as a
fraction of the entire tree (39). We observed that it was
possible to get a high BLS score if there was an isolated
match in a species distant to D. melanogaster. Because
such a match may be spurious, we ignored the match in
the genome most distant from D. melanogaster if there was
a gap of more than four species from the second most
distant match and the evolutionary distance from
D. melanogaster was two times bigger than the second
most distant match. Then for each TF PWM, all of its
binding sites were ranked by BLS scores from largest to
the smallest. These BLS scores were then converted to
conservation percentile scores, which represent the
relative ranks among all predicted binding sites. For
example, a conservation percentile score of ‘0.6’ means
the current binding site has BLS score >60% of all
predicted binding sites for that PWM.

For each predicted PWM binding site in
D. melanogaster, we derived accessibility scores based on
DNaseI experiments over five embryo development stages

2834 Nucleic Acids Research, 2014, Vol. 42, No. 5

, 27
]
(
,
.
] 
 to 
.
)
,
]
]
]
less than 
]
]
]
]
]
st
]
]
,
] 
http://cat.princeton.edu
http://genome.ucsc.edu
http://genome.ucsc.edu
position weight matrix (
)
http://meme.nbcr.net
]
http://flybase.org/
s
]
]
Since 
``
''
greater than 
up


(S5, S9, S10, S11 and S14, corresponding to 3, 4, 5, 6 and
11 h after fertilization) (48,49). For each predicted PWM
binding site, its DNaseI accessibility score was estimated
by averaging all DNaseI experimental scores ±50 nt
around it. For each stage, the top 5% of DNaseI scores
across the whole genome was set as a threshold, and PWM
sites with an average DNaseI score larger than this thresh-
old were defined as accessible binding sites.

Collection and selection of TF regulatory motifs

We collected 712 PWMs representing the binding
specificities of 364 different DNA binding proteins from
FlyFactorSurvey (53,54), BDTNP (4,3), Flyreg (55),
JASPAR (56), Transfac 6.0 (57), a collection of Kellis
and colleagues (39) and several ChIP experiment papers
(58–60). For each PWM in our collection, the information
content (IC) was computed for each of its columns as
2+
P

i2ðA,C,G,TÞ Pi � logðPiÞ, where Pi gives the frequency

of base i in the column, and columns at the beginning or
the end of the PWMs with IC <0.2 were trimmed. Of the
364 collected DNA binding proteins, 170 have two or
more PWMs associated with them. For example, the
well-studied bcd has 12 different PWMs in our data set.
It has been shown previously in Saccharomyces cerevisiae
that different PWMs for the same TF may differ in quality
even if they share motif similarity (62). Thus, to control
for PWM quality and correct for study bias, only one
PWM was selected for each TF as follows.

We collected ChIP data sets for 53 TFs from BDTNP
(4,3), modEncode (63) and several publications (58–
60,64,65). For any TF, if there is ChIP experimental
data for it, the percent of PWM binding sites within
ChIP bound regions was calculated. If several different
ChIP data sets existed for the same TF, the median
value was taken for comparison. For different PWMs of
the same TF, the PWM with the highest ChIP percentage
was selected. For TFs without available ChIP experiment,
the five embryo stage DNaseI data set was utilized (48,49).
In this case, for PWM selection, regions with DNaseI
accessibility scores in the top 5% of scores were used in
place of ChIP bound regions.

This process resulted in choosing one PWM for each of
the 364 DNA binding proteins. After searching with the
fimo algorithm [with the default P-value threshold of 1E-4
(61)], we uncovered binding sites for 324 DNA-binding
proteins in the D. melanogaster genome.

Clustering of highly similar TF regulatory motifs

Many TFs, especially from certain structural families,
exhibit similar binding specificities (53,66). Thus predicted
binding sites for different TFs may overlap extensively
with each other. We clustered our selected PWMs by hier-
archical clustering and then merged their overlapping
binding sites.

For each pair of PWMs X and Y, their similarity was
calculated using an IC weighted version of the Pearson
correlation coefficient (PCC) measure as follows. For a
given alignment A between PWMs X and Y, let AðX,iÞ
[or AðY,iÞ] denote the column of X (or Y) corresponding
to the i-th column in the alignment. Then, the IC of a

column i in A, ICA,i, was computed as the geometric

mean of the ICs,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ICAðX,iÞ�ICAðY,iÞ

p
, if the alignment

column is ungapped or as ICAðX,iÞ or ICAðY,iÞ if only X
or Y (respectively) contributes a column to the alignment.
The weighted PCC for an alignment A was then
computed as

P
i2Ungapped columns ðIC

A,i � PCCðAðX,iÞ,

AðY,iÞÞ=
P

c2All columns IC
A,c, where the PCC between two

PWM columns was computed over their nucleotide
frequencies. In this manner, columns with higher IC
contribute more to the PWM similarity score, and gaps
are also penalized according to the IC of the unmatched
columns. Because we search for matches to PWMs on
both the positive and negative strands of the genome,
the alignments between PWM X and the reverse comple-
ment motif of PWM Y were also considered. Gaps were
only allowed at the ends of the alignment. A final similar-
ity score between PWMs X and Y was calculated as the
maximum possible weighted PCC over all column offsets
and in both orientations.
Average linkage clustering was applied to group all

PWMs into a hierarchical tree. To uncover clusters of
PWMs, the tree was cut at PCC� 0.8. One hundred
ninety-eight PWM clusters were acquired by this threshold
and 44 of them contained two or more PWMs. For each
cluster of TFs, a binding site is predicted for that cluster
if it is predicted for at least one of its members.

Gene ontology enrichment analysis for the predicted
TF target genes

To measure the biological function similarity between a
TF and its predicted target genes, we used Gene Ontology
(GO) annotations (67). We only considered GO biological
process terms with >5 but <1000 genes annotated in
D. melanogaster. For each TF and a GO term annotated
with it, we computed the fraction of its annotated target
genes that are also annotated with that term. For all genes
that are not a target of that TF but are annotated with
at least one GO term, we also calculated the fraction
annotated. The enrichment ratio for that specific GO
term and its annotated TF is computed as (fraction of
target genes with that annotation)/(fraction of nontarget
genes with that annotation). For each TF, we considered
all annotated biological process terms. We use the median
over all enrichment ratios across all TFs as an overall
measure for each data set.

Finding combinatorial regulatory motif pairs

Using each regulatory TF in turn as a ‘pivot’, we set out to
find other regulatory motifs that significantly co-localize
with it. First, we enumerated all pairs of predicted binding
sites between the pivot regulatory motif and other regula-
tory motifs. For each enumerated pair, we defined its
weight as the smaller of the conservation percentile
scores of each of its constituent binding sites. For each
genomic region where several binding sites for the same
TF are clustered, only the neighboring sites closest to the
pivot motif were considered (Supplementary Figure S1A).
Then for each pivot TF motif and other motifs, we clas-
sified all enumerated binding site pairs by the distance
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between the two involved sites and derived a histogram in
steps of 100 nt. In each histogram bin, the weights of all
enumerated binding site pairs were summed as a weighted
count. For this analysis, as we are using weighted counts,
we considered binding site predictions with lower conser-
vation percentile scores. In particular, we utilized those
sites with conservation percentile scores �0.6. As shown
in Supplementary Figure S6 and Supplementary Table S3,
the quality of these predictions is reasonable but not as
high as when using a higher threshold; however, these
lower quality predictions contribute less to the weighted
count.
To estimate how often TF binding sites would co-local-

ize by chance, we randomized the identities of the other
regulatory motifs. The binding site identity of the pivot
regulatory motif is not changed, but the identities of all
other motif binding sites are shuffled across the same
chromosome (Supplementary Figure S1B). As an extra
constraint in the shuffling process, we classified the 198
TF PWM clusters by the similarity in their nucleotide
compositions and created 10 composition clusters
(method described in a subsequent section). Only regula-
tory motifs in the same composition cluster can exchange
their identities in the shuffling process (Supplementary
Figure S2). In this way, the local base pair composition
will be similar to the initial data after randomization.
Then, the motif pair sites neighboring the pivot regulatory
motif were enumerated again. Histograms were plotted
according to the distances of all motif pairs for real data
and randomized data.
EmpiricalP-values were computed in each histogram bin

as the fraction of randomized weighted counts that were
greater than or equal to the real weighted count among
10 000 randomizations. For each histogram bin, we only
considered motif pairs with weighted count �1% of the
total sum of all conservation percentile scores of each
involved regulatory motif (pivot and other TF). The
Benjamini–Hochberg procedure was applied on the empir-
ical P-values, and a False Discovery Rate (FDR) threshold
of 0.05 was used to select significant combinatorial motif
pairs (68). The final set of combinatorial motif pairs were
selected by requiring reciprocal hits when considering a
distance of <100 nt (i.e. where a FDR �0.05 was required
when each motif was used as the pivot). We also required
the final set of predicted combinatorial motif pairs to have a
weighted count of at least 10 where the pair sites are within
100 nt of each other and where the conservation percentile
scores are �0.6.

CCAT running time

We have engineered the CCAT framework so that it can
uncover TF binding sites quickly. On a 2.67GHz Intel
core with 47 GB memory, CCAT takes on average 69 s
to uncover conserved binding sites for fly TFs and uses
<5 MB of memory. Once binding sites are determined, it
takes on average 215 s to uncover other TFs whose
binding sites are preferentially co-localized with it (using
10 000 randomizations) while using <50 MB of memory.
We note that our framework can also be easily parallelized
to run on a cluster, on a per TF basis. For example, using

a Rock Cluster of 50 nodes each of the same specification
as above, uncovering conserved binding sites in fly for 198
TFs and finding co-localizing TFs across the five stages
took 110min in total.

Categorizing regulatory motifs by base pair composition

For each of the 44 PWM clusters that contained more
than one PWM, one centroid PWM was generated by
averaging over all included PWMs over their shared
columns. Then for each of the 198 PWM clusters, we
computed the A, C, G, T content of its centroid PWM
by averaging over columns. The background frequency of
the whole fly genome was subtracted from these compos-
itions (A: 28.87%, C: 21.15%, G: 21.11%, T: 28.86%).
The standard deviation of the entries of the resulting
PWM composition frequency vector was calculated and
used as a measure of base pair preference. PWM clusters
whose standard deviations were in the bottom 10% when
sorted by their standard deviations were excluded for
further clustering, as they show only weak preferences
for base pair compositions (they are found in the cluster
‘others’ in Supplementary Figure S2). All of the rest of the
frequency compositions were then clustered by average
link hierarchical clustering using PCC as the similarity
measure. Because we search for the regulatory motifs on
both strands of the fly genome, the PCCs between base
pair composition vectors were calculated in both the same
direction as well as the reverse complement direction, and
the maximum of the two was used.

The hierarchical tree was cut at PCC 0.8. If there were
small clusters with less than five members, this would lead
to a restricted space in our motif identity shuffling process.
In this case, we added them to the last cluster (labeled with
‘others’). Finally, 10 composition clusters were generated
(Supplementary Figure S2).

RESULTS

Predicting TF binding sites in accessible genomic regions

We collected 712 PWMs representing 364 different
D. melanogaster TFs from several resources (3,4,39,
53–60). We searched the 12 Drosophila genomes for
matches to these PWMs using the fimo algorithm from
the MEME package (61). For each binding site in
D. melanogaster, we next calculated conservation scores
based on nearby matches in the 11 other Drosophila
species (39,69). For each TF, only the top 20% most
conserved binding sites were selected for further analysis.
We next considered only conserved binding sites in
D. melanogaster within the most accessible genomic
regions, as determined by DNaseI experiments across
the five embryo development stages of Drosophila
(stages S5, S9, S10, S11 and S14, corresponding to 3, 4,
5, 6 and 11 h after fertilization) (48,49). For each stage, all
genomic DNaseI accessibility scores were sorted from
largest to smallest and the top 5% of scores were used
for binding site selection.

We noticed that many of the collected PWMs are
similar to each other [e.g. homeodomain proteins cluster
into groups of TFs with similar binding specificities (53)],
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and thus have largely overlapping sets of predicted
genomic binding sites. To address this, we grouped TFs
with similar PWMs together using hierarchical clustering
based on the PCC (70). This resulted in 198 TF PWM
clusters, and 44 of these contained two or more TFs.
Binding site predictions for any TF in one of these
clusters were assumed to be putative predictions for the
other TFs in the same cluster. All 44 clusters with multiple
TFs were assigned indices from 0 to 43, and were referred
to by that index along with a representative TF contained
within the cluster. As one example, we visualized binding
sites predictions near the transcription start site of hb
(Figure 1A). While several binding site predictions

correspond to a single TF, a few correspond to predictions
for a cluster of TFs. For example, binding sites for TFs in
a cluster including bcd are found; this cluster, referred to
by bcd and the index 8, contains four different TFs
including bcd, oc, Ptx1 and Gsc (Figure 1B).
To assess the quality of our binding site predictions, we

used ChIP data sets collected from diverse sources (4,3,
58–60,63–65). Among 53 TFs with at least one associated
ChIP data set, 39 of them are included in our TF binding
site predictions. For each of these TFs, we computed the
percent of its predicted binding sites that are located
within ChIP bound regions. We found that by requiring
conserved sites to be within a DNaseI accessible region in
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at least one stage, a larger fraction of binding sites are
located within ChIP regions than are when considering
conserved sites over all genomic regions (Figure 2A and
Supplementary Figure S3).
We further compared our binding site predictions with

other large-scale regulatory networks. The fly modEncode
project released two physical regulatory networks:
motif_net and ChIP_net. The motif_net network
is computationally predicted by finding conserved binding
sites within gene promoters (39,63). The ChIP_net
network is determined via ChIP experiments (63). We
also constructed regulatory networks from BDTNP (3,4)
by assuming that a TF regulates a gene if there is a ChIP

bound region within 2000 nt from the transcription start
site. For our binding site predictions, we built six networks
using predictions either restricted to DNA accessible
regions in a specific stage or over the whole genome.
Our regulatory network contains a significantly larger
number of TFs (Table 1) than these previous networks.

We also assessed the quality of our network using
known functional annotations from GO (67). We
reasoned that the target genes of a TF should be
involved in similar biological processes as it. For each
GO biological process term annotating a TF, we
computed an enrichment ratio by dividing the fraction
of genes annotated with that term within the TF’s target
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Figure 2. Predicted TF binding sites have quality comparable to ChIP experiments. (A) For each profiled TF with a corresponding ChIP data set,
the percent of predicted binding sites that are located within experimentally identified bound regions was calculated. Only binding sites with
conservation percentile scores �0.8 were considered. White bars represent the percentages calculated with TF binding sites over the whole
genome. Gray bars represent percentages calculated using only binding sites within the top 5% of DNaseI scores in at least one stage. (B and
C) Regulatory networks from TF to target genes were first built by connecting TFs to genes if binding sites are found within 2000 nt of the
transcription start site. For each GO term (67), the enrichment ratio among target genes was calculated as the fraction of target genes annotated with
the term, divided by the fraction of nontarget genes annotated with the term. For each TF, GO enrichment ratios were calculated for all of its GO
biological process annotations and visualized together using boxplots for each data set. Motif_net and ChIP_net are two physical regulatory
networks generated by modEncode (63). BDTNP is the regulatory network constructed from BDTNP (4). CCAT represents the networks generated
by our computational predictions, constructed from conserved binding sites (conservation percentile score �0.8) over the entire genome or within the
DNaseI accessible regions of each stage. (B) Only the 17 TFs profiled by all data sets are considered. (C) All TFs profiled in each data set are
considered.
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genes versus the fraction of nontarget genes annotated
with that term. The top 20% conserved binding sites
have similar GO enrichment measures as the
modEncode computational motif_net network,
whereas the ChIP experimental networks ChIP_net
and BDTNP have better functional quality measures than
purely computationally predicted networks (Figure 2B
and C). However, when restricting binding site predictions
to be in the top 5% of DNaseI accessible regions, the GO
enrichment measures of our binding site predictions were
significantly improved in all five stages (Figure 2B and C).
There were 17 TFs profiled in all four data sets. When we
compared over these 17 common TFs, our binding sites
predictions have similar functional enrichment ratios as
the modEncode experimental ChIP network (Figure 2B
and Supplementary Figure S4). When all TFs included
in each network were used to compute the enrichment
measures for each network, our approach obtained a
higher median GO enrichment ratio than the
modEncode ChIP experimental network (Figure 2C).

Wealso characterized the quality and size of the predicted
interaction data set as the DNaseI accessibility score and
the conservation percentile score thresholds were varied
(Supplementary Tables S1–S3 and Supplementary Figures
S5 and S6). We found that network quality increases as
fewer predictions are made (Supplementary Figures S5
and S6 and Supplementary Tables S2 and S3). We chose
our current thresholds (top 5% of DNaseI scores and top
20% of conservation scores) to balance the quality of our
predictions with the total number of predicted binding sites
(Supplementary Table S1).

As an additional quality control, we used the
Redfly regulatory network, a small curated database of
regulatory interactions in fly (http://redfly.ccr.buffalo.
edu/). For each of the four data sets, we computed the
number of interactions that overlap those annotated in
Redfly and compared this against the overlap found
when the Redfly network is randomized by edge
swapping (71). The overlap enrichment is defined as
number of overlapping interactions divided by the
expected number of overlaps, as computed by averaging
the number of overlapping interactions over 1000 edge-
swapped (71) Redfly networks. We found our predicted
regulatory network and the modEncode motif_net
network consistently had higher enrichment levels than
regulatory networks determined by ChIP (Supplementary
Figure S7); this finding is consistent with what was
reported in the modEncode project (40).

Dynamic usage of TF binding motifs in embryo
development

The DNaseI accessibility data we used provides informa-
tion about the dynamics of chromatin accessibility during
embryo development (48,49). We used this dynamic infor-
mation to determine whether binding site accessibility
varies per TF across developmental progression. For
each TF, we first computed its normalized degree in
each stage as the number of its predicted accessible
binding sites normalized by the total number of predicted
accessible binding sites for all TFs (51). We found that
different regulatory motifs tend to vary in their degrees
across different stages (Figure 3A). For example, bcd has
larger fractions of the accessible binding sites at the early
stages S5 and S9, but lower fractions at the later stages
S10, S11 and S14 (Figure 3A).
For each TF, to check the significance of its degree

variation across stages, we defined the variation ratio as
the maximum normalized degree across the five stages
divided by the minimum normalized degree. For each
motif instance, we randomly permuted the binary
DNaseI accessibility determination across the five stages
and counted the accessible binding sites in each stage. For
each TF motif, the normalized degrees and variation
measures across five stages were computed again for
each randomization. We found the real data were consist-
ently more abundant than randomized data for larger
variation ratios (Figure 3B).

Finding combinatorial regulatory motif pairs

Based on our stage-specific binding site predictions,
we searched for pairs of regulatory motifs that show a
co-localization enrichment based on the frequency with
which they occur within 100 nt of each other. For each
pair of regulatory motifs, we first enumerated all predicted
binding sites that fell within 1000 nt of each other
(Supplementary Figure S1A). For each enumerated pair,
we assigned a weight between 0 and 1 by taking the
minimum conservation percentile score between the two
involved binding sites. Then, we classified all enumerated
pairs into distance intervals corresponding to the number
of nucleotides between them (<100 nt, 100–200 nt, etc.) and

Table 1. Regulatory network sizes

(A) Network level statistics

Data set Network Number of
regulators

Number of
targets

Number of
interactions

modEncode motif_net 104 10 921 92 978
ChIP_net 79 12 411 158 571

BDTNP BDTNP 24 8686 43 243
CCAT All_site 324 13 155 379 192

S5 6503 67 153
S9 6597 68 693
S10 6087 62 019
S11 6510 72 097
S14 6631 71 305

(B) Binding site level statistics

Network Number of
regulators

Number of
targets

Number of
interactions

Number of
binding sites

All_site 198 13090 271 609 1 188 101
S5 6406 49 195 64 275
S9 6491 50 494 70 085
S10 5969 45 707 60 679
S11 6409 52 952 74 118
S14 6530 52 792 74 735

(A) For each data set, the number of regulators, gene targets and regu-
lator–gene interactions are listed in each column. (B) Statistics for the
data set generated by CCAT, with TFs with similar PWMs clustered
and their overlapping binding sites merged.
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summed the weights that fell into each interval (Figure 4A).
To estimate the expected weighted co-localization score
for each pair of regulatory motifs, we permuted the
identities of binding sites among TFs with similar base
pair composition (Supplementary Figures S1B and S2),
while keeping the genome position and conservation per-
centile score associated with each site fixed. For each pair of
regulatory motifs, the distribution of distances between

them was computed again (Figure 4A), and an empirical
P-value for the motif pair co-localization was computed
based on the initial weighted count for motifs within
100 nt as compared with the weighted counts over 10 000
randomizations. FDRs formotif pairswere computedusing
the Benjamini–Hochberg procedure, and motif pairs
with FDRs � 0.05 were determined to be co-localizing
(‘Materials and Methods’ section).
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Figure 3. Stage-specific usage of TF binding sites across embryo development. (A) For each TF motif, only predicted sites with conservation
percentile scores �0.8 were considered. The normalized degrees in different stages were calculated as the number of predicted binding sites for a
given TF normalized by the total number of predicted binding sites over all TF motifs. For each regulatory motif, the centered normalized degree in
each stage was computed by dividing by the average normalized degree across the five stages. These centered normalized degrees are then displayed
using a heatmap. (B) For each TF regulatory motif, a variation ratio was calculated as the maximum normalized degree among the five stages
divided by the minimum normalized degree. As a control, the DNaseI accessibility classifications for each predicted binding site were permuted
across the five stages and the accessible binding sites were counted again to calculate the randomized normalized degrees and variations. Histograms
for real and random variation ratios are shown, where the average and standard deviation values of random histograms were calculated from 100
randomizations.
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We ran the above procedure separately for each of
the five studied stages and obtained 19–58 co-localizing
regulatory motif pairs (Figure 4B and Supplementary
Figure S8). Several previously known examples of TF
cooperativity were recapitulated in this set. For example,
we found several TFs that co-localize with vfl (also known

as zelda), a protein critical in embryo development (72). In
stage S5, we found that it co-localizes with bcd, which is
known to be involved in early embryo development (73).
Similarly, previous studies showed that dl and twi cooper-
ate in neurogenic enhancers that direct gene expression in
the early embryo (24,74), and we found that binding sites

A

B

Figure 4. Combinatorial regulatory motif pairs with significantly co-localized sites. For each pair of TF regulatory motifs, all neighboring binding
sites within DNaseI accessible regions in each stage were enumerated. The distances between all enumerated neighboring sites were profiled by a
histogram with a step of 100 nt, and a weighted count in each bin was computed using the conservation percentile scores of the enumerated binding
site pairs. As a background, the identities of predicted regulatory motifs with similar base pair compositions were permuted across the same
chromosome and the distance histograms were profiled again. For each window, an empirical P-value was calculated from 10 000 randomizations,
and the Benjamini–Hochberg procedure was used for multiple hypothesis correction. A FDR threshold of 0.05 was used. (A) For vfl and bcd in stage
S5, the first window, corresponding to binding sites within 100 base pairs, has FDR <0.05. (B) All predicted combinatorial TF regulatory motif pairs
in stage S5 are shown.
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for dl and twi co-localized with each other in stage S5
(Figure 4B). In addition to capturing known cooperativity
among factors that play a role in development, our
pipeline also predicted co-localization between Hsf and
Tbp binding sites (Figure 4B); these TFs were previously
found to physically interact with each other and coopera-
tively bind heat shock promoters (75).
The PWMs in our collection include binding specificities

for CTCF, Su(Hw) and Cp190, which bind insulator
elements. Our CCAT pipeline found that binding sites
for CTCF and Cp190 co-localize in all five stages
(Figure 4B and Supplementary Figure S8). Consistent
with our findings, it was found that CTCF interacts with
Cp190, and that its binding to targets requires Cp190 in
many cases (76). Further, the ChIP binding profiles of
CTCF and Cp190 were previously observed to cluster
together (64).
Encouraged by the coherence of our findings with

previous studies, we set out to systematically assess the
quality of our predicted combinatorial motif pairs. We
reasoned that if a predicted binding site for a TF is close
to a predicted binding site for one of the TFs with which it
cooperates, then these predictions of binding sites are
more likely to be correct than other predicted sites for
these TFs. To check this, we used our collected ChIP
data sets. To use a TF in this assessment, for each TF
that was profiled in at least one ChIP data set, we con-
sidered its top 20% most conserved genome-wide binding
sites, and required that at least 5% of them be located in a
ChIP bound region. If several ChIP data sets existed for
the same TF, we selected the ChIP data set with the
maximum percentage of predicted binding sites within
ChIP bound regions.
For each TF considered, we classified its conserved

binding sites into two categories: (i) those with a predicted
conserved binding site within 100 nt of it for a TF that
was found to be co-localizing and (ii) those with
other predicted binding sites within 100 nt, but none of
the binding sites are for TFs that were found to be
combinatorial pairs. For each category, the percent of
binding sites within a ChIP bound region was computed
(Figure 5A).
We reasoned that if a predicted combinatorial motif

pair is used at a specific stage, the first category should
have more binding sites located in ChIP bound regions
than the second category in that specific stage. We thus
took the difference in the computed percentages for these
two categories as a quality measure for the combinatorial
motif pairs. For each stage, the difference in these two
categories is significantly larger for predicted combinator-
ial pairs in all stages than for other pairs of regulatory
motifs that were not predicted (Figure 5B). For each
stage, we also built randomized motif pairs by treating
the predicted combinatorial motif pairs as a network
where edges correspond to uncovered combinatorial
pairs between TFs and then randomizing the network
via edge-swapping; note that this maintains the number
of combinatorial pairs each motif is involved with (71).
The difference measures for real motif pairs are consist-
ently better than randomized motif pairs in all stages
(Figure 5C).

We also used evolutionary conservation to assess the
quality of our uncovered combinatorial pairs of TFs. A
previous study in mammalian embryonic stem cells
revealed that a TF binding site would be more evolution-
arily conserved if it was found near a binding site for a
TF with which it cooperates (77). We also searched
for whether there was evolutionary constraint for our
predicted combinatorial motif pairs. We first uncovered
predicted binding sites for all TFs via fimo, without con-
sidering conservation. Next, for a predicted combinatorial
pair involving TFs A and B, we compared the conserva-
tion percentile scores of sites partitioned into the following

A

B C

Figure 5. TF binding sites of combinatorial pairs are enriched in ChIP
bound regions. Collected ChIP data sets are used to assess the quality
of predicted motif pairs. The TF binding sites were classified into two
categories: (i) those with another TF binding site within 100 nt and the
neighboring TF was predicted to be a preferentially co-localized pair;
(ii) those with other TF binding sites within 100 nts, but none of them
comprise the predicted combinatorial pairs. For each category, the
percent of TF binding sites within the ChIP bound regions was
computed. (A) Combinatorial pairs profiled in stage S5 are considered.
The ChIP percentages are plotted for the two categories. The ChIP
data set that is used is specified by the first TF. (B) The difference of
ChIP percentages between the two categories is shown for all TF pairs
predicted to be preferentially co-localized and all other TF pairs that
were not predicted. For each group of TF motif pairs, the measures are
visualized by boxplots. The bottom and top of the box are the 25th and
75th percentiles (i.e. they give the interquartile range). Whiskers on the
top and bottom represent the maximum and minimum data points
within the range represented by 1.5 times the interquartile range.
The Wilcoxon rank sum test was used to compare the two groups,
and P-values were Bonferroni corrected for each of the five stages.
*P� 0.05 and ***P� 0.001. (C) The combinatorial regulatory motif
pairs in each stage were randomized by network edge swapping (71).
For each stage, the median difference is plotted for real pairs and
randomized motif pairs. Averages, standard deviations and empirical
P-values were calculated from 10 000 randomizations. P-values were
Bonferroni corrected for the five stages and visualized by asterisks as
in (B).
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three groups: (i) those with motif sites of TF A and TF B
within 100 nt; (ii) those with a motif site of TF A and
another motif site that is not TF B within 100 nt; and
(iii) those with a motif site of TF B and another motif
site that is not TF A within 100 nt. Then for each of
these three categories, we computed the percent of site
pairs where both binding sites had conservation percentile
scores �0.8 (Supplementary Figure S9A). Similar to the
comparison based on ChIP experiments (Figure 5), we
computed the difference in the fraction of highly
conserved pairs between the first category and the other
two categories and found that our predicted pairs consist-
ently have more significant measures than either pairs
that are not predicted or than randomized pairs
(Supplementary Figure S9B and C).

Dynamic usage of combinatorial pairs in embryo
development

For all combinatorial motif pairs predicted in any of the
five stages, we checked the extent to which they had stage-
specific usage. We first computed the stage-specific enrich-
ment ratio for each stage by dividing the weighted counts
of site pairs within 100 nt between real and randomized
data, as plotted in Figure 4A. We grouped all predicted
motif pairs by their maximum stage-specific enrichment
ratios and visualized them in heatmap format
(Figure 6A). Certain pairs of TFs (e.g. bcd and vfl, or
twi and dl) show a stage-specific preference for the
earlier stages, whereas others show a preference for the
later stages (e.g. cad and EcR) and some TF pairs show
no apparent preference (e.g. BtbVII and Tbp).

We further concentrated on twi and dl, a combinatorial
pair that we found to be strongly preferred in the stages S5
and S9 (Figure 6A), and for which we have ChIP experi-
ments in several stages of development. In particular,
twi has been profiled via ChIP in three consecutive
embryo developmental stages (S5–7, S8–9 and S10–11)
(58). We found that twi binding sites within 100 nt of a dl
site had a higher fraction in ChIP bound regions in the first
two stages (S5–7 and S8–9) than in the third stage (S10–11),
whereas when twi binding sites had other TF sites nearby,
the fraction within ChIP bound regions was similar across
the three stages (Figure 6B). Thus, this case study is
coherentwith our stage-specific usage profiling (Figure 6A).

DISCUSSION

We developed a pipeline for predicting combinatorial TF
interactions based on known TF binding motifs and
DNaseI data. In addition to capturing some known
cases of TF cooperativity, our systematic quality assess-
ments revealed that our predicted TF pairs are coherent
with experimental ChIP data and supported by evolution-
ary analysis. Thus, for specific biological processes of
focus, without requiring hundreds of ChIP experiments,
our pipeline enabled the genome-scale profiling of the
landscape of transcriptional cooperativity from a single
DNaseI-seq experiment. In addition, we also developed
accompanying tools to map evolutionarily conserved
binding sites and to partition PWMs of different TFs

into clusters of TFs with similar binding specificities,
which removed redundancy in our predicted TF pairs.

DNaseI accessibility of transcriptional repressors

It has been reported that transcriptional repressors in the
human genome may not be enriched in DNaseI hypersen-
sitive regions (50). We checked whether this phenomenon
is true for Drosophila TFs by using 53 ChIP experimental
data sets (Supplementary Figure S10).
For each TF with ChIP data, we computed the average

stage-specific DNaseI score for each ChIP bound region
and the percent of regions in each stage with average
scores that are in the top 5% of genome-wide stage-
specific DNaseI scores. We found that certain TFs tend
to have a large fraction of their ChIP bound regions in
accessible regions (i.e. in the top 5% of DNaseI scores),
whereas other TFs tend to have a small fraction of their
ChIP bound regions in accessible regions. As an example,
the TF sbb, which is annotated as a transcriptional repres-
sor by GO (67), has <2% of its bound regions accessible
in each of the five embryo development stages
(Supplementary Figure S10A). Of the 53 TFs with ChIP
data, we determined the TFs annotated by GO as either
having function ‘positive regulation of transcription,
DNA-dependent’ or ‘negative regulation of transcription,
DNA-dependent’, but not both, and obtained 9 and 10
TFs in each of these categories, respectively. For each of
these sets, we considered the average fraction of ChIP
bound regions within DNaseI accessible regions and
found that the set of positive regulators tends to bind
accessible regions more frequently than the set of
negative regulators (Supplementary Figure S10B,
P=0.008 by Wilcoxon rank sum test). Thus, it may be
that the strategy of using DNaseI experiments to help
uncover functional TF binding sites may be better suited
for activators than for repressors.

Positional constraints between regulatory motifs

Currently, we only considered proximity in binding sites
when predicting whether two TFs combinatorially cooper-
ate. However, several studies have shown that within
enhancer regions, TF binding sites may follow specific
positioning and orientation rules (14,33,78). For
example, in the human Interferon-b enhancer, eight TFs
bind together with a specific motif order within 55 bps of
DNA (14). Further, in several well-characterized develop-
mental enhancers in Drosophila, binding sites show a
periodic distribution that reflects the geometry of helical
turns of DNA (78). A recent paper came out that finds
positional constraints in Drosophila, but it appears to find
largely homotypic interactions, which we do not consider
(79). A computational study in yeast also showed that
interacting TF binding sites follow strict spacing and
orientation preferences (33).
To date, we have not found evidence that our predicted

combinatorial motif pairs exhibit any spacing or orienta-
tion preferences between binding sites. Instead, we observe
a relatively flexible spacing in our data, consistent with the
billboard model of enhancers (7). For example, one study
of Drosophila cardiac development revealed that five TFs
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Figure 6. Combinatorial regulatory motif pairs are dynamically used in different stages. (A) For each pair of TF regulatory motifs found to be
co-localized in some stage, five stage enrichment ratios were determined as (number of site pairs within 100 nt in a stage-specific DNaseI accessible
region)/(number of average site pairs within 100 nt from random shuffles). For all predicted motif pairs across five stages, the enrichment ratio in
each stage was centered by dividing by the average ratio across the five stages and then visualized by a heatmap. The twi and dl pair we analyze
further is starred. (B) For the combinatorial motif pair twi and dl (highlighted by * in Figure 5A), the percent of predicted twi binding sites in ChIP
bound regions was plotted over three consecutive stages of embryo development as in Figure 5A (58).
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cooperatively bind a large set of enhancers that have
diverse motif compositions along with flexible positioning
between binding sites (80).

One possibility for the reported differences in positional
constraints might come from the biological processes
studied. Our study is focused on embryo development
and it is possible that developmental combinatorial
binding allows flexible spacing. On the contrary, the
Interferon-b enhancer needs to rapidly respond to viral
infection (14) and may prefer a highly ordered structure
among TF binding sites. Another possibility for differ-
ences in positional constraints might come from the
evolutionary differences between organisms. In yeast,
protein physical interactions between TFs might facilitate
the strength of cooperativity, and the spacing and orien-
tation constraints reflect the constraints of physical inter-
actions (33). In higher eukaryotes such as Drosophila,
spacing flexibility might allow TF cooperativity in more
enhancers and allow more cooperativity with different
TFs. Finally, it may be that more sensitive statistical
approaches are able to detect support for positional
constraints. However, without a systematic study of TF
motif positioning under many different biological
contexts, it is not possible to conclude whether flexible
or strict positioning is more common in combinatorial
regulatory motif pairs.

Systematic profiling of combinatorial regulatory codes
across diverse biological processes

We have shown that combining binding sites matches to
TF PWMs with DNaseI accessibility experiments can
result in high-quality genome-wide TF binding site predic-
tions that are comparable in quality with those obtained
by ChIP experiments (Figure 2B and C). Several previous
studies also reached a similar conclusion (46,52,81). Our
high-quality binding site predictions allowed us to find
combinatorial interactions between regulatory motifs at
the genome scale. The different conditions of DNaseI ex-
periments also enabled us to uncover the dynamic usage of
combinatorial motif pairs in different stages. Compared
with ChIP experiments, which require one experiment
for each TF in each condition, DNaseI experiments
enable genome-scale profiling of combinatorial codes in
a single experiment. The recent release of the ENCODE
project includes genome-wide DNaseI experiments for 125
different human cell lines and tissue types (50). Thus, the
growing availability of DNaseI experiments should enable
reliable combinatorial regulatory motif pair profiling in
many biological conditions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

The authors would like to thank Hilary Coller, Leonid
Kruglyak and Anton Persikov for helpful discussions.
We also thank Xiaochun Ni and Yuri Schwartz for
providing us with their data.

FUNDING

National Science Foundation [ABI-0850063]; National
Institutes of Health (NIH) [NIGMS R01 GM076275].
Funding for open access charge: NIH [NIGMS R01
GM076275].

Conflict of interest statement. None declared.

REFERENCES

1. Spitz,F. and Furlong,E.E. (2012) Transcription factors: from
enhancer binding to developmental control. Nat. Rev. Genet., 13,
613–626.

2. Yusuf,D., Butland,S.L., Swanson,M.I., Ticoll,A., Cheung,W.A.,
Zhang,X.Y., Dickman,C.T., Fulton,D.L., Wasserman,W.W. et al.
(2012) The transcription factor encyclopedia. Genome Biol., 13, R24.

3. Li,X.Y., MacArthur,S., Bourgon,R., Nix,D., Pollard,D.A.,
Iyer,V.N., Hechmer,A., Simirenko,L., Stapleton,M.,
Luengo,H.C.L. et al. (2008) Transcription factors bind thousands
of active and inactive regions in the Drosophila blastoderm.
PLoS Biol., 6, e27.

4. MacArthur,S., Li,X.Y., Li,J., Brown,J.B., Chu,H.C., Zeng,L.,
Grondona,B.P., Hechmer,A., Simirenko,L., Keränen,S.V. et al.
(2009) Developmental roles of 21 Drosophila transcription factors
are determined by quantitative differences in binding to an
overlapping set of thousands of genomic regions. Genome Biol.,
10, R80.

5. Gerstein,M.B., Kundaje,A., Hariharan,M., Landt,S.G., Yan,K.K.,
Cheng,C., Mu,X.J., Khurana,E., Rozowsky,J., Alexander,R. et al.
(2012) Architecture of the human regulatory network derived
from ENCODE data. Nature, 489, 91–100.

6. Rada-Iglesias,A., Bajpai,R., Prescott,S., Brugmann,S.A., Swigut,T.
and Wysocka,J. (2012) Epigenomic annotation of enhancers
predicts transcriptional regulators of human neural crest. Cell
Stem Cell, 11, 633–648.

7. Arnosti,D.N. and Kulkarni,M.M. (2005) Transcriptional
enhancers: intelligent enhanceosomes or flexible billboards? J. Cell
Biochem., 94, 890–898.

8. Yáñez-Cuna,J.O., Kvon,E.Z. and Stark,A. (2012) Deciphering the
transcriptional cis-regulatory code. Trends Genet., 29, 11–22.

9. Lagha,M., Bothma,J.P. and Levine,M. (2012) Mechanisms of
transcriptional precision in animal development. Trends Genet.,
28, 409–416.

10. Wasserman,W.W. and Fickett,J.W. (1998) Identification of
regulatory regions which confer muscle-specific gene expression.
J. Mol. Biol., 278, 167–181.

11. Johnson,A.D. (1995) Molecular mechanisms of cell-type
determination in budding yeast. Curr. Opin. Genet. Dev., 5, 552–558.

12. Miller,J.A. and Widom,J. (2003) Collaborative competition
mechanism for gene activation in vivo. Mol. Cell. Biol., 23,
1623–1632.

13. Falvo,J.V., Thanos,D. and Maniatis,T. (1995) Reversal of
intrinsic DNA bends in the IFN beta gene enhancer by
transcription factors and the architectural protein HMG I(Y).
Cell, 83, 1101–1111.

14. Panne,D., Maniatis,T. and Harrison,S.C. (2007) An atomic model
of the interferon-beta enhanceosome. Cell, 129, 1111–1123.

15. Slattery,M., Riley,T., Liu,P. and Abe,N. (2011) Cofactor binding
evokes latent differences in DNA binding specificity between Hox
proteins. Cell, 147, 1270–1282.

16. Joshi,R., Passner,J.M., Rohs,R. and Jain,R. (2007) Functional
specificity of a Hox protein mediated by the recognition of minor
groove structure. Cell, 131, 530–543.

17. Garvie,C.W., Hagman,J. and Wolberger,C. (2001) Structural
studies of Ets-1/Pax5 complex formation on DNA. Mol. Cell, 8,
1267–1276.

18. Siggers,T., Duyzend,M.H., Reddy,J., Khan,S. and Bulyk,M.L.
(2011) Non-DNA-binding cofactors enhance DNA-binding
specificity of a transcriptional regulatory complex. Mol. Syst.
Biol., 7, 555.

Nucleic Acids Research, 2014, Vol. 42, No. 5 2845

]
se
]
]
to 
, 46
]
to 
]
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1302/-/DC1
This research is supported by 
and 


19. Bais,A.S., Kaminski,N. and Benos,P.V. (2011) Finding subtypes
of transcription factor motif pairs with distinct regulatory roles.
Nucleic Acids Res., 39, e76.

20. Papatsenko,D. and Levine,M. (2007) A rationale for the
enhanceosome and other evolutionarily constrained enhancers.
Curr. Biol., 17, R955–R957.

21. Zinzen,R.P., Senger,K., Levine,M. and Papatsenko,D. (2006)
Computational models for neurogenic gene expression in the
Drosophila embryo. Curr. Biol., 16, 1358–1365.

22. Tuch,B.B., Galgoczy,D.J., Hernday,A.D., Li,H. and Johnson,A.D.
(2008) The evolution of combinatorial gene regulation in fungi.
PLoS Biol., 6, e38.

23. Senger,K., Armstrong,G.W., Rowell,W.J., Kwan,J.M.,
Markstein,M. and Levine,M. (2004) Immunity regulatory DNAs
share common organizational features in Drosophila. Mol. Cell,
13, 19–32.

24. Erives,A. and Levine,M. (2004) Coordinate enhancers share
common organizational features in the Drosophila genome.
Proc. Natl Acad. Sci. USA, 101, 3851–3856.

25. Negre,N., Brown,C.D., Ma,L., Bristow,C.A., Miller,S.W.,
Kheradpour,P., Eaton,M.L., Loriaux,P., Sealfon,R., Li,Z. et al.
(2011) A cis-regulatory map of the Drosophila genome. Nature,
471, 527–531.

26. ENCODE Project Consortium, Bernstein,B.E., Birney,E.,
Dunham,I., Green,E.D., Gunter,C. and Snyder,M. (2012) An
integrated encyclopedia of DNA elements in the human genome.
Nature, 489, 57–74.

27. Whitington,T., Frith,M.C., Johnson,J. and Bailey,T.L. (2011)
Inferring transcription factor complexes from ChIP-seq data.
Nucleic Acids Res., 39, e98.

28. Giannopoulou,E.G. and Elemento,O. (2013) Inferring chromatin-
bound protein complexes from genome-wide binding assays.
Genome Res., 23, 1295–1306.

29. Yáñez-Cuna,J.O., Dinh,H.Q., Kvon,E.Z., Shlyueva,D. and
Stark,A. (2012) Uncovering cis-regulatory sequence requirements
for context-specific transcription factor binding. Genome Res., 22,
2018–2030.

30. Kwon,A.T., Arenillas,D.J., Worsley,H.R. and Wasserman,W.W.
(2012) oPOSSUM-3: advanced analysis of regulatory motif
over-representation across genes or ChIP-Seq datasets. G3
(Bethesda), 2, 987–1002.

31. Mullen,A.C., Orlando,D.A., Newman,J.J. and Lovén,J. (2011)
Master transcription factors determine cell-type-specific responses
to TGF-beta signaling. Cell, 147, 565–756.

32. He,Q., Bardet,A.F., Patton,B. and Purvis,J. (2011) High
conservation of transcription factor binding and evidence for
combinatorial regulation across six Drosophila species. Nat.
Genet., 43, 414–420.

33. Yu,X., Lin,J., Masuda,T., Esumi,N., Zack,D.J. and Qian,J. (2006)
Genome-wide prediction and characterization of interactions
between transcription factors in Saccharomyces cerevisiae.
Nucleic Acids Res., 34, 917–927.

34. Yu,X., Lin,J., Zack,D.J. and Qian,J. (2006) Computational
analysis of tissue-specific combinatorial gene regulation: predicting
interaction between transcription factors in human tissues.
Nucleic Acids Res., 34, 4925–4936.

35. Kranz,A.L., Eils,R. and König,R. (2011) Enhancers regulate
progression of development in mammalian cells. Nucleic Acids
Res., 39, 8689–8702.

36. Hannenhalli,S. and Levy,S. (2002) Predicting transcription factor
synergism. Nucleic Acids Res., 30, 4278–4284.

37. Adryan,B. and Teichmann,S.A. (2006) FlyTF: a systematic review
of site-specific transcription factors in the fruit fly Drosophila
melanogaster. Bioinformatics., 22, 1532–1533.

38. Vaquerizas,J.M., Kummerfeld,S.K., Teichmann,S.A. and
Luscombe,N.M. (2009) A census of human transcription factors:
function, expression and evolution. Nat. Rev. Genet., 10, 252–263.

39. Kheradpour,P., Stark,A., Roy,S. and Kellis,M. (2007) Reliable
prediction of regulator targets using 12 Drosophila genomes.
Genome Res., 17, 1919–1931.

40. Marbach,D., Roy,S., Ay,F., Meyer,P.E., Candeias,R., Kahveci,T.,
Bristow,C.A. and Kellis,M. (2012) Predictive regulatory models in
Drosophila melanogaster by integrative inference of transcriptional
networks. Genome Res., 22, 1334–1349.

41. Segal,E., Raveh-Sadka,T., Schroeder,M., Unnerstall,U. and
Gaul,U. (2008) Predicting expression patterns from regulatory
sequence in Drosophila segmentation. Nature, 451, 535–540.

42. He,X., Samee,M.A., Blatti,C. and Sinha,S. (2010)
Thermodynamics-based models of transcriptional regulation
by enhancers: the roles of synergistic activation, cooperative
binding and short-range repression. PLoS Comput. Biol., 6,
pii: e1000935.

43. Bulger,M. and Groudine,M. (2011) Functional and mechanistic
diversity of distal transcription enhancers. Cell, 144, 327–339.

44. Calhoun,V.C. and Levine,M. (2003) Long-range enhancer-
promoter interactions in the Scr-Antp interval of the Drosophila
Antennapedia complex. Proc. Natl Acad. Sci. USA, 100,
9878–9883.

45. Amano,T., Sagai,T., Tanabe,H., Mizushina,Y., Nakazawa,H. and
Shiroishi,T. (2009) Chromosomal dynamics at the Shh locus: limb
bud-specific differential regulation of competence and active
transcription. Dev. Cell, 16, 47–57.

46. Neph,S., Vierstra,J., Stergachis,A.B., Reynolds,A.P., Haugen,E.,
Vernot,B., Thurman,R.E., John,S., Sandstrom,R.,
Stamatoyannopoulos,J.A. et al. (2012) An expansive human
regulatory lexicon encoded in transcription factor footprints.
Nature, 489, 83–90.

47. Hesselberth,J.R., Chen,X., Zhang,Z. and Sabo,P.J. (2009) Global
mapping of protein-DNA interactions in vivo by digital genomic
footprinting. Nat. Methods, 6, 283–289.

48. Li,X.Y., Thomas,S., Sabo,P.J., Eisen,M.B.,
Stamatoyannopoulos,J.A. and Biggin,M.D. (2011) The role of
chromatin accessibility in directing the widespread, overlapping
patterns of Drosophila transcription factor binding. Genome Biol.,
12, R34.

49. Thomas,S., Li,X.Y., Sabo,P.J. and Sandstrom,R. (2011) Dynamic
reprogramming of chromatin accessibility during Drosophila
embryo development. Genome Biol., 12, R43.

50. Thurman,R.E., Rynes,E., Humbert,R. and Vierstra,J. (2012)
The accessible chromatin landscape of the human genome.
Nature, 489, 75–82.

51. Neph,S., Stergachis,A.B., Reynolds,A., Sandstrom,R.,
Borenstein,E. and Stamatoyannopoulos,J.A. (2012) Circuitry and
dynamics of human transcription factor regulatory networks. Cell,
150, 1274–1286.

52. He,H.H., Meyer,C.A., Chen,M.W., Jordan,V.C., Brown,M. and
Liu,X.S. (2012) Differential DNase I hypersensitivity reveals
factor-dependent chromatin dynamics. Genome Res., 22,
1015–1025.

53. Noyes,M.B., Christensen,R.G., Wakabayashi,A., Stormo,G.D.,
Brodsky,M.H. and Wolfe,S.A. (2008) Analysis of homeodomain
specificities allows the family-wide prediction of preferred
recognition sites. Cell, 133, 1277–1289.

54. Noyes,M.B., Meng,X., Wakabayashi,A., Sinha,S., Brodsky,M.H.
and Wolfe,S.A. (2008) A systematic characterization of factors
that regulate Drosophila segmentation via a bacterial one-hybrid
system. Nucleic Acids Res., 36, 2547–2560.

55. Bergman,C.M., Carlson,J.W. and Celniker,S.E. (2005) Drosophila
DNase I footprint database: a systematic genome annotation of
transcription factor binding sites in the fruitfly, Drosophila
melanogaste. Bioinformatics, 21, 1747–1749.

56. Bryne,J.C., Valen,E., Tang,M.H., Marstrand,T., Winther,O.,
da Piedade,I., Krogh,A., Lenhard,B. and Sandelin,A. (2008)
JASPAR, the open access database of transcription factor-binding
profiles: new content and tools in the 2008 update. Nucleic Acids
Res., 36, D102–D106.

57. Matys,V., Fricke,E., Geffers,R., Gössling,E., Haubrock,M.,
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