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Functional and connectivity changes in corticostriatal systems have been reported in the brains of patients with obsessive–
compulsive disorder (OCD); however, the relationship between basal ganglia activity and OCD severity has never been
adequately established. We recently showed that deep brain stimulation of the subthalamic nucleus (STN), a central basal
ganglia nucleus, improves OCD. Here, single-unit subthalamic neuronal activity was analysed in 12 OCD patients, in relation to
the severity of obsessions and compulsions and response to STN stimulation, and compared with that obtained in 12 patients
with Parkinson’s disease (PD). STN neurons in OCD patients had lower discharge frequency than those in PD patients, with a
similar proportion of burst-type activity (69 vs 67%). Oscillatory activity was present in 46 and 68% of neurons in OCD and PD
patients, respectively, predominantly in the low-frequency band (1–8 Hz). In OCD patients, the bursty and oscillatory subthalamic
neuronal activity was mainly located in the associative–limbic part. Both OCD severity and clinical improvement following STN
stimulation were related to the STN neuronal activity. In patients with the most severe OCD, STN neurons exhibited bursts with
shorter duration and interburst interval, but higher intraburst frequency, and more oscillations in the low-frequency bands. In
patients with best clinical outcome with STN stimulation, STN neurons displayed higher mean discharge, burst and intraburst
frequencies, and lower interburst interval. These findings are consistent with the hypothesis of a dysfunction in the associative–
limbic subdivision of the basal ganglia circuitry in OCD’s pathophysiology.
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Introduction

Obsessive–compulsive disorder (OCD) is a common dis-
abling disease, but its neural substrate remains poorly
understood. A large set of imaging and neurophysiological
data obtained in OCD patients have suggested, however, a
dysfunction of the ventromedial corticosubcortical loop.1–9 In
the light of these results, deep brain stimulation (DBS) of the
caudate nucleus and adjacent structures has been proposed
for the treatment of severe and refractory OCD patients.10–15

Recently, the subthalamic nucleus (STN) has appeared
as another potential target for DBS following serendipitous
results from Parkinson’s disease (PD) patients16–18 and its

role in associative and limbic information processing in human
and non-human primates.19–21 Data obtained in rats and
human also suggest that the STN is implicated in the ability to
stop or inhibit an already initiated response, highlighting its
potential role in impulse control disorders.22,23 We have
recently confirmed the efficacy of stimulation applied in the
medial part of the STN in OCD patients with a multicentre
clinical trial.24 The usefulness of STN stimulation has also
been investigated in rats and monkeys with induced compul-
sive-like behaviour.25–28 The fact that modulation of the STN
neuronal activity by DBS improves OCD symptoms suggests
that this basal ganglia structure may be dysfunctional in
human patients.
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One way to understand the potential role of the basal
ganglia system and its dysfunction in OCD symptoms
is to investigate subcortical structures electrophysiologically.
Neuronal recordings of the striatum have already been
reported in three OCD patients where an increased and more
irregular pattern was found during obsessions.29 As the STN
is the main target for DBS in patients with Parkinson’s disease
(PD), a large set of electrophysiological data have been
reported in patients and non-human primate models of PD,
and consistently show increased neuronal activity, occur-
rence of bursts, synchrony and oscillations.30–34 In such
patients, an electrophysiological analysis has allowed, at least
in part, to understand how STN dysfunction is linked to the
motor symptoms33,35 and how these electrophysiological
characteristics are related to the clinical outcome of STN
stimulation.36,37 In OCD patients, compared with PD patients,
the firing rate of subthalamic neurons has been shown to be
lower with, however, the same proportion of bursting
neurons.38

This study aimed to further explore the relationship between
STN neuronal activity and OCD symptoms. Subthalamic
electrophysiological recordings were obtained in OCD pa-
tients during surgery for DBS and analysed in relation to both
OCD severity and STN stimulation outcome.24 Subthalamic
neuronal activity recorded in PD patients operated under the
same conditions was used for comparison. Previous studies
led us to hypothesise that (1) subthalamic neuronal activity
would be differentially affected in OCD compared with PD
patients, especially in the ventromedial (associative–limbic)
subdivision; and (2) the neuronal activity characteristics would
be linked to clinical severity or response to STN stimulation of
OCD symptoms.

Materials and methods

Participants. A total of 12 patients with severe and
refractory OCD and 12 patients with severe form of PD
were included in this study. Patients with OCD were operated
for bilateral high-frequency STN stimulation in a therapeutic
trial (ClinicalTrials.gov number, NCT00169377)24 (see
Supplementary Material and Table S1). All patients gave
informed written consent and the protocol was approved by
the local ethics committee. Patients with PD were operated
for bilateral STN stimulation as routinely performed in our
centre39 (see Supplementary Material). None of the patients
showed contraindication to surgical procedure, dementia or
abnormal brain imaging.

Neurosurgical procedure. The surgery was performed as
described previously.24,40 Briefly, the implantation of bilateral
stimulating electrodes (Medtronic, model 3389, Minneapolis,
MN, USA) was performed the same day using both preopera-
tive anatomical and perioperative electrophysiological targeting.
Subthalamic nuclei were preoperatively targeted by means
of stereotactic magnetic resonance imaging, with additional
ventriculography in some OCD patients (depending on the
local protocol).24 In OCD patients, the target was defined
2 mm anterior and 1 mm medial to the PD target at the
boundary of STN associative and limbic subdivisions.41,42

Micro-electrode recordings. Perioperative electrophysio-
logical recordings were performed in awake patients, at rest
(see Supplementary Material). Drug treatment was
discontinued the evening before surgery in all patients.
Extracellular single-unit neuronal activity was recorded
simultaneously from 3 to 5 leads, used to identify and
localise the STN for 2 min at rest, each 200–500mm within
the STN.31,32

Off-line analysis. Neuronal recordings were exported off-
line as text files to a PowerLab system (ADI instruments;
Phymep, Paris, France) and analysed using the Spike 2
software suite (Version 5; Cambridge Electronic Device,
Cambridge, UK). Spikes were discriminated from noise and
the mean firing rate, mean interspike interval (ISI) and
coefficient of variation were calculated for each neuron
(see Supplementary Material, and Figure S1A, D and G).
Discharge patterns were classified as regular, irregular or
bursting and the spike trains with bursting activity were
detected for each neuron43 (see Supplementary Material).
The mean bursting index (S), burst frequency, duration,
intraburst frequency and interval interburst were calculated
for each neuron.34 Analysis of oscillatory activity was
performed by frequency band using a Matlab program44

(d: 1–4 Hz; y: 4–8 Hz; a: 8–12 Hz; b low: 12–20 Hz; b high:
20–35 Hz; g: 435 Hz) (see Supplementary Material).

Imaging. The location of each recorded neuron within
the functional subdivisions, that is, motor, associative
and limbic, of the STN was determined by using a three-
dimensional deformable histological atlas adjusted to
the individual brain geometry of each patient45,46 (see
Supplementary Material).

STN stimulation in OCD patients. A 3-month STN
stimulation period was tested in the 12 OCD patients.24 At
the end of the on-stimulation period, the Yale–Brown
Obsessive–Compulsive Scale (Y-BOCS) score was
decreased by 22% (see Supplementary Material).

Statistical analysis. Results for continuous variables are
reported as mean±s.d. To compare neuronal activity
between OCD and PD cells, we used mixed models
(analysis of variance with random effect) with a random
effect for patients and two fixed effects for the group (OCD vs
PD) as the between-subject factor and neuronal recording
localisation (sensorimotor, associative, limbic) as the within-
STN factor, and the interaction between these two fixed
factors. When significant effects were found, pairs of means
were compared using a Tukey–Kramer correction. For
categorical data, generalised linear models with a logistic
link function were used with similar effects as for the linear
mixed model used for continuous data.

As changes in STN neuronal activity have been reported,
we examined the differences in STN neuronal activity
between OCD patients with (n¼ 4 subjects, 48 cells) and
without (n¼ 4 subjects, 50 cells) neuroleptic treatment,47 and
between left and right sides,38 using the Student’ t-test for
continuous variables and the Fisher’s exact test for catego-
rical variables. The relationship between the severity of
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obsessions and compulsions (Y-BOCS global and obsession
and compulsion subscores), the improvement in OCD
symptoms induced by STN stimulation and the STN neuronal
activity characteristics were also evaluated using the non-
parametric Spearman’s correlation test. For these purposes,
the mean discharge frequency, ISI, coefficient of variation, S
index, burst frequency and duration, intraburst frequency and
interval interburst, the proportion of STN neurons displaying
oscillatory activities, power and peak in each band frequency
were calculated for each subject. The postoperative percen-
tage improvement in OCD symptoms was calculated for each
patient, as follows: (score before the on-stimulation period�
score at the end of the 3-month STN stimulation
period)� 100/score before the on-stimulation period) (see
Supplementary Material).

Statistical analyses were performed with the SAS 9.2
software (SAS Institute, Cary, NC, USA). The level of signi-
ficance for all statistical tests was fixed at Po0.05. No
Bonferroni correction was applied.

Results

In all, 138 cells were isolated and recorded from the STN of
the 12 OCD patients and 173 cells from the STN of the 12 PD
patients. The average recording duration was 59.6±39.4 s
and the average number of spikes 1417±1191.

Discharge frequency and pattern. The mean STN firing
rate in OCD patients (STN-OCD) was significantly lower,
with a higher mean ISI, compared with STN neurons of PD
patients (STN-PD; Table 1). The distribution of the three
types of discharge pattern in STN neurons did not differ
between OCD and PD patients (P¼ 0.14), with a
predominant burst-like firing pattern (Table 1). The mean
bursting index, burst duration and interval interburst were
significantly higher and the mean burst frequency and
intraburst frequency significantly lower in STN-OCD
neurons compared with STN-PD neurons (Table 1).

Oscillatory activity. Over the entire bandwidth analysed,
the proportion of neurons displaying oscillatory activity was
lower in STN-OCD compared with STN-PD (46 vs 68%;
Figure 1). In both groups, about half of the oscillatory
neurons showed peaks in more than one frequency band
(Figure 1). The distribution of oscillatory activity was similar in
the two groups of patients, but for the presence of more y
activity in STN-OCD neurons and in the b-low band in STN-
PD neurons (Figure 1A; Po0.02). The mean frequency in the
b-low band was significantly lower in STN-OCD compared
with STN-PD neurons (Table 1).

Influence of the neuroleptic treatment. No significant
difference in neuronal activity was found between STN
neurons (n¼ 48 cells) recorded in OCD patients undergoing
neuroleptic treatment compared with those without (n¼ 50
cells) (see Supplementary Material).

Localisation of STN neuronal activity in OCD and PD
patients. A total of 81 right and 57 left STN neurons and 123

right and 50 left STN neurons were recorded in OCD and PD
patients, respectively.

STN-OCD neurons were located more anteriorly than STN-
PD neurons, with no difference in mean laterality or depth
(Table S2 and Supplementary Material). The majority of
recorded neurons were located in the associative STN in both
groups (Figure 2a).

Neuronal activity as a function of laterality and position
within the STN. No significant differences in neuronal
activity were found between right and left STN neurons in
OCD patients (not shown). However, the mean bursting
index, number of spikes per burst and burst duration were
significantly lower in the second (n¼ 36 cells) vs the first
(n¼ 102 cells) STN operated (Po0.04, not shown). In PD
patients, compared with the first-side STN neurons (right
STN, n¼ 123 cells), second-side STN neurons (left STN,
n¼50 cells) exhibited less burst-type and more regular
patterns (burst-type: 72 vs 54%; regular: 5 vs 14%, Po0.04)
and lower mean power in b band oscillation (Po0.02, not
shown).

The mean discharge frequency of STN-OCD neurons was
significantly lower compared with STN-PD neurons in all
subdivisions of the STN (Figure 2b; Po0.05), with no

Table 1 Discharge frequency, pattern and oscillatory activity of subthalamic
neurons in 12 OCD and 12 PD patients

OCD patients
(n¼ 138 cells)

PD patients
(n¼ 173 cells)

Discharge frequency (Hz) 22.4±13.7* 31.6±13.5
Mean ISI (ms) 71.8±63.5* 40.1±26.3
Coefficient of variation 1.3±0.4 1.2±0.3

Pattern of discharge: proportion of (%)
Regular 13% 8%
Irregular 18% 24%
Burst-type 69% 67%

Burst (S) index 9.8±4.0* 8.3±3.1

Burst frequency (Hz) 0.33±0.26 0.41±0.28
Burst duration (ms) 823.5±665.0* 340.3±246.1
Intraburst frequency (Hz) 53.7±52.6* 74.4±34.7
Interburst interval (s) 5.2±7.0* 2.9±2.6

Oscillatory activity
d band (1–4 Hz)

Peak frequency (Hz) 3.3±0.5 3.1±0.6
Peak power 1.52±1.44 1.10±1.23

y band (4–8 Hz)
Peak frequency (Hz) 5.5±1.5 5.7±1.2
Peak power 1.16±1.26 1.10±1.24

a band (8–12 Hz)
Peak frequency (Hz) 9.9±1.5 10.2±1.2
Peak power 1.66±1.92 2.05±3.49

b low (12–20 Hz)
Peak frequency (Hz) 14.4±2.8* 15.8±2.5
Peak power 1.41±2.57 1.59±3.04

b high (20–35 Hz)
Peak frequency (Hz) 24.5±3.3 23.2±2.32
Peak power 1.24±1.62 1.72±3.06

g band (435 Hz)
Peak frequency (Hz) 52.3±14.1 56.3±16.7
Peak power 0.35±0.27 0.48±0.25

Abbreviations: ISI, interspike interval; OCD, obsessive–compulsive disorder;
PD, Parkinson’s disease.
Results are expressed as mean±s.d.
*Po0.05 when compared with PD patients.
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interaction between the subjects (OCD vs PD) and the
neuronal recording locations (motor vs associative vs limbic)
(Figure 2b; P¼ 0.098). A significant interaction between
subjects and localisation was found for the mean ISI
(interaction: Po0.03). The mean ISI of the STN-OCD neurons
located in the motor part was significantly higher compared
with the mean ISI of the STN-OCD neurons located in the
associative and limbic parts in OCD patients and with all
subdivisions for STN-PD neurons (Po0.005, not shown).

No significant interaction between subjects and location
was found either for the pattern of discharge or for the bursting
index (not shown). However, the mean bursting index of
STN-OCD neurons was significantly higher in the motor and
associative parts compared with STN-PD neurons recorded in
the same STN territories (Figure 2c; Po0.008 and Po0.005
for the motor and associative parts, respectively). No
significant interaction between subjects and location was
found for the burst characteristics (burst frequency, duration
of burst, intraburst frequency—not shown). However, the

mean burst duration of STN-OCD neurons was significantly
greater (not shown, Po0.03) and the mean intraburst
frequency significantly lower in the motor part compared with
STN-PD neurons recorded in the same STN territory
(Figure 2d; Po0.01). A significant interaction between
subjects and location was found for the interburst interval
(interaction: Po0.007), which was higher in the motor part of
the STN compared with the other subdivisions in OCD
patients (not shown).

Over the whole frequency range, STN-OCD neurons
showed more oscillation in the limbic part, whereas STN-PD
neurons showed more oscillation in the motor part (Figure 1b;
Po0.04). The frequency analysis showed more oscillation
for STN-PN neurons in the d and a bands in the motor
compared with either the associative or limbic parts of the
STN (interaction: P¼ 0.03; Figure 1b). STN-OCD neurons
showed more oscillation in the a band in the limbic compared
with other STN subdivisions (interaction: Po0.001;
Figure 1b). No significant interaction between subjects and
location was found for the presence of b-low, b-high or g
oscillatory activity (Figure 1b).

Subthalamic neuronal activity as a function of
obsessions and compulsions. No significant relationship
was found between the preoperative severity of OCD
symptoms and mean discharge frequency, bursting index
and burst frequency of STN-OCD neurons (Table 2).
Obsessions and compulsions severity were significantly
correlated with burst duration and mean intraburst frequ-
ency and interburst interval (Table 2).

No significant relationship was found between OCD
severity (Y-BOCS, obsession and compulsion subscores)
and the mean proportion, peak frequency and power in the y,
b-low, b-high and g band frequencies. The Y-BOCS global
and obsession subscores were correlated with the mean peak
frequency in the d band. OCD severity was also significantly
correlated with mean power in the d frequency band and with
the mean proportion of STN neurons with a oscillations and
the mean a band peak frequency.

In summary, the more severe the obsessions, the lower the
burst duration and interburst interval, and the higher the mean
discharge and intraburst frequencies, peak and power in the d
band frequency. The more severe the compulsions, the higher
the intraburst frequency and the proportion of STN neurons
with a oscillations with lower peak frequency.

STN neuronal activity as a function of the STN
stimulation efficacy. The improvement in Y-BOCS global
and obsession subscores with STN stimulation was
significantly correlated with the mean discharge frequency
(r¼ 0.86, Po0.01; Figure 3a), burst frequency (r¼ 0.69,
Po0.04; Figure 3b), intraburst frequency (r¼ 0.76, Po0.02;
Figure 3c) and the mean interburst interval (r¼�0.96,
Po0.004; Figure 3d) of STN neurons. The improvement in
compulsion subscores with STN stimulation was significantly
correlated with the mean discharge frequency (r¼ 0.78,
Po0.02; Figure 3a) and the mean interbust interval
(r¼�0.81, Po0.02). No significant correlation was found
between the improvement in OCD symptoms (Y-BOCS
global, obsession and compulsion subscores) and the

Figure 1 Distribution of oscillatory activity of subthalamic neurons recorded in
obsessive–compulsive disorder (OCD) and Parkinson’s disease (PD) patients. (a)
Relative proportion of the 138 and 173 subthalamic nucleus (STN) neurons showing
oscillatory activity in OCD and PD patients. Asterisks indicate significant differences
(Po0.05) between neurons of OCD and PD patients. (b) Subthalamic oscillatory
activity as a function of subthalamic subdivisions in OCD and PD patients. Top
histogram: relative proportion of neurons recorded in the sensorimotor (SM),
associative (AS) and limbic (LI) subdivisions and showing none, one or more than
one period of significant oscillatory activity. Bottom histogram: relative proportion of
neurons recorded in the SM, AS and LI subdivisions and showing significant
oscillatory activity in the y, a, b-low, b-high and g band frequencies.
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presence and characteristics (peak frequency and power) of
STN oscillatory activities (not shown).

Discussion

This study reports for the first time the relationship between
spontaneous subthalamic neuronal activity and symptom
severity in OCD patients and their response to STN
stimulation. We found that the mean firing rate of subthalamic
neurons was significantly lower in OCD patients than in PD
patients, with a predominantly burst-type activity, less
frequent but longer bursts, and a predominant oscillatory
activity in the d band (Table 1 and Figures 1–3). In patients
with the most severe OCD, STN neurons exhibited bursts with
higher intraburst frequency and more oscillations in the low-
frequency bands. In OCD patients with best postoperative
clinical outcome with STN stimulation, STN neurons displayed
higher mean discharge, burst and intraburst frequencies, but
lower mean interburst interval. Neuronal activity differences
observed between OCD and PD patients could result from the
fact that neurons recorded in both groups were not similarly
localised within the STN (Figure 2 and Supplementary Table
S2). The fact that, to our knowledge, no data in the literature

have shown that STN neurons are morphologically
and physiologically different in different subregions of
the STN,48 except for the presence of more passive move-
ment-responsive neurons in the dorsolateral part of the
STN (motor subregion),30,32 does not favour this hypothesis,
however.

The mean firing rate of STN-OCD neurons was close to that
reported in normal monkeys,49 essential tremor,34 dystonic50

and OCD patients.38 No significant relationship was found
between firing rate and OCD severity. In our PD patients, the
higher mean firing rate of STN neurons was similar to that
reported previously,31,32,34 and thought to result from the
disinhibition of the subthalamic activity secondary to the
degeneration of nigral dopaminergic neurons.30,51 These data
suggest that in OCD patients symptoms are not related to an
increase or decrease in the STN neuronal discharge.

Conversely, the firing patterns were similarly distributed
between OCD and PD patients, with a predominant burst-type
activity (Table 1). In PD patients, the increase in burst-type
activity is thought to result from the degeneration of nigral
dopaminergic neurons30,52,53 and resolves with dopaminergic
treatment.54 In OCD patients, the increase in the burst-type
activity, also reported previously,38 could be related to the

Figure 2 Subthalamic neuronal activity as a function of subthalamic subdivisions in obsessive–compulsive disorder (OCD) and Parkinson’s disease (PD) patients. (a)
Localisation by means of the three-dimensional (3D) digitised distortable basal ganglia atlas of all the neurons recorded in OCD and PD patients. The motor part is represented
in green, the associative part in pink and the limbic part in yellow in a 3D posterior view of both sides. Each sphere represents an individual neuron (orange for subthalamic
nucleus (STN)-OCD neurons and blue for STN-PD neurons). (b–d) Mean firing rate, burst index and intraburst frequency plotted against the three subthalamic subdivisions
(sensorimotor, SM; associative, AS; limbic, LI) for STN neurons recorded in OCD (orange bars) and PD (blue bars) patients. Asterisks indicate significant differences
(Po0.05) between a given subdivision in OCD patients and the same subdivision in PD patients.
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intake of neuroleptic treatment resulting in a dopaminergic
receptors blockage, as previously reported in animal stu-
dies.47 However, the fact that the proportion of bursting STN
neurons was similar in the four OCD patients who received
neuroleptic treatment in the days before surgery compared
with the four OCD patients without neuroleptic treatment (64
vs 74%) fails to support this hypothesis, as discussed
previously.38 Compared with STN-PD neurons, STN-OCD
neurons have a higher bursting index with longer but less
frequent bursts (Table 1), and OCD severity was significantly
related to some burst characteristics (Table 2). Moreover,
OCD improvements with STN stimulation were dependent on
a number of burst characteristics, with a higher response for
patients with lower interburst interval, but higher intraburst
frequency (Figure 3). Some burst characteristics decreased in
neurons recorded in the second STN side operated, which-
ever the side. This could reflect a lesioning effect provoked by
the implantation of the first lead resulting in a microsubtha-
lamotomy,55 as previously reported with unilateral STN
lesion56 or stimulation,57 and not a pathological marker per
se as suggested previously.38 With respect to the functional
connectivity of the basal ganglia network, the increase in
bursting activity in the STN observed in our OCD patients

could be related to a decrease in the inhibitory phasic input
from the GPe, which has been proposed to scale its activity
depending on the basal ganglia cortical input via the
striatum.58 It is known that the functional alterations in basal
ganglia circuitry observed in OCD patients occur mainly along
the ventral frontostriatal axis, with heightened activity in the
orbitofrontal cortex and caudate nuclei.8,59 Moreover, an
increase in striatal neuronal activity with more irregular pattern
has been observed in OCD patients experiencing obses-
sions.29 Given the neuroanatomical connectivity of the basal
ganglia, one might expect that an increase in striatal activity
would result in an increase in inhibitory phasic input from the
striatum to the GPe provoking a decrease of inhibitory GPe
input to the STN, leading in turn to an increase in bursting
activity.42,51,60 Cortical activity may also influence STN
neuronal activity through the so-called hyperdirect pathway.61

Abnormal ventral STN and striatal neuronal activity could then
result in a disruption of information processing at the level of
basal ganglia output and the thalamocortical pathway in line
with the abnormal activity observed at the cortical level in OCD
patients, especially in the orbitofrontal and anterior cingulate
cortices.62–65 Finally, the improvement in OCD symptoms by
modulation of the STN neuronal activity with high-frequency

Table 2 Relationship between severity of obsessions and compulsions and subthalamic neuronal activity in OCD patients

Y-BOCS Obsessions Compulsions

Mean discharge frequency 0.46 0.54 0.31

Burst discharges
Mean burst (S) index �0.32 �0.40 �0.32
Mean burst frequency 0.02 0.14 �0.03
Mean burst duration �0.46 �0.60* �0.40
Mean intraburst frequency 0.68* 0.78* 0.60*
Mean interburst interval �0.55 �0.65* �0.58*

d band (1–4 Hz)
Mean proportion of neurons 0.11 �0.13 0.37
Mean peak frequency 0.79* 0.81* �0.08
Mean power peak frequency 0.38 0.61* �0.02

y band (4–8 Hz)
Mean proportion of neurons �0.48 �0.50 �0.05
Mean peak frequency �0.07 0.01 �0.11
Mean power peak frequency 0.17 0.10 0.38

a band (8–12 Hz)
Mean proportion of neurons �0.45 �0.45 0.73*
Mean peak frequency �0.12 0.06 �0.62*
Mean power peak frequency �0.26 0.02 �0.85*

b-low band (12–20 Hz)
Mean proportion of neurons �0.56 �0.04 �0.02
Mean peak frequency 0.02 �0.33 0.01
Mean power peak frequency �0.26 0.34 �0.07

b-high band (20–35 Hz)
Mean proportion of neurons �0.50 �0.30 0.12
Mean peak frequency �0.04 �0.10 �0.27
Mean power peak frequency 0.40 0.27 0.20

g band (435 Hz)
Mean proportion of neurons �0.22 0.03 �0.49
Mean peak frequency �0.32 0.11 �0.01
Mean power peak frequency �0.32 �0.34 �0.40

Abbreviations: OCD, obsessive–compulsive disorder; Y-BOCS, Yale–Brown Obsessive–Compulsive Scale.
Values are correlation coefficients (non-parametric Spearman’s regression).
Entries shown in bold *Po0.05 after univariate analysis.
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stimulation may be related to changes in these cortical
regions, as recently reported in the same group of patients.66

In our OCD patients, about half of the STN neurons
displayed oscillatory activity (Figure 1). Conversely, in other
non-parkinsonian patients, such as those suffering from
essential tremor or dystonia, only 18 and 6.5% of STN
neurons show oscillatory activity in the 3–30 Hz band
frequency, respectively.34,50 This observation suggests that
oscillatory activity is augmented in the STN of OCD patients. A
simple explanation could be that the high proportion of
oscillations observed in STN-OCD neurons is related to
neuroleptic treatment; however, the fact that oscillations
tended to be less frequent in STN neurons of OCD patients
undergoing neuroleptic treatment (42%) compared with STN
neurons of OCD patients without (74%) fails to support this
hypothesis. In PD patients, STN oscillation predominated in
the STN motor part, as reported previously.34,67 In the d and a
band frequencies, oscillations appear to be related to
tremor,30,67 and in the b band to movement inhibition and
akinesia33,35,68,69 and predictive of STN stimulation out-
come.36,37 In OCD patients, d and a frequency band
oscillation, which predominated in the STN associative and
limbic parts, was significantly related to OCD symptom
severity (Table 2). Our results are in line with reports obtained
with EEG techniques in such patients who show an increase in
low-frequency (d, y and a) oscillation, in resting state activity,
at both cortical (in frontal and frontotemporal regions)70–72 and
subcortical (in the thalamus and the striatum)2 levels, and
related to symptom severity.70,71,73 Lastly, whereas b band

STN oscillatory activity has been identified as a marker of
akinesia in PD patients,33,69 about 35% of STN neurons
exhibited b band oscillations in OCD patients (Figure 1). This
result is in line with the report of a relationship between the
severity of symptoms and b band power in frontal cortical
regions in untreated OCD patients.71 An increase in the b
power frequency has also been identified as one of the
bioelectrical markers in various anxious states,74,75 and the
question remains as to whether oscillations in the b band
activity observed in the STN of OCD patients could be related
to anxiety. Finally, the increase in low frequencies observed in
the STN in our OCD patients, predominantly in the limbic
portion, is consistent with changes reported at the limbic
cortical level and support the hypothesis of an involvement of
cortico-subcortical functional connections in this disorder.1

Significant relationships between STN neuronal activities,
which resembled parkinsonian STN neuronal activity (higher
firing rate, burst and intraburst frequencies, and lower
interburst interval), and STN stimulation efficacy were found
in our OCD patients. This could mean that the main
dysfunction in OCD patients improved by STN stimulation is
one of the nigrostriatal dopaminergic system. However, this
hypothesis seems unlikely as these neuronal activities were
not identified as being predictive of the STN stimulation
efficacy in PD patients.36,37 This result would rather suggest
that OCD patients with a more disturbed STN neuronal activity
are better candidates for this surgical treatment. The
electrophysiological effects of high-frequency STN stimula-
tion are not fully understood; however, a decrease in neuronal

Figure 3 Improvement in obsessions and compulsions with subthalamic nucleus stimulation as a function of subthalamic neuronal activity in obsessive–compulsive
disorder patients. The graphs represent the relationship between the improvement in the Yale–Brown Obsessive–Compulsive Scale (Y-BOCS) global (green circles),
obsession (blue crosses) and compulsion (red squares) subscores and the mean (a) discharge frequency, (b) burst frequency, (c) intraburst frequency and (d) interburst
interval.
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activity in the STN with retrograde and anterograde activa-
tions of input (cortex and GPe) and output (GPi and SNr)
structures has been reported in patients and animal models
of PD.43,47,57,76–81 Finally, the therapeutic effect of high-
frequency stimulation of the STN is thought to result from
complex changes in the neuronal activity of the entire cortico-
basal ganglia circuitry, leading to a disruption of the
pathological neuronal activity.

In conclusion, STN neurons in OCD patients display
increased bursting activity with a high proportion of oscillatory
activity, in relation to symptom severity and response to STN
stimulation. In line with the accepted role of the STN in
decision making and action sequencing,58,82 one might
expect that dysfunction of this subcortical region could result
in the setting of an inappropriate (increase or decrease)
decision threshold in the context of reinforcement and
decision conflicts. Consequently, an increase in this threshold
could result, at least in part, in an inability to make a decision
or a difficulty in terminating an action sequence, thereby
resulting in obsessions and compulsions. Lastly, the fact that
some STN neuronal activity characteristics are predictive of
the STN stimulation-induced improvement suggests that
some patients may be considered as good candidates for
this treatment regarding the predominant involvement of the
STN in the occurrence of their symptoms. This hypothesis will
be explored in future studies.
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Appendix

Members of the French STOC Study Group were as follows:
Trial Coordination: L. Mallet (Centre d’Investigation Clinique,
CHU Pitié-Salpêtrière, Paris). Steering Committee: Y. Agid,
B. Aouizerate, C. Arbus, T. Bougerol, P. Damier, D. Fontaine,
J.L. Houeto, M.O. Krebs, J.J. Lemaire, L. Mallet, B. Millet,
P. Pollak. Logistics and Monitoring: D. Hourton, S. Aprelon,
C. Jourdain (Assistance Publique-Hôpitaux de Paris,
Direction de la Recherche Clinique, Paris). Coordinating
teams: Anatomy: E. Bardinet, J. Yelnik; Electrophysiology:
P. Burbaud, M.L. Welter, A.H. Clair; Neuropsychology:
C. Czernecki, M. Vérin. Data Management and Statistical
Analysis: S. Tézenas du Montcel, D. Madar (Unité de
Recherche Clinique, CHU Pitié-Salpêtrière, Paris). Writing
Committee: L. Mallet, A. Pelissolo, S. Tezenas du Montcel,
M.L. Welter, J. Yelnik. Centers (Principal Investigator: PI,
Co-investigators: psychiatrist (P), neurosurgeon (N), neurol-
ogist (Nl), electrophysiologist (E), radiologist (R), neuropsy-
chologist (Np)): Coordinating Center, Paris Pitié-Salpêtrière
Hospital: L. Mallet (PI, P), A. Pelissolo (PI, P), Y. Agid (Nl),
P. Cornu (N), S. Navarro (N), M.L. Welter (E, Nl), A. Hartmann
(Nl), B. Pidoux (E), D. Grabli (Nl), V. Czernecki (Np),
D. Dormont (R), D. Galanaud (R), J. Yelnik, E. Bardinet,

C. Béhar (Np), Y. Worbe (Nl), A.H. Clair (Np), B. Moutaud,
CIC staff and nurses; Bordeaux: B. Aouizerate (PI, P),
P. Burbaud (E), E. Cuny (N), D. Guehl (Nl); Clermont-Ferrand:
P.M. Llorca (PI, P), I Chéreau (P), J.J. Lemaire (N), F. Durif
(Nl), P. Derost (Nl), J. Coste (E); J. Gabrillargues, M. Barget,
I. de Chazeron; Grenoble: T. Bougerol (PI, P), M. Polosan (P),
A.L. Benabid (N), S. Chabardès (N), E. Seigneuret (N),
P. Krack (Nl), P. Pollak (Nl), C. Ardouin (Np), J.F. Le Bas (R);
Nantes: P. Damier (PI, Nl), Y. Lajat (N), S. Raoul (N); Nice: V.
Mattei (PI, P), D. Fontaine (N), M. Borg (Nl), P. Paquis (Nl),
E. Michel (Np), P. Robert (P); E. Michel, F. Papetti (P);
Paris Sainte-Anne Hospital: N. Baup (PI, P), B. Devaux (N),
M.O. Krebs (P), C. Oppenheimer (R); J.P. Olié (P), D. Ranoux
(Nl), M. Chayet (Np); Poitiers: J.L. Houeto (PI, Nl), N. Jaafari
(P), B. Bataille (N), V. Mesnage (Nl); R. Gil (Nl), V. Audouin
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D. Drapier (P), P. Sauleau (E); S. Drapier (Nl); Toulouse: C.
Arbus (PI, P), Y. Lazorthe (N), P. Chaynes (N), N. Fabre (Nl),
M. Simonetta (E), L. Schmitt (P), J.A. Lotterie (R), C.
Camassel. Sponsor: N. Best (Assistance Publique-Hôpitaux
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