
 International Journal of 

Molecular Sciences

Review

Updates and Perspectives on Aquaporin-2 and Water
Balance Disorders

Yumi Noda 1,2,* and Sei Sasaki 3

����������
�������

Citation: Noda, Y.; Sasaki, S.

Updates and Perspectives on

Aquaporin-2 and Water Balance

Disorders. Int. J. Mol. Sci. 2021, 22,

12950. https://doi.org/10.3390/

ijms222312950

Academic Editor: Jaap A. Joles

Received: 30 October 2021

Accepted: 29 November 2021

Published: 30 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Nephrology, Nitobe Memorial Nakano General Hospital, Tokyo 164-8607, Japan
2 Department of Nephrology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
3 Department of Nephrology, Cellular and Structural Physiology Laboratory,

Tokyo Medical and Dental University, Tokyo 113-8519, Japan; ssasaki.kid@tmd.ac.jp
* Correspondence: ynodmed2@tmd.ac.jp; Tel.: +81-3-3382-1231; Fax: +81-3-3382-1588

Abstract: Ensuring the proper amount of water inside the body is essential for survival. One of the
key factors in the maintenance of body water balance is water reabsorption in the collecting ducts of
the kidney, a process that is regulated by aquaporin-2 (AQP2). AQP2 is a channel that is exclusively
selective for water molecules and impermeable to ions or other small molecules. Impairments of
AQP2 result in various water balance disorders, including nephrogenic diabetes insipidus (NDI),
which is a disease characterized by a massive loss of water through the kidney and consequent
severe dehydration. Dysregulation of AQP2 is also a cause of water retention with hyponatremia
in heart failure, hepatic cirrhosis, and syndrome of inappropriate antidiuretic hormone secretion
(SIADH). Antidiuretic hormone vasopressin is an upstream regulator of AQP2. Its binding to the
vasopressin V2 receptor promotes AQP2 targeting to the apical membrane and thus enables water
reabsorption. Tolvaptan, a vasopressin V2 receptor antagonist, is effective and widely used for water
retention with hyponatremia. However, there are no studies showing improvement in hard outcomes
or long-term prognosis. A possible reason is that vasopressin receptors have many downstream
effects other than AQP2 function. It is expected that the development of drugs that directly target
AQP2 may result in increased treatment specificity and effectiveness for water balance disorders.
This review summarizes recent progress in studies of AQP2 and drug development challenges for
water balance disorders.

Keywords: trafficking; diabetes insipidus; SIADH; congestive heart failure; hepatic cirrhosis; solute-
free water diuretics

1. Introduction

Maintaining water balance is essential for cell function and organism survival. The
key event for its maintenance is water reabsorption in the collecting ducts, the terminal
structure in the nephron [1]. This process is strictly regulated by the vasopressin-sensitive
water channel aquaporin-2 (AQP2) [2–8]. AQP2 is abundant in the collecting duct and is
largely stored in intracellular reservoirs of the collecting duct cells under conditions of
normal hydration. When the body is dehydrated, vasopressin is secreted from the posterior
pituitary gland. Circulating vasopressin then binds to the vasopressin V2 receptor on
the basolateral membrane of the principal cells of the renal collecting duct and activates
signal transductions promoting AQP2 translocation from the intracellular vesicles to the
apical membrane, which enables water reabsorption from the urinary tubule. There are
various water balance disorders caused by AQP2 impairment or dysregulation. This review
summarizes recent findings of AQP2 studies and advances in targeting AQP2 in water
balance disorders.
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2. Upon Vasopressin Stimulation AQP2 Increases Water Reabsorption and
Urine Concentration

Increases in body fluid tonicity and reductions in effective circulating blood volume
stimulate the secretion of vasopressin from the posterior pituitary gland [1]. Circulating
vasopressin then binds to the vasopressin V2 receptor on the basolateral membrane of
the principal cells in the collecting duct and initiates intracellular signal transduction via
coupling to heterotrimeric G-proteins [9,10]. Upon binding vasopressin, V2 receptors
promote the disassembly of the heterotrimeric G-protein Gs, into Gsα and Gβγ subunits.
The vasopressin-bound V2 receptor induces guanosine diphosphate/guanosine triphos-
phate (GDP/GTP) exchange, thereby activating the Gsα subunit to stimulate adenylate
cyclase, which catalyzes a subsequent increase in the level of intracellular cyclic adenosine
monophosphate (cAMP). cAMP activates protein kinase A (PKA), which then phosphory-
lates AQP2. Phosphorylated AQP2 translocates from the cytoplasm to the apical membrane,
which renders the cell water permeable and results in water reabsorption [5]. Upon re-
moval of the vasopressin stimulus, AQP2 is translocated back to the cytoplasm, which
restores the water impermeability of the cell. Thus, vasopressin regulates the cycling of
AQP2 between the apical membrane and the intracellular subapical storage vesicles of the
collecting duct cells. Vasopressin increases water permeability by a factor of 10–100 in the
collecting duct, inducing a rapid and drastic increase in water reabsorption [11].

Regulation of water transport by water channel translocation from the intracellu-
lar vesicles to the cell surface is also observed in other AQPs, including AQP1, AQP4,
AQP5 [12–15]. As described above, the short-term effect of vasopressin is exerted by AQP2
translocation from the intracellular vesicles to the apical membrane. Furthermore, vaso-
pressin can induce water reabsorption for 24 h or more by enhancing AQP2 transcription
and its protein abundance in the collecting duct cells [16,17].

3. Phosphorylation Process of AQP2

PKA is a main regulator of AQP2 expression, phosphorylation and translocation to the
apical membrane. Isobe et al. showed AQP2 expression was inhibited to an undetectable
level in PKA knockout cells [18]. Moreover, vasopressin-induced AQP2 translocation
to the apical membrane was impaired in PKA knockout cells overexpressing AQP2 [18].
Phosphorylation of serine 256 in AQP2 by PKA is important for AQP2 trafficking to the
apical membrane [1,5,6]. Furthermore, there are three additional phosphorylation sites near
the AQP2 C-terminus: serine 261, serine 264 and threonine 269 (or serine 269 in rodents).
Yui et al. showed in rat AQP2 expressing MDCK cells that serine 256 phosphorylation,
serine 269 phosphorylation and serine 261 dephosphorylation occur sequentially and that
these three events are required for apical targeting of AQP2 [19]. Consistent with these
findings, Sakai et al. show the phosphorylation profile using human urinary exosomes:
phosphorylation of serine 256, 83%; phosphorylation of serine 261, 8%; phosphorylation of
serine 264, 2%; phosphorylation of threonine 269T, 1% [20].

AQP2 translocation is also altered by other kinases than PKA. AQP2 serine 256 can also
be phosphorylated by Golgi casein kinase. PKA-independent phosphorylation at serine
256 of AQP2 is increased during AQP2 transition through the Golgi apparatus, suggesting
that phosphorylation by Golgi casein kinase may be required for Golgi transition [21]. Van
Balkom et al. [22] showed that activation of protein kinase C induces AQP2 endocytosis
from the apical membrane, which occurs independently of serine 256 phosphorylation. In
addition, AQP2 exocytosis is shown to be altered by a cyclic guanosine monophosphate
(cGMP)-dependent pathway [23], and an inhibitor of cGMP phosphodiesterase promotes
AQP2 trafficking to the apical membrane [24].

Cheung et al. found that inhibition of Src, a non-receptor tyrosine kinase, leads to
AQP2 phosphorylation at serine 269 and promotes AQP2 apical membrane accumulation
independently of vasopressin signaling and serine 256 phosphorylation [25]. This find-
ing represents a novel therapeutic target that could potentially be exploited to regulate
water balance.
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4. The Role of Calcium in the Regulation of AQP2

AQP2 trafficking is also regulated by intracellular Ca2+ mobilization [26]. In addition
to increasing intracellular cAMP levels, vasopressin binding to V2 receptors stimulates a
rapid increase of intracellular Ca2+, which is followed by sustained temporal oscillations
of Ca2+ levels in the principal cells of the collecting duct. This process appears to be
involved in AQP2 exocytosis. Balasubramanian et al. suggest several plausible candidates
as downstream effectors of vasopressin-induced Ca2+ signaling, such as calmodulin and
myosin light chain kinase [26]. Myosin light chain kinase was shown to be required for
AQP2 trafficking, as described in the next section.

Calcineurin, a calcium-calmodulin-regulated serine-threonine phosphatase, and its
downstream transcriptional effector NFATc (nuclear factor of activated T cell cytoplasmic)
also regulate AQP2 [27]. Calcineurin dephosphorylates NFATc and promotes its nuclear
translocation. Subsequently, NFATc binds to the promoter region of the AQP2 gene and
promotes AQP2 expression. On the other hand, Wnt5a is a ligand for frizzled receptors that
increases intracellular calcium [28]. Ando et al. show that the Wnt5a/calcium/calmodulin/
calcineurin signaling pathway induces AQP2 protein expression, phosphorylation and
trafficking [29].

Calmodulin is also gaining attention in the study of intracellular translocation of the
other aquaporin AQP4 [14,30–32]. AQP4 in astrocytes mediates water transport across the
blood–brain barrier and plays an important role in central nervous system (CNS) edema.
Calmodulin binds AQP4 and promotes AQP4 translocation from the intracellular vesicles
to the cell surface. It is reported that inhibition of calmodulin with trifluoperazine inhibits
AQP4 translocation, resulting in the prevention of CNS edema in a rat spinal cord injury
model [14] and a stroke mouse model [30]. Calmodulin is also a promising drug target for
CNS edema.

Extracellular Ca2+ is also involved in AQP2 regulation. Drug-induced hypercal-
cemia/hypercalciuria causes polyuria and reduces AQP2 expression in rats [33]. AQP2
translocation to the apical membrane prompted by forskolin-induced increases in cAMP
levels is inhibited by increased levels of extracellular Ca2+ [34]. Furthermore, high luminal
Ca2+ in the renal collecting duct attenuates vasopressin-induced AQP2 trafficking through
calcium sensing receptor activation [35,36].

5. The Role of the Cytoskeleton in AQP2 Trafficking

The actin cytoskeleton is reported to function as a barrier for AQP2 exocytosis [37,38].
Actin depolymerization is necessary for the cAMP-dependent translocation of AQP2 [39,40].
In fact, stimulation of prostaglandin E3 receptors has been shown to inhibit vasopressin-
induced inactivation of Rho GTPase, vasopressin-induced F-actin depolymerization, as
well as AQP2 translocation induced by vasopressin, cAMP or forskolin [39]. Bradykinin-
induced Rho GTPase activation stabilizes cortical F-actin and inhibits AQP2 trafficking [41].

The GTPase-activating protein Spa-1 (SPA-1) binds to the C-terminus of AQP2, which
is required for AQP2 trafficking [42,43]. SPA-1 inhibits Rap1 GTPase-activating protein,
which triggers F-actin disassembly and may maintain the basal mobility of AQP2 [8,44].
SPA-1-deficient mice show impaired AQP2 trafficking and hydronephrosis [42,45]. In hu-
mans, mutations in the SPA-1 binding region in the C-terminus of AQP2 cause nephrogenic
diabetes insipidus (NDI), a disease characterized by a massive loss of water through the
kidney [46,47].

Myosin II and its regulatory light chain are present in an AQP2-binding protein
complex [48]. Myosin is reported to be critical for AQP2 recycling [49]. Myosin light chain
kinase is a calmodulin-dependent kinase that regulates actin filament organization by
phosphorylating the regulatory light chain of myosin. Chou et al. show that vasopressin
induces myosin light chain phosphorylation [50]. Furthermore, myosin light chain kinase
is required for vasopressin-induced actin depolymerization and AQP2 transition from early
to late endosomes [51].
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The actin-related protein (Arp)2/3 complex is a key factor in actin filament branching
and polymerization. Inhibition of the Arp2/3 complex has been shown to prevent AQP2
exocytosis [52]. Using 3D super-resolution microscopy, Holst et al. reported that association
of AQP2-containing vesicles with F-actin is enhanced by serine 256 phosphorylation [53].

6. AQP2 Recycling and Endocytosis

AQP2 is a recycling membrane protein. Upon vasopressin stimulation, AQP2 is
transported to the apical membrane, rendering the cell water permeable as described above.
After vasopressin stimulation is terminated, AQP2 is shuttled back to the cytoplasm, a
process that restores the water impermeability of the cell. This recycling process occurs
constitutively, and many signaling pathways are involved in the regulation of each stage of
the recycling process. Vasopressin signaling is the most potent and most important factor
that enhances the exocytotic process among the recycling processes.

During AQP2 endocytosis, AQP2 accumulates in clathrin-coated pits and is internal-
ized via a clathrin-mediated mechanism [54,55]. Dynamin is a GTPase that is involved
in the formation and pinching off of clathrin-coated pits to form clathrin-coated vesicles.
GTPase-deficient dynamin mutants exhibit arrested endocytosis and accumulate AQP2 in
the apical membrane independently of vasopressin stimulation [55,56].

The heat shock protein Hsc70 binds to AQP2 and is involved in AQP2 endocytosis [57].
Ubiquitination of lysine 270 of AQP2 is important for AQP2 endocytosis and degrada-
tion [58]. The E3 ubiquitin ligase CHIP interacts with AQP2, Hsp70, and Hsc70, and
ubiquitinylates AQP2 [59]. CHIP knockdown increases AQP2 in the plasma membrane,
indicating its involvement in AQP2 endocytosis and degradation [59].

7. The Molecular Mechanism Driving AQP2 Movement

As described above, AQP2 phosphorylation is required for its trafficking to the apical
membrane. However, the mechanism by which this phosphorylation event induces the
AQP2 movement was unknown until recently. In other words, the direct mechanism
which generates motion in AQP2 trafficking was unknown. To clarify this mechanism, we
attempted to identify AQP2-binding proteins and discovered that AQP2 is a component of
a multiprotein motor complex [8,48,60,61].

To provide further insight into the intra-complex interactions crucial to AQP2 reg-
ulation, we applied fluorescence correlation spectroscopy (FCS) and fluorescence cross-
correlation spectroscopy (FCCS) for the first time to channel research. As a result, we
succeeded in measuring the spatial and temporal dynamics of the AQP2 motor complex
components at the single-molecule level and discovered the direct mechanism that drives
channel movement to the targeted site [5,37,38,62]. Under basal conditions, AQP2 binds to
G-actin, while F-actin is stabilized by tropomyosin-5b (TM5b) to form a barrier that inhibits
AQP2 translocation to the apical membrane. Vasopressin-triggered AQP2 phosphorylation
releases AQP2 from G-actin and promotes AQP2 association with TM5b, which sequesters
TM5b from F-actin and destabilizes the F-actin network, thereby allowing efficient move-
ment of AQP2 to the apical membrane. This molecular mechanism was confirmed using
purified recombinant proteins reconstituted in liposomes [5,37,38,62].

FCS and FCCS measurements are particularly powerful for clarifying the dynamics
of multiprotein complexes at the single-molecule level and at various locations in the cell.
Many channels and transporters form multiprotein complexes, and such intra-complex
interactions are crucial in their regulation. Our methods, including FCS, FCCS, and a
reconstituted purified protein system, are powerful techniques for investigating mem-
brane proteins that form multiprotein complexes, clarifying related pathophysiology and
identifying therapeutic targets for diseases involving membrane proteins.
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8. The Water Channel Activity of Individual AQP2 Proteins

The effects of AQP2 phosphorylation on the water transport activity of individual
AQP2 channels have also been extensively examined. Kuwahara et al. [63] examined
the phosphorylation and osmotic water permeability (Pf) of AQP2 expressed in Xenopus
oocytes. cAMP stimulation increased the Pf of oocytes expressing AQP2, which occurred
in the absence of increased AQP2 levels on the oocyte surface, thereby suggesting that
the Pf of individual AQP2 channels was increased. Moeller et al. evaluated the Pf and
the plasma membrane abundance of wild-type (WT) and mutants of AQP2 expressing
oocytes [64]. Both the Pf and plasma membrane abundance of the S256A-AQP2 mutant
(non-phosphorylation-mimick) were decreased compared with WT-AQP2, resulting in
that Pf values relative to the plasma membrane abundance were similar. This finding
suggests that the absence of phosphorylation at this site have no effect on individual
AQP2 protein function. However, the method used to determine plasma membrane
abundance was semiquantitative, and this study could not exclude the possibility that the
Pf of individual AQP2 proteins was altered by this mutation. To quantitatively evaluate
the Pf of individual AQP2 proteins in the absence of the effects of other proteins, we
examined the function of purified full-length recombinant human AQP2 reconstituted in
liposomes [65]. This study provides direct evidence that the water transport activity of
AQP2 is enhanced approximately 2-fold by phosphorylation at serine 256. In addition to
AQP2 trafficking to the apical membrane, this study indicates that the water transport
activity of individual AQP2 is involved in the regulation of water reabsorption from the
urine in kidney collecting ducts.

Vasopressin increases water permeability of the collecting duct by a factor of 10–100,
inducing a rapid and drastic increase in water reabsorption [11]. Thus, vasopressin-
induced short-term regulation of Pf of the collecting ducts appears to be mainly due to
AQP2 translocation, with the altered water transport activity of individual AQP2 proteins
acting to potentiate the effect.

9. The Role of AQP2 in Fluctuating Osmolality

The collecting duct cells where AQP2 is expressed, are exposed to great fluctuations
in osmotic pressure during transitions between diuresis and antidiuresis, which are caused
by AQP2-regulated water reabsorption. The promoter activity of the murine AQP2 gene
is increased by hypertonicity and decreased by hypotonicity [66,67]. Acute hypertonicity
induces AQP2 translocation to the apical membrane, while chronic hypertonicity induces
AQP2 translocation to the basolateral membrane [68,69]. Cell volume regulation in response
to external osmolality changes is a fundamental property of cells. When cells are exposed
to hypotonic fluid, they swell because of osmotic water influx. After swelling, the cells start
to recover their original volume. This defense process against hypotonic shock is called
regulatory volume decrease (RVD) [70]. Hypotonicity induces AQP2 internalization, which
may contribute to RVD by limiting water entry into cells [71]. Moreover, we discovered
that AQP2 regulates cell volume decreases by controlling the cytoskeleton [72]. As well as
being a water channel, AQP2 also contributes to the cell volume regulation of collecting
duct cells.

10. NDI

Impairment of AQP2 results in NDI, which is characterized by an inability of the
kidney to concentrate urine, even when the plasma concentrations of vasopressin are
elevated. This condition results in a massive loss of water through the kidney, leading
to severe dehydration. Unlike central diabetes insipidus, vasopressin administration is
ineffective for patients with NDI. Moreover, there are congenital and acquired forms
of NDI.
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11. Congenital NDI

In 90% of cases of congenital NDI, the condition results from loss-of-function mu-
tations in the AVPR2 gene encoding the vasopressin V2 receptor (X-linked NDI). The
remaining cases result from mutations in AQP2 (autosomal NDI). AQP2 is located in
12q13.12. To date, 64 mutations in the AQP2 gene have been reported (The Human Gene
Mutation Database; http://www.hgmd.cf.ac.uk/ac/index.php, accessed on 28 Novem-
ber 2021) (Figure 1; Ref. [6]). There are two inheritance types, autosomal-recessive and
autosomal-dominant NDI. Most of the mutations in recessive NDI are located in the core
region of the protein, which leads to misfolded proteins that become trapped in the endo-
plasmic reticulum and is degraded rapidly by the proteasome. On the other hand, AQP2
homotetramers composed only of wild-type proteins are properly translocated to the apical
membrane, which explains the healthy phenotype of heterozygous individuals.

Figure 1. AQP2 mutations causing NDI. Mutations causing the autosomal-recessive form are shown in red. Mutations
causing the autosomal-dominant form are shown in blue. Mutations, whose inheritance pattern is unknown, are shown in
light green. Phosphorylation sites are shown in yellow.

All mutations in autosomal-dominant NDI are located in the cytosolic C-terminus
of AQP2. This region is essential for AQP2 translocation, with mutations impairing its
translocation to the apical membrane, although the water channel function of these mutants
is preserved [73–76]. In contrast to the AQP2 mutants in the recessive form of the disease,
AQP2 mutants in the dominant form are not misfolded and able to form heterotetramers
with WT-AQP2 and impair the apical targeting of heterotetramers composed of mutant and
WT. This effect explains the dominant mode of inheritance with these mutations. Sohara
et al. generated gene knockin mice with heterozygous mutant AQP2 resulting from a gene
deletion (763–772del) that produces a mouse model of dominant NDI [77]. Mutant AQP2
is incorrectly translocated to the basolateral membrane, where it forms a heterotetramer
with WT-AQP2 and shows a dominant-negative effect on the normal apical translocation
of WT-AQP2. As a result, the urine concentrating ability of these mice is severely impaired.

http://www.hgmd.cf.ac.uk/ac/index.php
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12. Acquired NDI

Acquired NDI is more common than congenital NDI and is caused by a variety of con-
ditions including drug treatments, electrolyte disturbances, and urinary tract obstruction.
Dysregulation of AQP2 plays a crucial role in many acquired NDI.

Lithium is widely used in the treatment of bipolar disorder. Its most common adverse
effect is NDI, which occurs in up to 40% of these patients using lithium [78]. In lithium-
induced NDI, AQP2 expression and its apical targeting are both inhibited. Lithium enters
cells expressing AQP2 via the epithelial sodium channel in the apical membrane and
accumulates intracellularly. Lithium accumulation leads to the inhibition of signaling
pathways that involve glycogen synthase kinase-3β (GSK3β). Rao et al. [79,80] showed
that GSK3β inhibition by lithium results in increased cyclooxygenase 2 and reduced
adenylyl cyclase activity, leading to the reduced cAMP generation and decreased AQP2
expression. Moreover, lithium reduces the proportion of principal cells in collecting ducts
and increases the proportion of intercalated cells [81]. This restructuring of the collecting
duct, together with down-regulation of AQP2, may be important in lithium-induced NDI.

Hypokalemia and hypercalcemia cause down-regulation of AQP2, which results in
a vasopressin-resistant urinary concentrating defect. Autophagic degradation of AQP2
is involved in both hypokalemia and hypercalcemia-induced NDI [82,83]. In addition,
hypokalemia alters the proportions of principal and intercalated cells as observed following
lithium treatment [84].

Urinary tract obstruction is also a common cause of NDI and is associated with
reduced AQP2 abundance. Recently, autophagic degradation of AQP2 has been shown to
be involved in mediating this process [85].

13. Water Retention by AQP2 Dysregulation

AQP2 also plays a crucial role in the pathophysiology of water retention disorders. A
well-known example of this is decompensated heart failure. Water retention and hypona-
tremia are common, clinically important complications of heart failure. Plasma vasopressin
levels are suppressed by hyponatremia in healthy individuals; however, vasopressin levels
are not suppressed in patients with heart failure and hyponatremia [86]. In patients with
heart failure, a decrease in effective blood volume and atrial filling is sensed by the left
atrial baroreceptors, resulting in stimulation of vasopressin secretion and the consequent
increases AQP2 expression and trafficking to the apical membrane of principal cells of the
collecting duct. In patients with heart failure, V2 receptor antagonists promote electrolyte-
free water excretion and elevate serum sodium concentrations [87–89]. The vasopressin
antagonist tolvaptan has been shown to improve several symptoms of heart failure, such
as dyspnea, in these patients [90].

Water retention with hyponatremia is also a critical complication of hepatic cirrhosis.
In these patients, nonosmotic secretion of vasopressin occurs as a secondary event to
splanchnic arterial vasodilation and relative arterial underfilling [86]. Moreover, AQP2
expression was reported to be increased and correlated with ascites volume [91]. In patients
with hyponatremic cirrhosis, tolvaptan raises plasma sodium levels and decreases in ascites,
although these effects are limited to a short duration [92].

Syndrome of inappropriate antidiuretic hormone secretion (SIADH) is a disorder
characterized by impaired water excretion caused by the inability to suppress vasopressin
secretion. SIADH is the predominant cause of the commonly encountered disorder euv-
olemic hyponatremia [93]. However, antidiuresis is attenuated during conditions of chronic
vasopressin excess, resulting in a degree of water diuresis. This has been referred to as the
‘vasopressin escape’ phenomenon [17]. Saito et al. [17,67] found that diminished AQP2
expression plays a role in preventing maximal urinary concentrating in SIADH model rats.

SIADH frequently occurs in association with vascular disease, infectious disease, or
neoplasms in the lung or central nervous system. In patients with SIADH, the V2 receptor
antagonist was shown to be effective in increasing urine volume and plasma sodium
levels [94]. However, its long-term effect is limited in rats with SIADH [95]. Although AQP2
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protein expression is reduced shortly after administration of the V2 receptor antagonist
to rats with SIADH, expression subsequently increases in parallel with a decline in its
therapeutic effects.

Urinary excretion of AQP2 is associated with vasopressin activity in the kidney and is
a clinically useful biomarker [96,97]. AQP2 is excreted into the urine through the secretion
of exosomes originating from intracellular vesicles of multivesicular bodies [98]. During
this process, the outer membrane of multivesicular bodies fuses with the apical membrane.
Urinary AQP2 excretion is increased by dehydration or vasopressin and decreased by
hydration. Urinary AQP2 excretion is also increased in patients with heart failure, hepatic
cirrhosis [99,100]. In patients with heart failure, administration of a V2 receptor antagonist
produced a significant increase in urine flow and solute-free water excretion, accompanied
with a drastic reduction in urinary AQP2 excretion [99,101]. Elevation of urinary AQP2
excretion is also observed in SIADH [102]. Urinary excretion of AQP2 is a sensitive marker
of the antidiuretic activity of vasopressin. In addition, the pharmacological effect of
tolvaptan can be monitored by urinary AQP2 levels in heart failure, hepatic cirrhosis and
SIADH [101,103].

14. Development of Therapeutics for NDI by Targeting AQP2 Regulation

There is no cure for NDI, and it is currently managed by salt restriction combined with
hydrochlorothiazide [6]. Hydrochlorothiazide reduces sodium reabsorption in the distal
convoluted tubule, leading to increased sodium excretion and reduced extracellular fluid
volume. As a result, the glomerular filtration rate decreases and proximal tubular sodium
and water reabsorption increases. Consequently, less water and sodium are delivered to
the collecting ducts, which results in decreased urine volume. However, current treatments
do not sufficiently obviate the excessive water excretion. Therefore, extensive efforts to
develop therapies are continuing.

As described above, cAMP is a major activator of AQP2. Several groups have ex-
amined ligands of G protein-coupled receptors (GPCR) that increase cAMP production
as possible treatments for NDI. The GPCR ligand calcitonin increases cAMPand AQP2
trafficking in cultured cells, and urine osmolality during the first 12 h of treatment in
vasopressin-deficient rats [104]. This effect of calcitonin is subsequently diminished over
the following 72 h. The GPCR ligand secretin increases cAMP and AQP2 expression,
but is not able to increase AQP2 trafficking to the apical membrane nor increase urine
concentration in NDI model mice [105]. In this study, secretin plus fluvastatin was able to
increase urine concentration. Renal tubule-specific EP4 knockout mice showed impaired
urine concentrating defect [106]. Li et al. show that a selective ligand of the EP4 subtype of
the prostaglandin E2 (PGE2) GPCR receptor elicits pronounced efficacy after the first day
of infusion in attenuating polyuria in a mouse model of X-linked NDI that lacks V2R [107].
The effects of GPCR ligands on AQP2 and urine concentration are likely to be limited by
receptor downregulation or desensitization. On the other hand, the E-prostanoid receptor
(EP2) agonist butaprost induces a pronounced long-term response on AQP2 membrane
targeting and urinary concentrating ability in rats [108,109].

The effect of cAMP phosphodiesterase on AQP2 trafficking has also been examined.
Sohara et al. report that the PDE4 cAMP phosphodiesterase inhibitor rolipram increases
cAMP content in the papillae, AQP2 phosphorylation, and apical membrane transloca-
tion of AQP2, resulting in increased urine osmolality in autosomal dominant NDI mice
model [77].

AQP2 phosphorylation by cGMP kinase is also involved in its exocytosis, and the cGMP
phosphodiesterase inhibitor sildenafil citrate induces AQP2 membrane insertion [23,24].
Therefore, cGMP phosphodiesterase inhibitors are expected to be effective in treating NDI
due to V2R impairment by bypassing the requirement for cAMP signaling to produce AQP2
membrane insertion. However, a clinical trial showed that the PDE5-inhibitor sildenafil,
or the soluble guanylate cyclase stimulator riociguat, increased cGMP levels but did not
improve urinary concentration ability in patients with congenital NDI [110].
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We showed the interaction of phosphorylated AQP2 with TM5b is essential for AQP2
trafficking to the apical membrane, suggesting that TM5b is a potential therapeutic target
for NDI [5,37,38,62]. Knockdown of the gene encoding TM5b corrects the trafficking
defect of the Ser256Ala AQP2 mutant. Specific inhibition of TM5b may be useful for both
congenital and acquired NDI because the interaction between TM5b and phosphorylated
AQP2 is critical for the final step of AQP2 trafficking.

Suga et al. showed that viral delivery of AQP2 in a lithium-induced rat model of NDI
led to a reduction in urine output and an increase in urine osmolality, an effect that was
limited to several days [111].

The ADP-activated purinergic P2Y12 receptor is an inhibitory GPCR that decreases
intracellular cAMP levels upon activation. Zhang et al. showed that clopidogrel, a P2Y12
inhibitor, ameliorated lithium-induced polyuria, improved urine concentrating ability and
AQP2 protein abundance, but not urine concentration in vasopressin-lacking Brattleboro
rats [112].

Several studies show that statin induces apical accumulation of AQP2 in cultured
cells and animal models. Simvastatin has been shown to induce membrane accumula-
tion of AQP2 as a result of reduced clathrin-mediated endocytosis in LLCPK-1 cells [113].
Procino et al. showed that simvastatin increases AQP2 urinary excretion and urine os-
molality in hypercholesterolemic patients [114]. In contrast, in healthy volunteers, urine
osmolality at the start of a water loading test was lower on the day after simvastatin com-
pared to the absence of simvastatin (760 vs. 388 mOsm/kg, p = 0.02) [115]. Despite this, the
lowest urine osmolality increased modestly after the use of simvastatin (70 mOsm/kg to
85 mOsm/kg, p = 0.05). A double-blind, randomized, placebo-controlled pilot trial of ator-
vastatin for NDI in lithium users showed that atorvastatin (20 mg/d) did not significantly
improve urinary osmolality compared to placebo over a 12-week period [116].

Metformin is a stimulator of 5′-AMP-activated protein kinase (AMPK). Efe et al.
showed that metformin increases membrane accumulation of AQP2 and urinary concentra-
tion in V2R KO mice and a rat model of tolvaptan-induced NDI [117]. However, a clinical
trial to examine the effect of metformin on congenital NDI patients was terminated due to
lack of effect; however, it should be noted that only two patients were enrolled for this trial
(ClinicalTrials.gov: NCT02460354).

MicroRNA (miRNA) inhibits the translation of target mRNA. Kim et al. report that
two AQP2-targeting miRNAs, miR-32 and miR-137, decrease AQP2 expression in kidney
collecting duct cells [118]. Ranieri et al. find that calcium-sensing receptor (CaSR) signaling
reduces AQP2 abundance via miRNA-137 [119]. In mice, ablation of Dicer, which is
required for miRNA maturation, induces NDI [120]. These findings implicate AQP2-
targeting miRNAs as a therapeutic target in water balance disorders, including both
dehydration and water retention.

Bogum et al. screened 17,700 small molecules in a cell-based assay and identified
fluconazole as a candidate inhibitor of AQP2 trafficking [121]. Vukićević et al. show that
fluconazole increased apical membrane localization of AQP2 caused by phosphorylation
and ubiquitination of AQP2, and inhibition of RhoA [122]. Fluconazole also reduced
urinary output in tolvaptan-treated mice.

Ando et al. found that the Wnt5a/calcium/calmodulin/calcineurin signaling pathway
induced phosphorylation, trafficking, and expression of AQP2 [29]. Wnt5a successfully
increased the apical membrane localization of AQP2 and urine osmolality in an NDI mouse
model. In addition, the authors showed that arachidonic acid, which activates calcineurin
by mimicking calmodulin, exerts similar effects on AQP2. Thus, calcineurin activators
appear to be potential therapeutic targets for heritable NDI.

AKAP and PKA coordinate AQP2 regulation as described above. Ando et al. show that
AKAP-PKA disruptors, which dissociate the binding of AKAP and PKA R subunits, increased
PKA activity and contributed to AQP2 phosphorylation, trafficking, and water reabsorp-
tion. The low molecular weight compound 3,3′-diamino-4,4′-dihydroxydiphenylmethane
(FMP-API-1) and its derivatives increase AQP2 activity to the same extent as vasopressin.
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Thus, AKAP-PKA disruptors are also a novel category of potential therapeutic drugs for
NDI [123].

15. Vasopressin V2 Antagonists as Current Treatments for Water Retention, and Future
Strategies for Pure Aquaretics by Direct AQP2 Inhibition

AQP2 also plays a critical role in water retention disorders such as heart failure,
hepatic cirrhosis and SIADH. Vasopressin V2 antagonists (vaptans) are effective agents
for water retention and hyponatremia by inducing free water diuresis as described above.
Vaptans bind the V2 receptor, block downstream signaling and decrease the amount of
AQP2 on the luminal membrane. Tovaptan has been shown to improve several heart failure
symptoms in the short term; however, there is no effect on long-term prognosis [81,124].
There are several studies evaluating long-term V2 receptor antagonist therapy in chronic
hyponatremia [125,126]. While these studies showed that serum sodium increased, there
are no studies showing improvement in ‘hard’ outcomes such as hospitalization, morbidity,
and mortality. One possible reason is that the decongestive efficacy of tolvaptan decreases
with prolonged treatment. Moreover, tolvaptan is a relatively selective inhibitor of V2
activation that does not prevent activation of V1a and its potentially adverse cardiac and
vascular effects. Pecavaptan is a dual V1a/V2 receptor antagonist that increases cardiac
output and peripheral resistance in animal models, effects that are not observed using
tolvaptan [127]. A clinical trial examining the effect of pecavaptan on clinical outcomes is
ongoing (ClinicalTrials.gov: NCT03901729). However, vasopressin receptors (V1a, V1b, V2)
have many downstream effects other than AQP2 function. The development of drugs that
directly inhibit AQP2 can be expected to act as “pure aquaretics” that are highly specific
and effective for water retention disorders.

16. Conclusions

AQP2 is a key molecule for water balance disorders. There are currently no drugs for
the treatment of NDI that causes severe dehydration in the body. On the other hand, water
retention and hyponatremia caused by excessive activation of AQP2 are often difficult to
manage and worsen the prognosis of patients with heart failure and hepatic cirrhosis. The
development of drugs targeting AQP2 is a research field that holds promise for achieving
effective treatment of water balance disorders.

Author Contributions: Y.N. conceived the concept and wrote the manuscript. S.S. revised and added
a part of the text. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Noda, Y.; Sasaki, S. Regulation of water balance: Urine concentration and dilution. In Schrier’s Diseases of the Kidney, 9th ed.;

Coffman, T.M., Falk., R.J., Molitoris, B.A., Neilson, E.G., Schrier, R.W., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA,
USA, 2012; pp. 132–158.

2. Fushimi, K.; Uchida, S.; Hara, Y.; Hirata, Y.; Marumo, F.; Sasaki, S. Cloning and expression of apical membrane water channel of
rat kidney collecting tubule. Nature 1993, 361, 549–552. [CrossRef] [PubMed]

3. Agre, P.; Sasaki, S.; Chrispeels, M.J. Aquaporins: A family of water channel proteins. Am. J. Physiol. 1993, 265, F461. [CrossRef]
4. Sasaki, S.; Fushimi, K.; Saito, H.; Saito, F.; Uchida, S.; Ishibashi, K.; Kuwahara, M.; Ikeuchi, T.; Inui, K.; Nakajima, K. Cloning,

characterization, and chromosomal mapping of human aquaporin of collecting duct. J. Clin. Investig. 1994, 93, 1250–1256.
[CrossRef]

5. Noda, Y.; Sohara, E.; Ohta, E.; Sasaki, S. Aquaporins in kidney pathophysiology. Nat. Rev. Nephrol. 2010, 6, 168–178. [CrossRef]
[PubMed]

6. Noda, Y. Dynamic regulation and dysregulation of the water channel aquaporin-2: A common cause of and promising therapeutic
target for water balance disorders. Clin. Exp. Nephrol. 2014, 18, 558–570. [CrossRef] [PubMed]

7. Matsuzaki, T.; Yaguchi, T.; Shimizu, K.; Kita, A.; Ishibashi, K.; Takata, K. The distribution and function of aquaporins in the
kidney: Resolved and unresolved questions. Anat. Sci. Int. 2017, 92, 187–199. [CrossRef]

http://doi.org/10.1038/361549a0
http://www.ncbi.nlm.nih.gov/pubmed/8429910
http://doi.org/10.1152/ajprenal.1993.265.3.F461
http://doi.org/10.1172/JCI117079
http://doi.org/10.1038/nrneph.2009.231
http://www.ncbi.nlm.nih.gov/pubmed/20101255
http://doi.org/10.1007/s10157-013-0878-5
http://www.ncbi.nlm.nih.gov/pubmed/24129558
http://doi.org/10.1007/s12565-016-0325-2


Int. J. Mol. Sci. 2021, 22, 12950 11 of 16

8. Noda, Y.; Sasaki, S. Regulation of aquaporin-2 trafficking and its binding protein complex. Biochim. Biophys. Acta 2006,
1758, 1117–1125. [CrossRef]

9. Lolait, S.J.; O’Carroll, A.M.; McBride, O.W.; Konig, M.; Morel, A.; Brownstein, M.J. Cloning and characterization of a vasopressin
V2 receptor and possible link to nephrogenic diabetes insipidus. Nature 1992, 357, 336–339. [CrossRef]

10. Birnbaumer, M.; Seibold, A.; Gilbert, S.; Ishido, M.; Barberis, C.; Antaramian, A.; Brabet, P.; Rosenthal, W. Molecular cloning of
the receptor for human antidiuretic hormone. Nature 1992, 357, 333–335. [CrossRef]

11. Sands, J.M.; Nonoguchi, H.; Knepper, M.A. Vasopressin effects on urea and H2O transport in inner medullary collecting duct
subsegments. Am. J. Physiol. 1987, 253, F823–F832. [CrossRef]

12. Pohl, M.; Shan, Q.; Petsch, T.; Styp-Rekowska, B.; Matthey, P.; Bleich, M.; Bachmann, S.; Theilig, F. Short-term functional
adaptation of aquaporin-1 surface expression in the proximal tubule, a component of glomerulotubular balance. J. Am. Soc.
Nephrol. 2015, 26, 1269–1278. [CrossRef] [PubMed]

13. Ciappelloni, S.; Bouchet, D.; Dubourdieu, N.; Boué-Grabot, E.; Kellermayer, B.; Manso, C.; Marignier, R.; Oliet, S.H.R.; Tourdias, T.;
Groc, L. Aquaporin-4 Surface Trafficking Regulates Astrocytic Process Motility and Synaptic Activity in Health and Autoimmune
Disease. Cell Rep. 2019, 27, 3860–3872. [CrossRef]

14. Kitchen, P.; Salman, M.M.; Halsey, A.M.; Clarke-Bland, C.; MacDonald, J.A.; Ishida, H.; Vogel, H.J.; Almutiri, S.; Logan, A.;
Kreida, S.; et al. Targeting Aquaporin-4 Subcellular Localization to Treat Central Nervous System Edema. Cell 2020, 181, 784–799.
[CrossRef]

15. Chivasso, C.; Hagströmer, C.J.; Rose, K.L.; Lhotellerie, F.; Leblanc, L.; Wang, Z.; Moscato, S.; Chevalier, C.; Zindy, E.; Martin, M.;
et al. Ezrin Is a Novel Protein Partner of Aquaporin-5 in Human Salivary Glands and Shows Altered Expression and Cellular
Localization in Sjögren’s Syndrome. Int. J. Mol. Sci. 2021, 22, 9213. [CrossRef]

16. Kikuchi, H.; Jung, H.J.; Raghuram, V.; Leo, K.T.; Park, E.; Yang, C.R.; Chou, C.L.; Chen, L.; Knepper, M.A. Bayesian identification
of candidate transcription factors for the regulation of Aqp2 gene expression. Am. J. Physiol. Ren. Physiol. 2021, 321, F389–F401.
[CrossRef] [PubMed]

17. Saito, T.; Higashiyama, M.; Nagasaka, S.; Sasaki, S.; Saito, T.; Ishikawa, S.E. Role of aquaporin-2 gene expression in hyponatremic
rats with chronic vasopressin-induced antidiuresis. Kidney Int. 2001, 60, 1266–1276. [CrossRef]

18. Isobe, K.; Jung, H.J.; Yang, C.R.; Claxton, J.; Sandoval, P.; Burg, M.B.; Raghuram, V.; Knepper, M.A. Systems-level identification of
PKA-dependent signaling in epithelial cells. Proc. Natl. Acad. Sci. USA 2017, 114, E8875–E8884. [CrossRef] [PubMed]

19. Yui, N.; Ando, F.; Sasaki, S.; Uchida, S. Ser-261 phospho-regulation is involved in pS256 and pS269-mediated aquaporin-2 apical
translocation. Biochem. Biophys. Res. Commun. 2017, 490, 1039–1044. [CrossRef]

20. Sakai, M.; Yamamoto, K.; Mizumura, H.; Matsumoto, T.; Tanaka, Y.; Noda, Y.; Ishibashi, K.; Yamamoto, T.; Sasaki, S. Phospho-
rylation profile of human AQP2 in urinary exosomes by LC-MS/MS phosphoproteomic analysis. Clin. Exp. Nephrol. 2020,
24, 762–769. [CrossRef]

21. Procino, G.; Carmosino, M.; Marin, O.; Brunati, A.M.; Contri, A.; Pinna, L.A.; Mannucci, R.; Nielsen, S.; Kwon, T.H.; Svelto, M.;
et al. Ser-256 phosphorylation dynamics of aquaporin 2 during maturation from the endoplasmic reticulum to the vesicular
compartment in renal cells. FASEB J. 2003, 17, 1886–1888. [CrossRef]

22. Van Balkom, B.W.; Savelkoul, P.J.; Markovich, D.; Hofman, E.; Nielsen, S.; van der Sluijs, P.; Deen, P.M. The role of putative
phosphorylation sites in the targeting and shuttling of the aquaporin-2 water channel. J. Biol. Chem. 2002, 277, 41473–41479.
[CrossRef]

23. Bouley, R.; Breton, S.; Sun, T.; McLaughlin, M.; Nsumu, N.N.; Lin, H.Y.; Ausiello, D.A.; Brown, D. Nitric oxide and atrial
natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells. J. Clin. Investig. 2000,
106, 1115–1126. [CrossRef] [PubMed]

24. Bouley, R.; Pastor-Soler, N.; Cohen, O.; McLaughlin, M.; Breton, S.; Brown, D. Stimulation of AQP2 membrane insertion in renal
epithelial cells in vitro and in vivo by the cGMP phosphodiesterase inhibitor sildenafil citrate (Viagra). Am. J. Physiol. Ren. Physiol.
2005, 288, F1103–F1112. [CrossRef]

25. Cheung, P.W.; Terlouw, A.; Janssen, S.A.; Brown, D.; Bouley, R. Inhibition of non-receptor tyrosine kinase Src induces phosphoser-
ine 256-independent aquaporin-2 membrane accumulation. J. Physiol. 2019, 597, 1627–1642. [CrossRef] [PubMed]

26. Balasubramanian, L.; Sham, J.S.; Yip, K.P. Calcium signaling in vasopressin-induced aquaporin-2 trafficking. Pflug. Arch. 2008,
456, 747–754. [CrossRef]

27. Li, S.Z.; McDill, B.W.; Kovach, P.A.; Ding, L.; Go, W.Y.; Ho, S.N.; Chen, F. Calcineurin-NFATc signaling pathway regulates AQP2
expression in response to calcium signals and osmotic stress. Am. J. Physiol. Cell Physiol. 2007, 292, C1606–C1616. [CrossRef]
[PubMed]

28. Veeman, M.; Axelrod, J.; Moon, R. A second canon: Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev.
Cell 2003, 5, 367–377. [CrossRef]

29. Ando, F.; Sohara, E.; Morimoto, T.; Yui, N.; Nomura, N.; Kikuchi, E.; Takahashi, D.; Mori, T.; Vandewalle, A.; Rai, T.; et al. Wnt5a
induces renal AQP2 expression by activating calcineurin signalling pathway. Nat. Commun. 2016, 7, 13636. [CrossRef] [PubMed]

30. Sylvain, N.J.; Salman, M.M.; Pushie, M.J.; Hou, H.; Meher, V.; Herlo, R.; Peeling, L.; Kelly, M.E. The effects of trifluoperazine on
brain edema, aquaporin-4 expression and metabolic markers during the acute phase of stroke using photothrombotic mouse
model. Biochim. Biophys. Acta Biomembr. 2021, 1863, 183573. [CrossRef] [PubMed]

http://doi.org/10.1016/j.bbamem.2006.03.004
http://doi.org/10.1038/357336a0
http://doi.org/10.1038/357333a0
http://doi.org/10.1152/ajprenal.1987.253.5.F823
http://doi.org/10.1681/ASN.2014020148
http://www.ncbi.nlm.nih.gov/pubmed/25270072
http://doi.org/10.1016/j.celrep.2019.05.097
http://doi.org/10.1016/j.cell.2020.03.037
http://doi.org/10.3390/ijms22179213
http://doi.org/10.1152/ajprenal.00204.2021
http://www.ncbi.nlm.nih.gov/pubmed/34308668
http://doi.org/10.1046/j.1523-1755.2001.00965.x
http://doi.org/10.1073/pnas.1709123114
http://www.ncbi.nlm.nih.gov/pubmed/28973931
http://doi.org/10.1016/j.bbrc.2017.06.162
http://doi.org/10.1007/s10157-020-01899-4
http://doi.org/10.1096/fj.02-0870fje
http://doi.org/10.1074/jbc.M207525200
http://doi.org/10.1172/JCI9594
http://www.ncbi.nlm.nih.gov/pubmed/11067864
http://doi.org/10.1152/ajprenal.00337.2004
http://doi.org/10.1113/JP277024
http://www.ncbi.nlm.nih.gov/pubmed/30488437
http://doi.org/10.1007/s00424-007-0371-7
http://doi.org/10.1152/ajpcell.00588.2005
http://www.ncbi.nlm.nih.gov/pubmed/17166937
http://doi.org/10.1016/S1534-5807(03)00266-1
http://doi.org/10.1038/ncomms13636
http://www.ncbi.nlm.nih.gov/pubmed/27892464
http://doi.org/10.1016/j.bbamem.2021.183573
http://www.ncbi.nlm.nih.gov/pubmed/33561476


Int. J. Mol. Sci. 2021, 22, 12950 12 of 16

31. Salman, M.M.; Kitchen, P.; Iliff, J.J.; Bill, R.M. Aquaporin 4 and glymphatic flow have central roles in brain fluid homeostasis. Nat.
Rev. Neurosci. 2021, 22, 650–651. [CrossRef]

32. Salman, M.M.; Kitchen, P.; Halsey, A.; Wang, M.X.; Tornroth-Horsefield, S.; Conner, A.C.; Badaut, J.; Iliff, J.J.; Bill, R.M. Emerging
roles for dynamic aquaporin-4 subcellular relocalization in CNS water homeostasis. Brain 2021, awab311. [CrossRef] [PubMed]

33. Sands, J.M.; Flores, F.; Kato, A.; Baum, M.A.; Brown, E.M.; Ward, D.T.; Hebert, S.C.; Harris, H.W. Vasopressin-elicited water and
urea permeabilities are altered in IMCD in hypercalcemic rats. Am. J. Physiol. 1998, 274, F978–F985. [CrossRef] [PubMed]

34. Procino, G.; Carmosino, M.; Tamma, G.; Gouraud, S.; Laera, A.; Riccardi, D.; Svelto, M.; Valenti, G. Extracellular calcium
antagonizes forskolin-induced aquaporin 2 trafficking in collecting duct cells. Kidney Int. 2004, 66, 2245–2255. [CrossRef]
[PubMed]

35. Ranieri, M.; Tamma, G.; Di Mise, A.; Russo, A.; Centrone, M.; Svelto, M.; Calamita, G.; Valenti, G. Negative feedback from CaSR
signaling to aquaporin-2 sensitizes vasopressin to extracellular Ca2. J. Cell Sci. 2015, 128, 2350–2360. [CrossRef]

36. Ranieri, M. Renal Ca2+ and Water handling in response to calcium sensing receptor signaling: Physiopathological aspects and
role of CaSR-regulated microRNAs. Int. J. Mol. Sci. 2019, 20, 5341. [CrossRef]

37. Noda, Y.; Sasaki, S. The role of actin remodeling in the trafficking of intracellular vesicles, transporters, and channels: Focusing
on aquaporin-2. Pflug. Arch. 2008, 456, 737–745. [CrossRef]

38. Noda, Y.; Sasaki, S. Actin-binding channels. Prog. Brain Res. 2008, 170, 551–557.
39. Tamma, G.; Wiesner, B.; Furkert, J.; Hahm, D.; Oksche, A.; Schaefer, M.; Valenti, G.; Rosenthal, W.; Klussmann, E. The

prostaglandin E2 analogue sulprostone antagonizes vasopressin-induced antidiuresis through activation of Rho. J. Cell Sci. 2003,
116, 3285–3294. [CrossRef]

40. Tajika, Y.; Matsuzaki, T.; Suzuki, T.; Ablimit, A.; Aoki, T.; Hagiwara, H.; Kuwahara, M.; Sasaki, S.; Takata, K. Differential regulation
of AQP2 trafficking in endosomes by microtubules and actin filaments. Histochem. Cell Biol. 2005, 124, 1–12. [CrossRef]

41. Tamma, G.; Carmosino, M.; Svelto, M.; Valenti, G. Bradykinin signaling counteracts cAMP-elicited aquaporin 2 translocation in
renal cells. J. Am. Soc. Nephrol. 2005, 16, 2881–2889. [CrossRef]

42. Noda, Y.; Horikawa, S.; Furukawa, T.; Hirai, K.; Katayama, Y.; Asai, T.; Kuwahara, M.; Katagiri, K.; Kinashi, T.; Hattori, M.; et al.
Aquaporin-2 trafficking is regulated by PDZ-domain containing protein SPA-1. FEBS Lett. 2004, 568, 139–145. [CrossRef]

43. Noda, Y.; Sasaki, S. Molecular mechanisms and drug development in aquaporin water channel diseases: Molecular mechanism of
water channel aquaporin-2 trafficking. J. Pharmacol. Sci. 2004, 96, 249–254. [CrossRef]

44. Harazaki, M.; Kawai, Y.; Su, L.; Hamazaki, Y.; Nakahata, T.; Minato, N.; Hattori, M. Specific recruitment of SPA-1 to the
immunological synapse: Involvement of actin-bundling protein actinin. Immunol. Lett. 2004, 92, 221–226. [CrossRef]

45. Kometani, K.; Aoki, M.; Kawamata, S.; Shinozuka, Y.; Era, T.; Taniwaki, M.; Hattori, M.; Minato, N. Role of SPA-1 in phenotypes
of chronic myelogenous leukemia induced by BCR-ABL-expressing hematopoietic progenitors in a mouse model. Cancer Res.
2006, 66, 9967–9976. [CrossRef]

46. Kuwahara, M.; Iwai, K.; Ooeda, T.; Igarashi, T.; Ogawa, E.; Katsushima, Y.; Shinbo, I.; Uchida, S.; Terada, Y.; Arthus, M.F.; et al.
Three families with autosomal dominant nephrogenic diabetes insipidus caused by aquaporin-2 mutations in the C-terminus.
Am. J. Hum. Genet. 2001, 69, 738–748. [CrossRef]

47. Kuwahara, M.; Asai, T.; Terada, Y.; Sasaki, S. The C-terminal tail of aquaporin-2 determines apical trafficking. Kidney Int. 2005,
68, 1999–2009. [CrossRef] [PubMed]

48. Noda, Y.; Horikawa, S.; Katayama, Y.; Sasaki, S. Identification of a multiprotein “motor” complex binding to water channel
aquaporin-2. Biochem. Biophys. Res. Commun. 2005, 330, 1041–1047. [CrossRef] [PubMed]

49. Nedvetsky, P.I.; Stefan, E.; Frische, S.; Santamaria, K.; Wiesner, B.; Valenti, G.; Hammer, J.A., 3rd; Nielsen, S.; Goldenring, J.R.;
Rosenthal, W.; et al. A Role of myosin Vb and Rab11-FIP2 in the aquaporin-2 shuttle. Traffic 2007, 8, 110–123. [CrossRef]

50. Chou, C.L.; Christensen, B.M.; Frische, S.; Vorum, H.; Desai, R.A.; Hoffert, J.D.; de Lanerolle, P.; Nielsen, S.; Knepper, M.A.
Non-muscle myosin II and myosin light chain kinase are downstream targets for vasopressin signaling in the renal collecting
duct. J. Biol. Chem. 2004, 279, 49026–49035. [CrossRef] [PubMed]

51. Isobe, K.; Raghuram, V.; Krishnan, L.; Chou, C.L.; Yang, C.R.; Knepper, M.A. CRISPR-Cas9/phosphoproteomics identifies
multiple noncanonical targets of myosin light chain kinase. Am. J. Physiol. Ren. Physiol. 2020, 318, F600–F616. [CrossRef]
[PubMed]

52. Liu, C.S.; Cheung, P.W.; Dinesh, A.; Baylor, N.; Paunescu, T.C.; Nair, A.V.; Bouley, R.; Brown, D. Actin-related protein 2/3 complex
plays a critical role in the aquaporin-2 exocytotic pathway. Am. J. Physiol. Ren. Physiol. 2021, 321, F179–F194. [CrossRef] [PubMed]

53. Holst, M.R.; Gammelgaard, L.; Aaron, J.; Login, F.H.; Rajkumar, S.; Hahn, U.; Nejsum, L.N. Regulated exocytosis: Renal
Aquaporin-2 3D Vesicular Network Organization and Association with F-actin. Am. J. Physiol. Cell Physiol. 2021. [CrossRef]
[PubMed]

54. Brown, D.; Orci, L. Vasopressin stimulates formation of coated pits in rat kidney collecting ducts. Nature 1983, 302, 253–255.
[CrossRef] [PubMed]

55. Sun, T.X.; van Hoek, A.; Huang, Y.; Bouley, R.; McLaughlin, M.; Brown, D. Aquaporin-2 localization in clathrin-coated pits:
Inhibition of endocytosis by dominant-negative dynamin. Am. J. Physiol. 2002, 282, F998–F1011. [CrossRef]

56. Lu, H.; Sun, T.X.; Bouley, R.; Blackburn, K.; McLaughlin, M.; Brown, D. Inhibition of endocytosis causes phosphorylation
(S256)-independent plasma membrane accumulation of AQP2. Am. J. Physiol. 2004, 286, F233–F243. [CrossRef] [PubMed]

http://doi.org/10.1038/s41583-021-00514-z
http://doi.org/10.1093/brain/awab311
http://www.ncbi.nlm.nih.gov/pubmed/34499128
http://doi.org/10.1152/ajprenal.1998.274.5.F978
http://www.ncbi.nlm.nih.gov/pubmed/9612337
http://doi.org/10.1111/j.1523-1755.2004.66036.x
http://www.ncbi.nlm.nih.gov/pubmed/15569313
http://doi.org/10.1242/jcs.168096
http://doi.org/10.3390/ijms20215341
http://doi.org/10.1007/s00424-007-0404-2
http://doi.org/10.1242/jcs.00640
http://doi.org/10.1007/s00418-005-0010-3
http://doi.org/10.1681/ASN.2005020190
http://doi.org/10.1016/j.febslet.2004.05.021
http://doi.org/10.1254/jphs.FMJ04004X2
http://doi.org/10.1016/j.imlet.2004.01.004
http://doi.org/10.1158/0008-5472.CAN-06-1346
http://doi.org/10.1086/323643
http://doi.org/10.1111/j.1523-1755.2005.00654.x
http://www.ncbi.nlm.nih.gov/pubmed/16221200
http://doi.org/10.1016/j.bbrc.2005.03.079
http://www.ncbi.nlm.nih.gov/pubmed/15823548
http://doi.org/10.1111/j.1600-0854.2006.00508.x
http://doi.org/10.1074/jbc.M408565200
http://www.ncbi.nlm.nih.gov/pubmed/15347643
http://doi.org/10.1152/ajprenal.00431.2019
http://www.ncbi.nlm.nih.gov/pubmed/31904282
http://doi.org/10.1152/ajprenal.00015.2021
http://www.ncbi.nlm.nih.gov/pubmed/34180716
http://doi.org/10.1152/ajpcell.00255.2021
http://www.ncbi.nlm.nih.gov/pubmed/34432538
http://doi.org/10.1038/302253a0
http://www.ncbi.nlm.nih.gov/pubmed/6132339
http://doi.org/10.1152/ajprenal.00257.2001
http://doi.org/10.1152/ajprenal.00179.2003
http://www.ncbi.nlm.nih.gov/pubmed/14519593


Int. J. Mol. Sci. 2021, 22, 12950 13 of 16

57. Lu, H.A.; Sun, T.X.; Matsuzaki, T.; Yi, X.H.; Eswara, J.; Bouley, R.; McKee, M.; Brown, D. Heat shock protein 70 interacts with
aquaporin-2 (AQP2) and regulates its trafficking. J. Biol. Chem. 2007, 282, 28721–28732. [CrossRef]

58. Kamsteeg, E.J.; Hendriks, G.; Boone, M.; Konings, I.B.; Oorschot, V.; van der Sluijs, P.; Klumperman, J.; Deen, P.M. Short-
chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proc. Natl. Acad. Sci. USA 2006,
103, 18344–18349. [CrossRef]

59. Wu, Q.; Moeller, H.B.; Stevens, D.A.; Sanchez-Hodge, R.; Childers, G.; Kortenoeven, M.L.A.; Cheng, L.; Rosenbaek, L.L.; Rubel,
C.; Patterson, C.; et al. CHIP Regulates Aquaporin-2 Quality Control and Body Water Homeostasis. J. Am. Soc. Nephrol. 2018,
29, 936–948. [CrossRef]

60. Noda, Y.; Horikawa, S.; Katayama, Y.; Sasaki, S. Water channel aquaporin-2 directly binds to actin. Biochem. Biophys. Res. Commun.
2004, 322, 740. [CrossRef]

61. Noda, Y.; Sasaki, S. Trafficking mechanism of water channel aquaporin-2. Biol. Cell. 2005, 97, 885–892. [CrossRef]
62. Noda, Y.; Horikawa, S.; Kanda, E.; Yamashita, M.; Meng, H.; Eto, K.; Li, Y.; Kuwahara, M.; Hirai, K.; Pack, C.; et al. Reciprocal

interaction with G-actin and tropomyosin is essential for aquaporin-2 trafficking. J. Cell Biol. 2008, 182, 587–601. [CrossRef]
[PubMed]

63. Kuwahara, M.; Fushimi, K.; Terada, Y.; Bai, L.; Marumo, F.; Sasaki, S. cAMP-dependent phosphorylation stimulates water perme-
ability of aquaporin-collecting duct water channel protein expressed in Xenopus oocytes. J. Biol. Chem. 1995, 270, 10384–10387.
[CrossRef]

64. Moeller, H.B.; MacAulay, N.; Knepper, M.A.; Fenton, R.A. Role of multiple phosphorylation sites in the COOH-terminal tail of
aquaporin-2 for water transport: Evidence against channel gating. Am. J. Physiol Ren. Physiol. 2009, 296, F649–F657. [CrossRef]

65. Eto, K.; Noda, Y.; Horikawa, S.; Uchida, S.; Sasaki, S. Phosphorylation of aquaporin-2 regulates its water permeability. J. Biol.
Chem. 2010, 285, 40777–40784. [CrossRef]

66. Kasono, K.; Saito, T.; Saito, T.; Tamemoto, H.; Yanagidate, C.; Uchida, S.; Kawakami, M.; Sasaki, S.; Ishikawa, S.E. Hypertonicity
regulates the aquaporin-2 promoter independently of arginine vasopressin. Nephrol. Dial. Transplant. 2005, 20, 509–515. [CrossRef]

67. Saito, T.; Saito, T.; Kasono, K.; Tamemoto, H.; Kawakami, M.; Sasaki, S.; Ishikawa, S.E. Hypotonicity reduces the activity of
murine aquaporin-2 promoter induced by dibutyryl cAMP. Exp. Physiol. 2008, 93, 1147–1156. [CrossRef] [PubMed]

68. Hasler, U.; Nunes, P.; Bouley, R.; Lu, H.A.; Matsuzaki, T.; Brown, D. Acute hypertonicity alters aquaporin-2 trafficking and induces
a MAP kinase-dependent accumulation at the plasma membrane of renal epithelial cells. J. Biol. Chem. 2008, 283, 26643–26661.
[PubMed]

69. Van Balkom, B.W.; van Raak, M.; Breton, S.; Pastor-Soler, N.; Bouley, R.; van der Sluijs, P.; Brown, D.; Deen, P.M. Hypertonicity
is involved in redirecting the aquaporin-2 water channel into the basolateral, instead of the apical, plasma membrane of renal
epithelial cells. J. Biol. Chem. 2003, 278, 1101–1107.

70. Okada, Y.; Maeno, E.; Shimizu, T.; Dezaki, K.; Wang, J.; Morishima, S. Receptor-mediated control of regulatory volume decrease
(RVD) and apoptotic volume decrease (AVD). J. Physiol. 2001, 532, 3–16. [CrossRef]

71. Tamma, G.; Procino, G.; Strafino, A.; Bononi, E.; Meyer, G.; Paulmichl, M.; Formoso, V.; Svelto, M.; Valenti, G. Hypotonicity induces
aquaporin-2 internalization and cytosol-to-membrane translocation of ICln in renal cells. Endocrinology 2007, 148, 1118–1130.
[CrossRef]

72. Li, Y.H.; Eto, K.; Horikawa, S.; Uchida, S.; Sasaki, S.; Li, X.J.; Noda, Y. Aquaporin-2 regulates cell volume recovery via tropomyosin.
Int. J. Biochem. Cell Biol. 2009, 41, 2466–2476. [CrossRef] [PubMed]

73. Savelkoul, P.J.; de Mattia, F.; Li, Y.; Kamsteeg, E.J.; Konings, I.B.; van der Sluijs, P.; Deen, P.M. p.R254Q mutation in the aquaporin-2
water channel causing dominant nephrogenic diabetes insipidus is due to a lack of arginine vasopressin-induced phosphorylation.
Hum. Mutat. 2009, 30, E891–E903. [CrossRef]

74. De Mattia, F.; Savelkoul, P.J.; Kamsteeg, E.J.; Konings, I.B.; van der Sluijs, P.; Mallmann, R.; Oksche, A.; Deen, P.M. Lack of arginine
vasopressin-induced phosphorylation of aquaporin-2 mutant AQP2-R254L explains dominant nephrogenic diabetes insipidus.
J. Am. Soc. Nephrol. 2005, 16, 2872–2880. [CrossRef] [PubMed]

75. Kamsteeg, E.J.; Savelkoul, P.J.; Hendriks, G.; Konings, I.B.; Nivillac, N.M.; Lagendijk, A.K.; van der Sluijs, P.; Deen, P.M. Missorting
of the Aquaporin-2 mutant E258K to multivesicular bodies/lysosomes in dominant NDI is associated with its monoubiquitination
and increased phosphorylation by PKC but is due to the loss of E258. Pflug. Arch. 2008, 455, 1041–1054. [CrossRef] [PubMed]

76. Asai, T.; Kuwahara, M.; Kurihara, H.; Sakai, T.; Terada, Y.; Marumo, F.; Sasaki, S. Pathogenesis of nephrogenic diabetes insipidus
by aquaporin-2 C-terminus mutations. Kidney Int. 2003, 64, 2–10.

77. Sohara, E.; Rai, T.; Yang, S.S.; Uchida, K.; Nitta, K.; Horita, S.; Ohno, M.; Harada, A.; Sasaki, S.; Uchida, S. Pathogenesis and
treatment of autosomal-dominant nephrogenic diabetes insipidus caused by an aquaporin 2 mutation. Proc. Natl. Acad. Sci. USA
2006, 103, 14217–14222. [CrossRef]

78. Grünfeld, J.P.; Rossier, B.C. Lithium nephrotoxicity revisited. Nat. Rev. Nephrol. 2009, 5, 270–276. [CrossRef]
79. Rao, R.; Zhang, M.Z.; Zhao, M.; Cai, H.; Harris, R.C.; Breyer, M.D.; Hao, C.M. Lithium treatment inhibits renal GSK-3 activity and

promotes cyclooxygenase 2-dependent polyuria. Am. J. Physiol. Ren. Physiol. 2005, 288, F642–F649. [CrossRef]
80. Rao, R.; Patel, S.; Hao, C.; Woodgett, J.; Harris, R. GSK3beta mediates renal response to vasopressin by modulating adenylate

cyclase activity. J. Am. Soc. Nephrol. 2010, 21, 428–437. [CrossRef]
81. Christensen, B.M.; Marples, D.; Kim, Y.H.; Wang, W.; Frøkiaer, J.; Nielsen, S. Changes in cellular composition of kidney collecting

duct cells in rats with lithium-induced NDI. Am. J. Physiol. Cell Physiol. 2004, 286, C952–C964. [CrossRef]

http://doi.org/10.1074/jbc.M611101200
http://doi.org/10.1073/pnas.0604073103
http://doi.org/10.1681/ASN.2017050526
http://doi.org/10.1016/j.bbrc.2004.07.195
http://doi.org/10.1042/BC20040120
http://doi.org/10.1083/jcb.200709177
http://www.ncbi.nlm.nih.gov/pubmed/18678705
http://doi.org/10.1074/jbc.270.18.10384
http://doi.org/10.1152/ajprenal.90682.2008
http://doi.org/10.1074/jbc.M110.151928
http://doi.org/10.1093/ndt/gfh677
http://doi.org/10.1113/expphysiol.2008.042663
http://www.ncbi.nlm.nih.gov/pubmed/18515471
http://www.ncbi.nlm.nih.gov/pubmed/18664568
http://doi.org/10.1111/j.1469-7793.2001.0003g.x
http://doi.org/10.1210/en.2006-1277
http://doi.org/10.1016/j.biocel.2009.07.017
http://www.ncbi.nlm.nih.gov/pubmed/19651234
http://doi.org/10.1002/humu.21082
http://doi.org/10.1681/ASN.2005010104
http://www.ncbi.nlm.nih.gov/pubmed/16120822
http://doi.org/10.1007/s00424-007-0364-6
http://www.ncbi.nlm.nih.gov/pubmed/17965877
http://doi.org/10.1073/pnas.0602331103
http://doi.org/10.1038/nrneph.2009.43
http://doi.org/10.1152/ajprenal.00287.2004
http://doi.org/10.1681/ASN.2009060672
http://doi.org/10.1152/ajpcell.00266.2003


Int. J. Mol. Sci. 2021, 22, 12950 14 of 16

82. Khositseth, S.; Uawithya, P.; Somparn, P.; Charngkaew, K.; Thippamom, N.; Hoffert, J.D.; Saeed, F.; Michael Payne, D.; Chen,
S.H.; Fenton, R.A.; et al. Autophagic degradation of aquaporin-2 is an early event in hypokalemia-induced nephrogenic diabetes
insipidus. Sci. Rep. 2015, 5, 18311. [CrossRef]

83. Khositseth, S.; Charngkaew, K.; Boonkrai, C.; Somparn, P.; Uawithya, P.; Chomanee, N.; Payne, D.M.; Fenton, R.A.; Pisitkun, T.
Hypercalcemia induces targeted autophagic degradation of aquaporin-2 at the onset of nephrogenic diabetes insipidus. Kidney
Int. 2017, 91, 1070–1087. [CrossRef] [PubMed]

84. Iervolino, A.; Prosperi, F.; de La Motte, L.R.; Petrillo, F.; Spagnuolo, M.; D’Acierno, M.; Siccardi, S.; Perna, A.F.; Christensen, B.M.;
Frische, S.; et al. Potassium depletion induces cellular conversion in the outer medullary collecting duct altering Notch signaling
pathway. Sci. Rep. 2020, 10, 5708. [CrossRef] [PubMed]

85. Somparn, P.; Boonkrai, C.; Charngkaew, K.; Chomanee, N.; Hodge, K.G.; Fenton, R.A.; Pisitkun, T.; Khositseth, S. Bilateral ureteral
obstruction is rapidly accompanied by ER stress and activation of autophagic degradation of IMCD proteins, including AQP2.
Am. J. Physiol. Ren. Physiol. 2020, 318, F135–F147. [CrossRef] [PubMed]

86. Schrier, R.W. Vasopressin and aquaporin 2 in clinical disorders of water homeostasis. Semin. Nephrol. 2008, 28, 289–296. [CrossRef]
[PubMed]

87. Gheorghiade, M.; Gattis, W.A.; O’Connor, C.M.; Adams, K.F.; Elkayam, U., Jr.; Barbagelata, A.; Ghali, J.K.; Benza, R.L.; McGrew,
F.A.; Klapholz, M.; et al. Effects of tolvaptan, a vasopressin antagonist, in patients hospitalized with worsening heart failure: A
randomized controlled trial. JAMA 2004, 291, 1963–1971. [CrossRef]

88. Schrier, R.W.; Gross, P.; Gheorghiade, M.; Berl, T.; Verbalis, J.G.; Czerwiec, F.S.; Orlandi, C.; SALT Investigators. Tolvaptan, a
selective oral vasopressin V2-receptor antagonist, for hyponatremia. N. Engl. J. Med. 2006, 355, 2099–2112. [CrossRef]

89. Abraham, W.T.; Shamshirsaz, A.A.; McFann, K.; Oren, R.M.; Schrier, R.W. Aquaretic effect of lixivaptan, an oral non-peptide,
selective V2 receptor vasopressin antagonist, in the New York Heart Association functional class II and III chronic heart failure
patients. J. Am. Coll. Cardiol. 2006, 47, 1615–1621. [CrossRef]

90. Gheorghiade, M.; Konstam, M.A.; Burnett, J.C., Jr.; Grinfeld, L.; Maggioni, A.P.; Swedberg, K.; Udelson, J.E.; Zannad, F.; Cook, T.;
Ouyang, J.; et al. Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure:
The EVEREST clinical status trials. JAMA 2007, 297, 1332–1343. [CrossRef]

91. Asahina, Y.; Izumi, N.; Enomoto, N.; Sasaki, S.; Fushimi, K.; Marumo, F.; Sato, C. Increased gene expression of water channel in
cirrhotic rat kidneys. Hepatology 1995, 21, 169–173. [CrossRef]

92. Fukui, H. Do vasopressin V2 receptor antagonists benefit cirrhotics with refractory ascites? World J. Gastroenterol. 2015,
21, 11584–11596. [CrossRef]

93. Ishikawa, S.E.; Saito, T.; Saito, T.; Kasono, K.; Funayama, H. Pathophysiological role of aquaporin-2 in impaired water excretion.
Prog. Brain Res. 2008, 170, 581–588.

94. Saito, T.; Ishikawa, S.; Abe, K.; Kamoi, K.; Yamada, K.; Shimizu, K.; Saruta, T.; Yoshida, S. Acute aquaresis by the nonpeptide
arginine vasopressin (AVP) antagonist OPC-31260 improves hyponatremia in patients with syndrome of inappropriate secretion
of antidiuretic hormone (SIADH). J. Clin. Endocrinol. Metab. 1997, 82, 1054–1057. [CrossRef]

95. Kazama, I.; Hatano, R.; Michimata, M.; Suzuki, K.; Arata, T.; Suzuki, M.; Miyama, N.; Sato, A.; Satomi, S.; Ejima, Y.; et al.
BSC1 inhibition complements effects of vasopressin V2 receptor antagonist on hyponatremia in SIADH rats. Kidney Int. 2005,
67, 1855–1867. [CrossRef] [PubMed]

96. Kanno, K.; Sasaki, S.; Hirata, Y.; Ishikawa, S.; Fushimi, K.; Nakanishi, S.; Bichet, D.G.; Marumo, F. Urinary excretion of aquaporin-2
in patients with diabetes insipidus. N. Engl. J. Med. 1995, 332, 1540–1545. [CrossRef] [PubMed]

97. Sasaki, S.; Ohmoto, Y.; Mori, T.; Iwata, F.; Muraguchi, M. Daily variance of urinary excretion of AQP2 determined by sandwich
ELISA method. Clin. Exp. Nephrol. 2012, 16, 406–410. [CrossRef] [PubMed]

98. Pisitkun, T.; Shen, R.F.; Knepper, M.A. Identification and proteomic profiling of exosomes in human urine. Proc. Natl. Acad. Sci.
USA 2004, 101, 1338–13373. [CrossRef]

99. Martin, P.Y.; Abraham, W.T.; Lieming, X.; Olson, B.R.; Oren, R.M.; Ohara, M.; Schrier, R.W. Selective V2-receptor vasopressin
antagonism decreases urinary aquaporin-2 excretion in patients with chronic heart failure. J. Am. Soc. Nephrol. 1999, 10, 2165–2170.
[CrossRef]

100. Ivarsen, P.; Frøkiaer, J.; Aagaard, N.K.; Hansen, E.F.; Bendtsen, F.; Nielsen, S.; Vilstrup, H. Increased urinary excretion of aquaporin
2 in patients with liver cirrhosis. Gut 2003, 52, 1194–1199. [CrossRef]

101. Nakanishi, H.; Kurosaki, M.; Hosokawa, T.; Takahashi, Y.; Itakura, J.; Suzuki, S.; Yasui, Y.; Tamaki, N.; Nakakuki, N.; Takada, H.;
et al. Urinary excretion of the water channel aquaporin 2 correlated with the pharmacological effect of tolvaptan in cirrhotic
patients with ascites. J. Gastroenterol. 2016, 51, 620–627. [CrossRef]

102. Ishikawa, S.E.; Saito, T.; Fukagawa, A.; Higashiyama, M.; Nakamura, T.; Kusaka, I.; Nagasaka, S.; Honda, K.; Saito, T. Close
association of urinary excretion of aquaporin-2 with appropriate and inappropriate arginine vasopressin-dependent antidiuresis
in hyponatremia in elderly subjects. J. Clin. Endocrinol. Metab. 2001, 86, 1665–1671.

103. Imamura, T.; Kinugawa, K.; Fujino, T.; Inaba, T.; Maki, H.; Hatano, M.; Yao, A.; Komuro, I. Increased urine aquaporin-2 relative to
plasma arginine vasopressin is a novel marker of response to tolvaptan in patients with decompensated heart failure. Circ. J.
2014, 78, 2240–2249. [CrossRef] [PubMed]

104. Bouley, R.; Lu, H.A.; Nunes, P.; Da Silva, N.; McLaughlin, M.; Chen, Y.; Brown, D. Calcitonin has a vasopressin-like effect on
aquaporin-2 trafficking and urinary concentration. J. Am. Soc. Nephrol. 2011, 22, 59–72. [CrossRef]

http://doi.org/10.1038/srep18311
http://doi.org/10.1016/j.kint.2016.12.005
http://www.ncbi.nlm.nih.gov/pubmed/28139295
http://doi.org/10.1038/s41598-020-61882-7
http://www.ncbi.nlm.nih.gov/pubmed/32235870
http://doi.org/10.1152/ajprenal.00113.2019
http://www.ncbi.nlm.nih.gov/pubmed/31736351
http://doi.org/10.1016/j.semnephrol.2008.03.009
http://www.ncbi.nlm.nih.gov/pubmed/18519089
http://doi.org/10.1001/jama.291.16.1963
http://doi.org/10.1056/NEJMoa065181
http://doi.org/10.1016/j.jacc.2005.11.071
http://doi.org/10.1001/jama.297.12.1332
http://doi.org/10.1002/hep.1840210128
http://doi.org/10.3748/wjg.v21.i41.11584
http://doi.org/10.1210/jcem.82.4.3900
http://doi.org/10.1111/j.1523-1755.2005.00284.x
http://www.ncbi.nlm.nih.gov/pubmed/15840033
http://doi.org/10.1056/NEJM199506083322303
http://www.ncbi.nlm.nih.gov/pubmed/7537863
http://doi.org/10.1007/s10157-011-0574-2
http://www.ncbi.nlm.nih.gov/pubmed/22160633
http://doi.org/10.1073/pnas.0403453101
http://doi.org/10.1681/ASN.V10102165
http://doi.org/10.1136/gut.52.8.1194
http://doi.org/10.1007/s00535-015-1143-3
http://doi.org/10.1253/circj.CJ-14-0244
http://www.ncbi.nlm.nih.gov/pubmed/24954239
http://doi.org/10.1681/ASN.2009121267


Int. J. Mol. Sci. 2021, 22, 12950 15 of 16

105. Procino, G.; Milano, S.; Carmosino, M.; Barbieri, C.; Nicoletti, M.C.; Li, J.H.; Wess, J.; Svelto, M. Combination of secretin and
fluvastatin ameliorates the polyuria associated with X-linked nephrogenic diabetes insipidus in mice. Kidney Int. 2014, 86, 127–138.
[CrossRef] [PubMed]

106. Gao, M.; Cao, R.; Du, S.; Jia, X.; Zheng, S.; Huang, S.; Han, Q.; Liu, J.; Zhang, X.; Miao, Y.; et al. Disruption of prostaglandin E2
receptor EP4 impairs urinary concentration via decreasing aquaporin 2 in renal collecting ducts. Proc. Natl. Acad. Sci. USA 2015,
112, 8397–8402. [CrossRef]

107. Li, J.H.; Chou, C.L.; Li, B.; Gavrilova, O.; Eisner, C.; Schnermann, J.; Anderson, S.A.; Deng, C.X.; Knepper, M.A.; Wess, J. A
selective EP4 PGE2 receptor agonist alleviates disease in a new mouse model of X-linked nephrogenic diabetes insipidus. J. Clin.
Investig. 2009, 119, 3115–3126. [CrossRef]

108. Olesen, E.T.; Rützler, M.R.; Moeller, H.B.; Praetorius, H.A.; Fenton, R.A. Vasopressin-independent targeting of aquaporin-
2 by selective E-prostanoid receptor agonists alleviates nephrogenic diabetes insipidus. Proc. Natl. Acad. Sci. USA 2011,
108, 12949–12954. [CrossRef]

109. Olesen, E.T.; Moeller, H.B.; Assentoft, M.; MacAulay, N.; Fenton, R.A. The vasopressin type 2 receptor and prostaglandin receptors
EP2 and EP4 can increase aquaporin-2 plasma membrane targeting through a cAMP-independent pathway. Am. J. Physiol. Renal
Physiol. 2016, 311, F935–F944. [CrossRef]

110. Hinrichs, G.R.; Mortensen, L.A.; Bistrup, C.; Dieperink, H.H.; Jensen, B.L. Treatment of Nephrogenic Diabetes Insipidus Patients
with cGMP-Stimulating Drugs Does Not Mitigate Polyuria or Increase Urinary Concentrating Ability. Kidney Int. Rep. 2020,
5, 1319–1325. [CrossRef]

111. Suga, H.; Nagasaki, H.; Kondo, T.A.; Okajima, Y.; Suzuki, C.; Ozaki, N.; Arima, H.; Yamamoto, T.; Ozaki, N.; Akai, M.; et al.
Novel treatment for lithiuminduced nephrogenic diabetes insipidus rat model using the Sendai-virus vector carrying aquaporin
2 gene. Endocrinology 2008, 149, 5803–5810. [CrossRef]

112. Zhang, Y.; Peti-Peterdi, J.; Müller, C.E.; Carlson, N.G.; Baqi, Y.; Strasburg, D.L.; Heiney, K.M.; Villanueva, K.; Kohan, D.E.;
Kishore, B.K. P2Y12 Receptor Localizes in the Renal Collecting Duct and Its Blockade Augments Arginine Vasopressin Action
and Alleviates Nephrogenic Diabetes Insipidus. J. Am. Soc. Nephrol. 2015, 26, 2978–2987. [CrossRef]

113. Li, W.; Zhang, Y.; Bouley, R.; Chen, Y.; Matsuzaki, T.; Nunes, P.; Hasler, U.; Brown, D.; Lu, H.A. Simvastatin enhances aquaporin-2
surface expression and urinary concentration in vasopressin-deficient Brattleboro rats through modulation of Rho GTPase. Am. J.
Physiol. Ren. Physiol. 2011, 301, F309–F318. [CrossRef]

114. Procino, G.; Portincasa, P.; Mastrofrancesco, L.; Castorani, L.; Bonfrate, L.; Addabbo, F.; Carmosino, M.; Di Ciaula, A.; Svelto, M.
Simvastatin increases AQP2 urinary excretion in hypercholesterolemic patients: A pleiotropic effect of interest for patients with
impaired AQP2 trafficking. Clin. Pharmacol. Ther. 2016, 99, 528–537. [CrossRef] [PubMed]

115. Bech, A.P.; Wetzels, J.F.M.; Nijenhuis, T. Effects of sildenafil, metformin, and simvastatin on ADH-independent urine concentration
in healthy volunteers. Physiol. Rep. 2018, 6, e13665. [CrossRef]

116. Fotso Soh, J.; Beaulieu, S.; Trepiccione, F.; Linnaranta, O.; Torres-Platas, G.; Platt, R.W.; Renaud, S.; Su, C.L.; Mucsi, I.; D’Apolito,
L.; et al. A double-blind, randomized, placebo-controlled pilot trial of atorvastatin for nephrogenic diabetes insipidus in lithium
users. Bipolar Disord. 2021, 23, 66–75. [CrossRef] [PubMed]

117. Efe, O.; Klein, J.D.; LaRocque, L.M.; Ren, H.; Sands, J.M. Metformin improves urine concentration in rodents with nephrogenic
diabetes insipidus. JCI Insight 2016, 1, e88409. [CrossRef] [PubMed]

118. Kim, J.E.; Jung, H.J.; Lee, Y.J.; Kwon, T.H. Vasopressin-regulated miRNAs and AQP2-targeting miRNAs in kidney collecting duct
cells. Am. J. Physiol. Ren. Physiol. 2015, 308, F749–F764. [CrossRef]

119. Ranieri, M.; Zahedi, K.; Tamma, G.; Centrone, M.; Di Mise, A.; Soleimani, M.; Valenti, G. CaSR signaling down-regulates AQP2
expression via a novel microRNA pathway in pendrin and NaCl cotransporter knockout mice. FASEB J. 2018, 32, 2148–2159.
[CrossRef]

120. Petrillo, F.; Iervolino, A.; Angrisano, T.; Jelen, S.; Costanzo, V.; D’Acierno, M.; Cheng, L.; Wu, Q.; Guerriero, I.; Mazzarella, M.C.;
et al. Dysregulation of Principal Cell miRNAs Facilitates Epigenetic Regulation of AQP2 and Results in Nephrogenic Diabetes
Insipidus. J. Am. Soc. Nephrol. 2021, 32, 1339–1354. [CrossRef] [PubMed]

121. Bogum, J.; Faust, D.; Zühlke, K.; Eichhorst, J.; Moutty, M.C.; Furkert, J.; Eldahshan, A.; Neuenschwander, M.; von Kries, J.P.;
Wiesner, B.; et al. Small-molecule screening identifies modulators of aquaporin-2 trafficking. J. Am. Soc. Nephrol. 2013, 24, 744–758.
[CrossRef]
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