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ABSTRACT Gene regulatory networks (GRNs) are critical for dynamic transcriptional
responses to environmental stress. However, the mechanisms by which GRN regula-
tion adjusts physiology to enable stress survival remain unclear. Here we investigate
the functions of transcription factors (TFs) within the global GRN of the stress-tolerant
archaeal microorganism Halobacterium salinarum. We measured growth phenotypes
of a panel of TF deletion mutants in high temporal resolution under heat shock, oxi-
dative stress, and low-salinity conditions. To quantitate the noncanonical functional
forms of the growth trajectories observed for these mutants, we developed a novel
modeling framework based on Gaussian process regression and functional analysis
of variance (FANOVA). We employ unique statistical tests to determine the signifi-
cance of differential growth relative to the growth of the control strain. This analysis
recapitulated known TF functions, revealed novel functions, and identified surprising
secondary functions for characterized TFs. Strikingly, we observed that the majority
of the TFs studied were required for growth under multiple stress conditions, pin-
pointing regulatory connections between the conditions tested. Correlations be-
tween quantitative phenotype trajectories of mutants are predictive of TF-TF con-
nections within the GRN. These phenotypes are strongly concordant with predictions
from statistical GRN models inferred from gene expression data alone. With genome-
wide and targeted data sets, we provide detailed functional validation of novel TFs
required for extreme oxidative stress and heat shock survival. Together, results pre-
sented in this study suggest that many TFs function under multiple conditions,
thereby revealing high interconnectivity within the GRN and identifying the specific
TFs required for communication between networks responding to disparate stres-
sors.

IMPORTANCE To ensure survival in the face of stress, microorganisms employ in-
ducible damage repair pathways regulated by extensive and complex gene net-
works. Many archaea, microorganisms of the third domain of life, persist under ex-
tremes of temperature, salinity, and pH and under other conditions. In order to
understand the cause-effect relationships between the dynamic function of the
stress network and ultimate physiological consequences, this study characterized the
physiological role of nearly one-third of all regulatory proteins known as transcrip-
tion factors (TFs) in an archaeal organism. Using a unique quantitative phenotyping
approach, we discovered functions for many novel TFs and revealed important sec-
ondary functions for known TFs. Surprisingly, many TFs are required for resisting
multiple stressors, suggesting cross-regulation of stress responses. Through extensive
validation experiments, we map the physiological roles of these novel TFs in stress
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response back to their position in the regulatory network wiring. This study ad-
vances understanding of the mechanisms underlying how microorganisms resist ex-
treme stress. Given the generality of the methods employed, we expect that this
study will enable future studies on how regulatory networks adjust cellular physiol-
ogy in a diversity of organisms.

KEYWORDS Archaea, functional ANOVA, phenomics, transcription factors

Free-living cells experience frequent stress from the extracellular environment. Tran-
scription factors (TFs) and their regulons of target genes comprise a gene regulatory

network (GRN), which functions to alter gene expression dynamically in response to
stressful and changing environments. Many environmental conditions are chemically
and/or physically inextricable (e.g., oxygen levels and salinity) (1), and different types of
stresses can cause similar types of cellular damage (2, 3). For example, both exposure
to excess metals and radiation can result in redox imbalance (4). Disparate stressors also
elicit similar gene expression programs (5). These observations have led to the hypoth-
esis that GRNs responding to each stressor are highly interconnected (6–8). However,
the specific mechanisms that underlie these connected responses remain unclear.

Microorganisms known as extremophiles thrive in environments at the limits of life,
representing model systems well suited for understanding how GRNs enable physio-
logical adjustment to strong environmental forces. One group of extremophiles, the
hypersaline-adapted archaea, colonize salt lakes where salt concentrations can reach
saturation. Fluctuations in temperature and oxygen level, intense radiation, and des-
iccation/rehydration cycles pose a constant challenge to macromolecular and cellular
integrity (9). To respond, archaea use a hybrid system of bacterial-like and eukaryotic-
like proteins to regulate transcription. The basal transcriptional machinery resembles
that of eukaryotes, including RNA polymerase (RNAP), TATA-binding proteins (TBPs),
and transcription factor IIB (TFIIB) homologs (10–12). In contrast, the regulatory proteins
are homologous to those found in bacteria, such as TFs containing a helix-turn-helix
(HTH) DNA binding domain (13). Many archaeal TFs directly sense environmental
changes, binding ligands or changing redox status to alter TF conformation and
TF-DNA binding (14).

In the genetically tractable hypersaline-adapted species Halobacterium salinarum,
GRN inference (7, 15) and subsequent validation experiments suggested that the GRN
is required for dynamic adjustment of gene expression in response to extreme and
interconnected stress regimes (16–19). Specifically, the integration of transcriptome
data in response to environmental and genetic perturbations (1, 7, 15, 17, 19–25), gene
functions (26, 27), and cis-regulatory motif predictions in the context of statistical
inference algorithms (28, 29) resulted in a genome-wide Environment and Gene
Regulatory Influence Network (EGRIN) model that predicted regulatory connections for
more than 70 TFs and their target genes (7, 15). More recently, similar GRN models have
been constructed for other species of archaea (30) and bacteria (31). These models are
highly predictive of gene expression in response to stress and enable generation of
novel hypotheses regarding the roles of TFs in stress response.

However, for organisms across the domains of life, it remains a central challenge to
decipher whether and how genetic and environmental perturbation to the GRN directly
impacts cellular phenotype and survival in ecologically relevant contexts (3). Systematic
“phenomics” approaches hold promise for understanding the roles of TFs and other
regulators in GRNs and how this role impacts cellular physiology (32–34); however,
relative to other systems biology methods such as transcriptomics and proteomics,
phenomics remains an underrepresented data source.

In response to these challenges, a library of 27 TF deletion mutants was generated
in H. salinarum. These mutants were assessed for growth under a variety of stresses
endemic to the salt flat environment. A novel nonparametric model was developed
using a Gaussian process framework to quantify these phenotypes. We used recently
developed statistical tests (35) and developed new tests to identify significant differ-
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ential growth between the trajectories of these TF knockouts relative to that of the
control strain. The results revealed that a surprising number of TFs are required for
optimal growth under multiple stress conditions, indicating a high level of intercon-
nectivity within the GRN. Clustering analysis of phenotype trajectories revealed that TFs
with related phenotypes function together, regulating each other and common sets of
genes in stress-specific subnetworks. Through further analysis of TF roles in gene
regulation, stress-related functions were validated for novel TFs. We detected strong
concordance of newly discovered TF functions with statistical predictions of TF gene
regulatory relationships from GRN models inferred from gene expression data alone.

RESULTS AND DISCUSSION
Identification of transcription factor candidates. To prioritize candidate TFs for

phenotypic characterization, genes encoding TFs were first detected in the Halobacte-
rium salinarum genome (27) using the Systems Biology Experimental Management
System database (SBEAMS) (36), where annotations were cross-referenced with other
databases (PFAM, COG [clusters of orthologous groups of proteins], and PSI-BLAST
[37–39]) (Fig. 1). Previous ab initio protein structure prediction results (26) and subse-
quent matches to the Protein Data Bank (PDB) were used to identify possible DNA
binding domains in proteins of unknown function. This pipeline resulted in a list of 130
putative TFs, which were included as priors in inference of the H. salinarum EGRIN
model (7, 15). To identify candidates of interest for further analysis here, TFs were more
stringently defined as those with strong homology (E value � 1 � 10�7) to a
sequence-specific DNA binding domain or structural fold experimentally characterized
in other bacterial or archaeal species (13, 26) (Fig. 1). This definition excluded 24
DNA-binding proteins with peripheral roles in transcription (e.g., helicases). Another 18
genes encoding previously published, well-characterized TFs, were also excluded (21,
40–42). Of the 88 remaining TFs, a final subset of 27 were selected for further study
based on transcriptional changes during fluctuations in a wide array of environmental
conditions (1, 7, 20, 23–25, 43) and functional predictions from EGRIN gene regulatory
network models (7, 15) (Fig. 1; see Table S1 in the supplemental material). The TFs in
the resultant collection are members of a variety of functional families and contain
diverse structural domains (Table S1). These include DNA binding domains known from
other archaea and bacteria (winged helix-turn-helix, ribbon-helix-helix) and domains
unique to halophilic archaea (e.g., HalX). Some TFs contain ligand binding domains
homologous to those of known function in bacteria, such as DtxR family iron-
dependent repressors. Other TFs possess domains of novel function specific to halo-
philes, such as the RosR C-terminal domain (16) (Table S1). Together, the results of these
bioinformatic analyses suggest that the panel of selected TFs is representative of the
global transcription regulatory landscape of H. salinarum.

Quantification of significant differential growth of TF knockout strains under
stress. (i) Experimental design and data. To determine the physiological function for
each TF and systematically compare these functions across TFs, knockout mutant
strains for each of the 27 selected TFs were grown under five conditions: standard
growth, low salinity, paraquat (PQ), hydrogen peroxide, and heat shock (see Materials
and Methods). The growth of these knockout mutant strains was compared to that of
the isogenic parent control strain, Δura3 strain, a uracil auxotroph used to generate
knockout mutants (44) (see Materials and Methods). Growth conditions were chosen
based on their relevance to the hypersaline habitat of H. salinarum. Knockout mutants
for 10 of these 27 TFs were constructed in previous studies, where the role of each TF
was assessed under a single stress condition (Table 1). These strains were included for
the following reasons: (i) as a control to validate our methods and (ii) to test possible
secondary functions for these previously studied regulators. Strains with deletion of the
genes encoding the remaining 17 TFs of interest were constructed in the current study
using established genetic methods for H. salinarum (see Materials and Methods) (44)
(Table S2). The genotypes of all 27 mutants, regardless of prior publication, were also
verified here (see Materials and Methods; Fig. S1 and Table S2). Growth of each
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knockout and parent control strain was measured under each of the five conditions
every 30 min for 48 h, resulting in 210,180 data points (raw data given in Table S3).

(ii) Development of a FANOVA model and test for differential growth of
knockout mutants under stress. Typically, microbial population growth is modeled
using parametric models, such as Gompertz regression (45). The effects of stress and

FIG 1 TF candidate selection pipeline. Genes encoding proteins with a putative DNA binding domain were
annotated using sequence databases PFAM (37) and PSI-BLAST (38), structural predictions (26), and protein
functions from COG (39). These annotations were stored in the Systems Biology Experiment and Analysis
Management System (SBEAMS) database (36), resulting in 130 putative TFs. Transcriptome analysis across
1,495 experimental conditions (43) and GRN network inference models (7, 15) were then used to generate
predictions regarding TF functions. Details of GRN predictions and criteria for selection of the final
collection of 27 TFs are given in Table S1 in the supplemental material. DBD, DNA binding domain.

TABLE 1 Strains used in this study with known phenotypes and functions, and types of evidence previously generated for each strain

Condition Strain(s) References
Knockout
growth

Gene
expression

TF-DNA
binding Metabolomics

Oxidative stress ΔrosR, ΔVNG0194H, Δhrg, ΔsirR, ΔasnC 16, 35, 50, 54 ✓ ✓ ✓
Nutrient acquisition ΔtrmB 17, 18, 48, 49 ✓ ✓ ✓ ✓
Manganese and iron

homeostasis
Δidr1, Δidr2, ΔsirR 19, 22 ✓ ✓ ✓

Copper overload ΔcopR 22, 54 ✓ ✓ ✓
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genetics on growth are then quantified by testing for statistically significant differences
in the estimated parameters for different conditions (46). However, we previously
showed that the impact of genetics and stress perturbations on growth are more
accurately captured with a nonparametric Gaussian process (GP) model (35). In contrast
to parametric models, GPs have the advantage of learning these relations directly from
the data and do not require explicit equations describing the effects of stress and
genetics on growth, which are typically unknown in the case of phenotypic discovery.
In this study, we again use GPs to model microbial population growth, now in the form
of functional analysis of variance (FANOVA) (47). In the FANOVA setting, microbial
population growth is divided into a linear combination of different experimental
variables: condition, genetic background, and the interaction between the two (see
Materials and Methods) (Fig. 2A). Additionally, FANOVA allows for the explicit compar-
ison of different effects in terms of significance, even if the shapes of those effects are
quite different. For these reasons, FANOVA is particularly well adapted to modeling and
comparing the effects of many different stress and genetic perturbations. This extends
our previous GP model (35) by including all data from multiple conditions and genetic
backgrounds into a single model, which allows for direct comparison of different effects
in a common framework.

Two metrics were used to assess the significance of differential growth based on our
FANOVA model of growth data. The first metric, change in the optical density (ODΔ)
(35), is a function representing the difference in growth levels between the mutant
strain [fm(x)] and parent strain [fp(x)] over the duration of the growth curve under a
specific condition (Fig. 2B and Fig. S2) as follows:

OD�(t) � fm(t) � fp(t) (1)

Where the ODΔ curve differs significantly from zero (based on a 95% credible
interval), the growth phenotype is considered significantly different from the parent
strain for that section of the growth curve. The second metric, ||OD�||, represents the
overall magnitude of the functional difference between parent and mutant strains
under a specific condition and is calculated based on ODΔ (Fig. 2C and Fig. S3):

||OD� || ���
t�t0

tn

[OD�(t)]2 (2)

Higher values of ||OD�|| indicate an overall larger deviation from parent strain
behavior, regardless of positive or negative growth phenotype, and were used as a rank
ordering of phenotype severity to prioritize TF mutants for further analysis.

(iii) FANOVA modeling of microbial population growth enables the discovery
of new TF knockout phenotypes. On the basis of ||OD�|| ranking, the ΔtrmB strain
exhibited the strongest growth impairment under standard conditions (Fig. 2A). This
result was expected based on previous characterization of TrmB as a global regulator
of nutrient metabolism (17, 18, 35, 48, 49). Also as expected from prior work, the ΔrosR
mutant with deletion of a key oxidative stress response TF was among the top-ranking
quartile of mutants under oxidative stress (16, 35, 50). Consistent with prior Gaussian
process model results, the ΔsirR strain exhibited a significant growth impairment under
peroxide stress (35); indeed, here the ΔsirR strain exhibited the top-ranking peroxide
phenotype of all mutants tested (Fig. 2C). The consistency of these results with those
of prior studies demonstrates the validity of the FANOVA model for recapitulating
known phenotypes.

Surprisingly, however, several novel mutant phenotypes were observed. For in-
stance, the ΔcspD1 mutant showed the strongest growth impairment relative to the
parent control strain under PQ stress, and the ΔcopR mutant exhibited the strongest
growth impairment under heat shock (Fig. 2A and B). In order to compare the number
of significant mutant phenotypes under each condition, a universal cutoff of ||OD�|| of
0.337 was chosen (see Materials and Methods). This cutoff allowed rank ordering of the
stress conditions themselves in terms of the strength of perturbation to physiology, as
measured by the number of significant mutant phenotypes. Peroxide treatment had
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FIG 2 FANOVA modeling and statistical ranking of TF knockout mutant growth phenotypes across five environmental conditions, standard growth conditions,
paraquat stress, peroxide, low salt, and heat shock. (A) Mutants with the largest difference in growth compared to the Δura3 control strain under each condition.
Raw data from growth trajectories for individual cultures under standard conditions (thin gray lines) were fit and compared with growth under stress conditions
(thin blue lines) using FANOVA (see Materials and Methods). Solid lines indicate the mean of the fit to all replicate trajectories, and shaded regions are the 95%
confidence interval of the fit. (B) Functional difference (ODΔ) of the TF knockout strain relative to the isogenic Δura3 parent strain. The mutants with the top
three scoring phenotypes according to ||OD�|| are shown. (C) Summary statistical metric ranking (||OD�||) for those mutants with strongly different growth
trajectories compared to that of the Δura3 strain (||OD�||� 0.337 across all conditions).

Darnell et al.

September/October 2017 Volume 2 Issue 5 e00032-17 msystems.asm.org 6

msystems.asm.org


the strongest effect, with 19 mutants exhibiting significant differences in growth
compared to the Δura3 strain (12 mutants grew more slowly than the Δura3 strain, and
7 mutants grew faster than the Δura3 strain [Fig. S2 and S3]). The next strongest effect
was low salt (11 mutants, 9 faster and 2 slower than the Δura3 strain), followed by PQ
(10 mutants, 2 faster and 8 slower than the Δura3 strain), heat shock and standard
conditions (3 mutants in each condition, all with significantly impaired growth pheno-
types [Fig. 2C]). We conclude that FANOVA analysis recapitulates known roles of TFs but
also suggests novel contributions of TFs to cell physiology.

Phenotype network analysis reveals extensive cross-regulation of stress re-
sponses by TFs. Many mutants exhibited significant differential growth phenotypes
under multiple conditions tested (Fig. 2). At the rank order ||OD�|| cutoff (Fig. 2C), 23
of the 27 mutants studied exhibited significant differential growth under at least one
condition (Fig. 3). Network analysis of these phenotypes across conditions enabled the
classification of the mutants into three categories. (i) Significant differential growth was
detected for 12 mutants relative to the Δura3 strain under two or more stress condi-

FIG 3 Phenotype network analysis reveals three major classes of TF mutants and extensive cross-regulation of stress
responses by TFs. Node and edge attributes are given in the key at the bottom of the figure. ODΔ numbers in the edge
color legend refer to the maximum (fast growth) or minimum (slow growth) value of the mean of the posterior prediction
from the FANOVA model across the entire growth time course. ||OD�||numbers for edge thickness refer to the median
value of the distribution from ||OD�|| boxplots (see Fig. 2C, Fig. S3, and Materials and Methods).
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tions. These TFs were considered to have “cross-stress” functions (Fig. 3). (ii) Significant
differential growth was detected for three mutants (ΔtrmB, ΔphoU, and ΔtroR mutants)
under both standard conditions and one or more stress conditions. These TFs were
considered to have “growth & stress” functions. (iii) Eight TFs were required for normal
growth under only one of the conditions tested here and therefore considered “stress-
specific” TFs. However, three of the stress-specific mutants also exhibited growth
defects under other stress conditions tested ad hoc in previous studies but not included
in the systematic phenomic testing here (e.g., ΔsirR, Δidr1, and Δidr2 mutants are
required for metal homeostasis [19, 22]), suggesting that some of these “stress-specific”
TFs might also be required for protection across multiple stressors.

Several mutants with strong growth impairments relative to the parent control
strain under one condition exhibited growth improvement under others. For example,
although the ΔtrmB mutant grew poorly under standard conditions, it showed signif-
icantly improved growth under PQ and osmotic stress conditions (maximum ODΔ of 0.5
and 1.0, respectively; Fig. 2A and 3). Similarly, the ΔrosR mutant exhibited substantially
improved growth under low osmolarity (maximum ODΔ of 0.8) but strong growth
defects under oxidative stress induced by PQ and peroxide. Deletion of the gene
encoding a third TF, CspD1, led to increased growth relative to the control strain under
standard conditions but impaired growth under oxidative stress (Fig. 2A and 3 and
Fig. S2). These observations suggest novel functions for these previously characterized
TFs. These opposing phenotypic patterns for individual TFs could result from direct
regulation of genes required for growth and/or stress resistance under these condi-
tions. For example, ribosome levels are directly related to growth rate across the tree
of life (51, 52), including archaea (25), and H. salinarum RosR directly regulates ribosome
biosynthesis genes (50). Alternatively, alteration in growth rate per se could change
cellular stress resistance properties; for example, slow growth in wild-type yeast cells is
associated with heat shock resistance (53). Together, the classes of TF mutants identi-
fied here suggest that a surprisingly high number of TFs are required for growth
homeostasis during exposure to multiple stressors, suggesting extensive network
interconnectivity.

The structure of the gene regulatory network corresponds strongly with TF
physiological functions. To gain insight into possible regulatory mechanisms under-
lying such phenotypes, we determined the relationship between growth trajectories by
clustering phenotypes according to the ODΔ metric (Fig. 4) and asked how correlated
phenotypes mapped to GRN topology. In particular, the ΔrosR mutant was previously
shown to regulate 20 other TFs, 7 of which were included in the strain collection
evaluated here (ΔarcR, ΔcspD2, Δhlx2, Δhrg, Δtrh4, ΔVNG0039H, and ΔVNG0194H
strains). Hierarchical clustering of ODΔ phenotypes across the five conditions revealed
that these mutants clustered closely together under oxidative stress, including PQ
(Fig. 4A) and peroxide conditions (Fig. 4B). Under PQ stress, correlation of the ODΔ

trajectories for these mutants with that of the ΔrosR mutant were significantly enriched

for strong positive correlations ��̂ � 0.4� relative to all other pairwise correlations
between the 27 mutants (P � 6.90 � 10�3 by the hypergeometric distribution test
[Fig. 4C]). Under peroxide stress, according to||OD�||, knockouts in genes encoding TFs
regulated by RosR were also significantly enriched for impaired growth relative to all
other mutants (P � 0.034 by the hypergeometric distribution test). Such significant
phenotype correlations were not observed under other conditions tested (Fig. 4C and
Fig. S4), suggesting that the interconnection between these TFs is coordinated specif-
ically under oxidative stress (50). Together, these results are consistent with the
hypothesis that TFs that regulate each other in GRN subnetworks controlling the
cellular response to a particular stress are predictive of TF knockout phenotypes and
vice versa.

Previous predictions of TF functions from computational GRN models specific to
oxidative stress for H. salinarum (15) were compared with phenotypic results obtained
here. Of the 27 knockouts studied, 15 were predicted by network analysis to play a role
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in gene regulation during oxidative stress (15). Of these 15, 14 TF knockouts showed
significantly altered growth relative to the Δura3 control in oxidative stress induced by
PQ, peroxide, or both (Fig. 2C, Fig. S3, and Table S1). This suggests that the GRN
computationally predicted from gene expression data has strong predictive power for
the roles of TFs in cell physiology.

Validation and characterization of novel TF functions. (i) CopR functions as a
regulator of both heat shock and copper overload responses. To support the
stress-specific novel functions for individual TFs discovered here, we performed vali-
dation experiments. First we tested the observation of secondary functions for the
previously characterized TF, CopR (Fig. 3). We detected significantly impaired growth of
the ΔcopR mutant relative to the Δura3 parent strain during heat shock (Fig. 2A). The
heat shock phenotype of the ΔcopR mutant was the top-ranking mutant under this
condition (Fig. 2C). These observations were surprising given that CopR (previously
called VNG1179C [22, 54]) was previously characterized as a repressor of P1-type
ATPases that export copper during overload (22). To conduct further functional vali-
dation of the role for CopR in response to elevated temperature, a wild-type copy of the
copR gene was expressed in trans on a plasmid in the ΔcopR deletion background,
which returned the growth of this strain to levels indistinguishable from that of the
Δura3 parent control (Fig. 5A). This complementation result indicates that the ΔcopR
heat shock growth defect was caused by loss of the copR gene alone and not by polar
or off-target secondary site genetic effects.

To detect potential gene targets of CopR regulation under heat shock, existing
transcriptomic and TF-DNA binding data sets were reanalyzed. In the wild-type H. sali-
narum strain exposed to heat shock, 247 genes were differentially expressed (55, 56). A
significant fraction of these heat-responsive genes were also differentially expressed in
the ΔcopR mutant grown under copper overload conditions (22) and/or bound by CopR
under optimum growth conditions (54) (63 of 247; significance by the hypergeometric
distribution test, P � 1.42 � 10�8; Fig. 5B and Fig. S5). Chaperones and amino acid
metabolic functional categories were significantly enriched among heat-induced and
CopR-repressed genes (Fig. 5B). In contrast, energy generation, translation, and tran-
scription functions were significantly enriched among heat-repressed and CopR-
induced genes (Fig. 5B). Of these 63 heat-responsive CopR-regulated genes, 6 over-
lapped with the list of 10 genes whose transcripts and proteins were most strongly
induced in response to heat shock (56) (hypergeometric test P � 5.0 � 10�5). These six
genes encoded proteins required for cellular repair following heat shock (chaperones
CctA and Hsp5) and protection from further damage (metalloprotein NirJ, ferritin DpsA,
and anaerobic metabolic genes ArcAC). Together, these CopR-regulated gene functions
are consistent with a cellular need to arrest growth to refold and regenerate degraded
proteins under elevated temperatures (57).

CopR regulation of gene expression described above was tested under standard and
copper overload conditions (22, 54). To validate whether CopR is also specifically
required for regulation during elevated temperature, gene expression was measured by
quantitative reverse transcription-PCR (qRT-PCR) in the ΔcopR strain immediately be-
fore and 30 min after a shift from 42°C to 54°C. cctA expression in the ΔcopR mutant
cells was 3- to 4-fold higher under standard conditions than in Δura3 parent control
cells and remained elevated upon heat shock (Fig. 5C). This indicates that CopR is
required for cctA repression under standard conditions and that relief of CopR repres-

FIG 4 TFs that regulate each other have similar ODΔ phenotype trajectories. (A and B) Heat maps depict
hierarchical clustering of ODΔ trajectories for the 27 TF knockout mutants under paraquat (PQ) (A) and
peroxide (B) conditions. TFs transcriptionally regulated by RosR are known (50) and indicated by red text.
Colors in the dendrogram represent different clusters. The color scale indicates the mean of the posterior
ODΔ distribution for each mutant across the growth time course (x axis). (C) Each of the seven mutants

regulated by RosR are statistically enriched for strongly correlated phenotypes (�̂� 0.4) with the ΔrosR
mutant under PQ and standard growth conditions relative to other conditions (red text). Colored squares
represent significant correlations (P � 0.001), and white squares represent nonsignificant correlations.
See the color scale to the right of the figure for correlation values.
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sion is necessary for cctA heat induction. In contrast, 7-fold induction of nirJ in the Δura3
strain was abrogated in the ΔcopR mutant, indicating that CopR is an activator of this
gene under heat shock (Fig. 5C). Taken together, these validation analyses suggest that
CopR functions both as a global regulator of gene expression under heat shock and as
a specific regulator of a copper efflux transporter during copper overload (22, 58). The
connection between heat shock and copper overload has not been established in
archaea; however, because both heat shock and copper overload can induce the
accumulation of oxidative radicals, the transcriptional responses to these common
types of cellular damage may be linked (4).

(ii) A novel oxidative stress response function for CspD1, a conserved cold
shock family protein. The ΔcspD1 strain exhibited the strongest growth defect of all

FIG 5 Phenotype validation: a novel heat shock function for the copper-responsive regulator CopR. (A) Slow growth under heat shock conditions in the ΔcopR
mutant (left graph) is complemented by expression of the copR gene in trans (right graph). (B) Cytoscape gene regulatory network depicting the significant
overlap between genes regulated by CopR in response to copper overload (CopR node at the top) and in wild-type cells in response to heat shock (heat node
at the bottom) (55) and copper (copper node on the left) (22). Node colors (representing expression levels in wild-type cells under heat shock) and edge line
types are indicated in the keys. Gray boxes behind groups of nodes represent arCOG functional categories (61). P values of enrichment were calculated by the
hypergeometric distribution test. Genes of unknown function are not shown here for clarity but are given in Fig. S5. (C) Quantitative RT-PCR gene expression
of cctA and nirJ genes in the knockout strain compared to the Δura3 control strain. The levels of expression before heat shock (0=) and 30 min after induction
of heat shock (30=) are shown. Expression is normalized relative to a control gene whose expression does not change during heat shock (see Materials and
Methods). Error bars represent standard errors of the means (SEM) of three biological replicate cultures, each with three technical replicate trials.
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27 mutants under oxidative stress induced by PQ and the sixth strongest phenotype
under peroxide (Fig. 2C and 3). The CspD1 sequence showed strong similarity to the
cold shock family of proteins (E value of 2.30 � 10�21; Table S1). Cold shock domain
(CSD) proteins are broadly conserved from bacteria to humans but serve diverse
functions, including RNA protection, inhibition of DNA replication during oxidative
stress, and transcriptional regulation under various stress conditions (59, 60). Thus, we
further investigated the role of CspD1 in response to multiple stresses. We found that,
although the cspD1 gene was significantly repressed in response to high temperature
(Fig. 5B) (56), the growth of the ΔcspD1 mutant strain was indistinguishable from that
of the Δura3 control strain under heat and cold shock conditions (Fig. S6). In addition,
cspD1 expression was induced under copper overload conditions in a CopR-dependent
manner (Fig. 5B) (22); however, the ΔcspD1 mutant did not exhibit impaired growth
under copper overload conditions (22). These data suggest either that CspD1 does not
play a role in the temperature shock and copper overload responses or that CspD1 is
functionally redundant under these conditions with other, as yet unknown, TFs.

To further test the role of CspD1 in oxidative stress, we expressed the cspD1 gene
in trans on a plasmid in the ΔcspD1 knockout background. The oxidative stress
phenotype was complemented in this strain, confirming that deletion of cspD1 was
responsible for the observed phenotypes (Fig. 6A). In previously published transcrip-
tomic data, the expression of the cspD1 gene was strongly correlated with fluctuations

in oxygen levels (1), induced 30 min after an increase in oxygen (cross-correlation �̂ �

0.730; Fig. 6B). Such expression follows a pattern similar to that observed for rosR, which
encodes a known global regulator of the oxidative stress response (16, 50). In the
ΔcspD1 strain exposed to fluctuating oxygen levels over time (see Materials and
Methods), the transcription of 132 of the 660 known oxygen-responsive genes in
H. salinarum (1) exhibited significantly altered expression (Fig. 6C and Table S4). Of
these 132 genes, 89 are induced in a CspD1-dependent manner during the transition
from anaerobic to aerobic conditions. According to arCOG (clusters of orthologous
genes for archaea) ontology (61), these aerobic genes are significantly enriched for
functions crucial for cell growth (e.g., translation; P � 5.68 � 10�20 by the hypergeo-
metric distribution test; Table 2). In contrast, CspD1 is required to repress 43 genes
under anaerobic conditions (Fig. 6C and Table 2). Of the 132 genes requiring CspD1 for
appropriate expression under oxygen fluctuation, 106 are also differentially expressed
under oxidative stress induced by PQ (Fig. 6D) (15).

The EGRIN model based on gene expression under a wide array of conditions
accurately predicted a significant fraction of the 132 CspD1-dependent genes (42%;
P � 6.33 � 10�32 by the hypergeometric distribution test) (7) (Fig. 6E). These EGRIN-
predicted genes were also significantly enriched for functions involved in ribosome
biogenesis (P � 1.8 � 10�26). Similarly, EGRIN predictions based solely on gene
expression under oxidative stress also predicted that CspD1 regulates a significant
fraction of the 132 CspD1-dependent genes (P � 3.83 � 10�15) (15) (Fig. 6F). Together,
these results provide validation of GRN functional predictions and phenotype analysis,
implicating CspD1 in the regulation of functions critical to growth under oxidative
stress and fluctuating oxygen conditions.

Conclusions and perspectives. Data and analyses presented here enabled the
discovery of physiological roles for 17 previously uncharacterized TFs in the archaeal
species H. salinarum. New physiological roles for previously characterized TFs were also
revealed (e.g., CspD1 and CopR). This demonstrates the power of our combined
high-throughput growth analysis and quantitative growth modeling for discovering
unknown gene functions. The functions of a large fraction of genes and pathways
remain unknown even in well-characterized model microorganisms. Recently, other
high-throughput, genome-wide forward and reverse genetic approaches have made
great strides in gene functional discovery, such as population genomics in Saccharo-
myces cerevisiae (62), clustered regularly interspaced short palindromic repeat interfer-
ence (CRISPRi) in Bacillus subtilis (63), and genome-wide knockout collections in Esch-
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erichia coli (33, 64), as well as nontraditional model organisms such as methanogenic
archaea (65). Previously we showed that Gaussian process (GP) methods for phenotype
discovery are generally applicable across diverse species (35). Additionally, GPs have
been shown to be useful in other domains of biological research, such as modeling
genome-wide expression data (66–69). Here we extend the use of GP methods in the
context of functional ANOVA to compare the growth of a large collection of strains
(Fig. 2), demonstrating the promise of these methods for genome-wide functional
discovery across a variety of species.

Here we directly test the predictions of computationally inferred, global GRN models
such as EGRIN (7, 15). Because these and other statistical GRN inference models were
inferred directly from gene expression data, the direct impact of the GRN activity on
cellular physiology remained unclear. Here we show that models such as EGRIN predict
not only gene expression but also the phenotypic impact of such expression (Fig. 2 and
6). In previous work, we also demonstrated the accuracy of EGRIN in predicting TF
functions. For example, hypotheses generated from EGRIN predictions enabled the
discovery of RosR, an archaeon-specific, novel master regulator of oxidative stress
response (7, 15, 16, 50). Similarly, EGRIN model predictions regarding the cross-
regulation of phosphate metabolism and methanogenesis pathways were validated by
gene knockout studies in methanogens (30). Here we also observed extensive cross-
regulation: each TF was important for resistance of multiple stressors, and multiple TFs
played a role in surviving each stressor (Fig. 3). Such cross-regulation of gene expres-
sion has also been observed in bacteria as a means to integrate environmental cues
that cooccur (e.g., heat and singlet oxygen [8, 70]) or that induce functionally related
response pathways (e.g., metal homeostasis and oxidative stress [71]). Together with
these previous studies, the broader investigation of 27 TF knockout phenotypes
reported here demonstrates that GRN models such as EGRIN are effective tools for
generating accurate hypotheses regarding TF functions. The combination of GRN
modeling and phenomic validation reveals the direct impact of a complex web of
regulatory interactions on cell physiology (Fig. 4 and 5). This work supports an emerg-
ing general principle that cross-regulation between TFs within the GRN enables a
coordinated response to a variety of environmental stimuli.

MATERIALS AND METHODS
Culturing and construction of transcription factor mutants. Halobacterium salinarum NRC-1

(ATCC 700922) was used as the wild-type strain background. Constructed mutants are derivatives of the
Δura3 strain (44), and the Δura3 strain was used as the isogenic parent strain as a control in all assays.
H. salinarum was grown routinely in complex medium (CM) (250 g/liter NaCl, 20 g/liter MgSO4 · 7H2O,

FIG 6 Phenotype validation: a novel oxidative stress function for the cold shock family protein CspD1. (A) Slow growth under
oxidative stress conditions in the ΔcspD1 mutant (left graph) is complemented by expression of the cspD1 gene in trans (right
graph). (B) Line plot depicting the expression of the cspD1 gene (left axis) during fluctuations in oxygen concentrations (gray line,
right axis). cspD1 expression is compared to that of the gene encoding known oxidative stress regulator RosR (left axis). (C) Line
plot depicting the expression of genes requiring CspD1 for appropriate dynamic expression in response to oxygen. Each line
represents the mean expression value of the groups of genes indicated in the legend. Expression data and annotations for
individual genes are given in Table S4. WT, wild type. (D) Expression profiles for 106 of the 132 CspD1-dependent genes
differentially expressed under PQ conditions in wild-type cells (15). Thin lines represent the expression of individual genes. Thick
lines show the mean of induced or repressed genes. (E) Overlap between EGRIN predictions for CspD1 target gene regulatory
influences (7) and differentially expressed genes (DEG) in the ΔcspD1 background. (F) Similar to panel E except that predictions
under oxidative stress conditions are shown (15).

TABLE 2 Functions significantly enriched among CspD1 target genes under fluctuating
oxygen conditions

Condition Category P valuea

Aerobic Coenzyme transport and metabolism 2.48 � 10�4

Energy production and conversion 6.33 � 10�3

Translation; ribosomal structure and biogenesis 5.68 � 10�20

Anaerobic Amino acid transport and metabolism 1.81 � 10�3

aP values result from the hypergeometric distribution test in arCOG categories.
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3 g/liter sodium citrate, 2 g/liter KCl, 10 g/liter peptone) supplemented with 50 �g/ml uracil to
complement the uracil auxotrophy of the Δura3 parent background. E. coli strain DH5	 used for routine
cloning was grown in LB containing carbenicillin (50 �g/ml) to maintain plasmids. Mutants were
constructed as previously reported using the standard double-crossover counterselection method (44).
Briefly, approximately 500 bp of flanking regions up- and downstream of the gene of interest were
integrated into the StuI restriction site of plasmid pNBKO7 by blunt-end ligation (details of all plasmid
constructs listed in Table S2 in the supplemental material). The resultant constructs were transformed
into the Δura3 strain and selected on CM plates containing mevinolin (10 �g/ml). The resulting
merodiploid strains were then plated on CM plates containing 5-fluoroorotic acid (250 �g/ml) and uracil
to remove the integrated plasmid, yielding unmarked TF deletion strains. Complementation strains were
constructed using the pMTF-cmyc vector backbone (72) by isothermal Gibson assembly (73) and
routinely maintained in liquid culture in CM supplemented with mevinolin (1 �g/ml). All strains were
verified as described in reference 19. Genotype results are given in Fig. S1, and primer, strain, and plasmid
details are given in Table S2.

Growth curve assays. Cultures were pregrown in standard conditions, which were defined as
growth in CM containing uracil at 42°C with shaking (225 rpm) under ambient light until early stationary
phase, measured by an optical density at 600 nm (OD600) � 2.0 (74). Each strain was then subcultured
to an OD600 � 0.05 in 200 �l CM containing uracil under continuous shaking at 42°C in a Bioscreen C
analysis system (Growth Curves USA, Piscataway, NJ) set to measure OD600 every 30 min for the duration
of the 48-h experiment. Each strain was tested in at least biological quadruplicate samples, each with
three technical replicates. For heat stress experiments, the temperature was shifted to 54°C at 16 h, and
the elevated temperature was maintained for the remainder of the experiment. For oxidative stress
experiments, hydrogen peroxide (5 mM) or paraquat (PQ) (0.333 mM) was added at the beginning of
growth. For low-salinity experiments, strains were grown in CM medium containing 2.9 M NaCl. For cold
growth curves (Fig. S6), cultures were pregrown in standard conditions until stationary phase, then
subcultured to a starting OD600 of 0.1 into 5 ml of CM containing uracil and incubated at 15°C with
shaking (225 rpm). Sample aliquots were taken every 24 h for 5 days to measure OD600.

FANOVA growth curve model framework. Growth data were then modeled using functional
analysis of variance (FANOVA) (75), using a Bayesian approach (47). FANOVA models data as a linear
combination of functional effects, where the number of effects is determined by the experiment. For
example, in the case of two experimental perturbations, observations at time point t for effects i and j
are modeled as:

yi,j(t) � �(t) 
 	i(t) 
 �j(t) 
 (	 �)i,j(t) 
 �i,j(t) (3)

where �(t) is a mean function, 	i(t) and �j(t) are the effect functions, (	�)i,j is the interaction between
them, and �i,j(t) is observation noise. Functional effects and interactions can be added and removed from
the model as needed for different experimental designs. In order to make the latent effect functions
identifiable, they are constrained to sum to zero:

�
i�1

n	

	i(t) � �
j � 1

n�

�j(t) � �
i � 1

n	

(	 �)i,j(t) � �
j � 1

n�

(	 �)i,j(t) � 0 ∀ t (4)

The mean function �(t) is given a GP prior directly:

�(t) ~ GP(0, �(t1, t2)) (5)

In order to satisfy the identifiability constraints (equation 4), effect functions are parameterized using
a set of contrast functions. For example, 	i(t) is defined as a linear combination of the contrast functions:

	i(t) � �
k � 1

n	� 1

cik � 	k
*(t) � ci

T	*(t) (6)

where

	*(t) � �	1(t), 	2(t), � , 	n	� 1(t)� (7)

Gaussian process (GP) priors were assigned to the latent functions as described in reference 47. GPs
place a distribution on a continuous function, any finite number of observations of which are distributed
as multivariate normal (76). Each GP prior is parameterized by a mean function m(x) and a covariance
function, (x1,x2). All prior mean functions in this analysis were set identically to zero, as is standard.
Covariance functions were modeled using radial basis functions (RBFs):

�x1, x2� � �2 � exp��|| x1 � x2||2

� 	 (8)

where �2 and � are hyperparameters defining the variance and length scale of the GP, respectively. The
variance �2 determines the magnitude of variability for a given GP prior distribution, with higher
variances leading to more-variable functions. The length scale parameter controls the rate of decay of
covariance between two time points, and larger length scales place higher probability on smoother
(slower changing) functions.

All contrast functions for a given effect are defined by a shared GP prior:

	i
*(t) ~ GP(0, 	) (9)

where 1 � i � n	 � 1. Kernel hyperparameters were given noninformative priors. Posterior quantities were
obtained by Markov chain Monte Carlo (MCMC) simulation. Sampling of the contrast functions was accom-
plished using Gibbs sample updates (47). Kernel hyperparameters were sampled via slice sampling (77).
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Determination of significant growth phenotypes. All raw growth data (Table S3) were first
normalized to the log2 scale. The first 4 h of growth (less than one generation) were removed because
technical and instrument variability is often observed during this time frame. Growth data were then
grouped by strain and experimental design (standard growth, 0.333 mM PQ, 2.9 M NaCl, or heat shock),
referred to as the condition. Growth data corresponding to the same condition were scaled by a fixed
value so the mean of the condition at the earliest time point was equal to zero. The growth data for
H. salinarum TF mutants under various stress conditions was modeled with GP FANOVA as described
below.

(i) Standard, oxidative stress, and osmotic stress conditions. Growth data were modeled with two
effects corresponding to strain and experimental design. The strain effect, 	i, varied from i � 1 to i � 28,
where i � 1 corresponded to the Δura3 parent strain and i � 1 corresponded to one of the 27 mutant
strains. The experimental design effect, �j (1 � j � 4), represented one of four experimental designs:
standard growth (j � 1), low-osmolarity stress (j � 2), PQ (j � 3), or peroxide stress (j � 4). Interactions
between the two effects were also modeled to determine the strain-specific responses to each of the
stress effects. The full GP FANOVA model for the analysis was then the same as in equation 3 and was
estimated using the GP FANOVA model as described above. Variation between phenotypes arising from
separate batches of experiments were controlled by adding a specific batch function, �(t).

(ii) Heat shock. Growth data for heat shock conditions was modeled using a GP FANOVA modeling
the individual effect of strain, 	i. This model has the form

yi(t) � �(t) 
 	i(t) 
 �i(t) (10)

All metrics for the heat shock condition (ODΔ and||OD�||, described below) were computed starting
at the 16-h time point, the beginning of the shock. Additionally, the difference between the Δura3 parent
and mutant strain was subtracted from all metrics, which removes any confounding differential growth
that occurred between the two strains prior to the shock initiation.

(iii) �copR complementation. Complementation was modeled as the combined effect of strain (	i,
Δura3 or ΔcopR), empty vector (�), and presence or absence of the copR complementation on the
plasmid (�). The FANOVA model for this condition is then

yi,j,k(t) � �(t) 
 	i(t) 
 �j(t) 
 �k(t) 
 �i,j,k(t) (11)

There are two states for each effect, and we are interested in estimating the fixed effect of the copR
complementation only under the heat stress condition starting at 16 h, so no interactions between
condition and strain were needed in this model.

(iv) �cspD1 complementation. Complementation of ΔcspD1 in H2O2 was modeled with an exten-
sion of the model for ΔcopR in heat shock (equation 11). Functions for strain (	), condition (�), and their
interaction (	,�) are included, as in equation 3. In addition, a function is included to model the presence
or absence of the empty vector �, as well as the presence or absence of ΔcspD1 on the plasmid (�). In
this case, we are specifically interested in the complementation provided by the plasmid-expressed
cspD1 to the ΔcspD1 strain in the H2O2 condition, so we modeled the interaction of this strain with the
condition (�,�):

yi,j,k,l � � 
 	i 
 �j 
 �k 
 �l 
 (	 �)i,j 
 (��)j,l (12)

(v) Significance test. Two metrics were used to assess the significance of the difference between the
growth of each mutant versus the parent strain under each condition.

The first metric, ODΔ, was first computed for each strain under standard conditions as

OD�(t) � yi,1(t) � y1,1(t) (13)

OD�(t) � 	i(t) � 	1(t) 
 (	 �)i,1(t) � (	 �)1,1(t) (14)

where i represents the strain of interest. This represents the difference between the parent strain and TF
mutant strain under standard conditions. When comparing mutant and parent strain under nonstandard
conditions, the function described in equation 14 is used as the control of the difference between the
parent and mutant strains. This leads to the formulation of ODΔ under stress conditions as

OD�(t) � [yi,j(t) � y1,j(t)] � [yi,1(t) � y1,1(t)] (15)

OD�(t) � (	 �)i,j(t) � (	 �)1,j(t) � (	 �)i,1(t) 
 (	 �)1,1(t) (16)

which is the difference between strain i and the parent strain under condition j, normalized by the
difference between the two strains under standard conditions. In this formulation, if the difference
between the parent strain and mutant strain is the same under both standard conditions and one of the
stress conditions, ODΔ will be close to zero under the stress condition for that strain. Both formulations
of ODΔ in equation 14 and equation 16 use effect functions estimated by the GP FANOVA model and can
therefore be calculated from the model posterior samples. The posterior distribution of ODΔ for each
strain under a given condition was used to determine where a mutant strain and the Δura3 parent were
significantly different as a function of time. Ninety-five percent credible intervals for ODΔ were con-
structed using the posterior samples of the GP FANOVA model, and any time point where zero was not
included in the interval was considered significantly different from the parent strain.

To obtain an overall test to rank order the significance of the phenotype under a specific condition,
a second metric was derived from ODΔ representing the overall magnitude of growth difference between
the parent and mutant strains. This metric, ||OD�||, was calculated as in equation 2 which represents the
magnitude of ODΔ over the entire growth curve. Larger values of ||OD�|| indicate growth phenotypes
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that deviate most from that of the parent strain. This metric can be used to directly compare different
mutant strains for the overall significance of their growth phenotype.

Phenotype networks (Fig. 3) were constructed and visualized using Cytoscape (78). The ||OD�|| cutoff
of 0.337 was used to enable comparison across mutants and across conditions. This cutoff was chosen
to (i) exclude mutants whose maximum or minimum ODΔ value was inside the 95% confidence interval
and (ii) exclude mutants outside the top 10% of ||OD�|| values under standard conditions (Fig. 2).

Transcript quantitation with qRT-PCR. Samples were harvested at mid-log phase (OD600 � 0.4) and
30 min after the shift to 54°C. RNA was purified using an Absolutely RNA Miniprep kit (Agilent
Technologies, Santa Clara, CA), and 500 ng was tested for DNA contamination by PCR with Taq DNA
polymerase (Thermo Scientific, Grand Island, NY) and for integrity with a 2100 bioanalyzer (Agilent
Technologies, Santa Clara, CA). Quantitative reverse transcription-PCR (qRT-PCR) primers (Integrated
DNA Technologies, Coralville, IA) are listed in Table S2. The iTaq universal SYBR green one-step kit
(Bio-Rad, Hercules, CA) was used in 20-�l reaction mixtures according to the manufacturer’s
instructions. Quantitative analysis was performed in a Bio-Rad real-time thermal cycler (Bio-Rad,
Hercules, CA). Expression relative to the VNG1756G reference locus (18) was calculated using the
ΔΔCT method (18, 79).

CspD1 validation experiments. (i) Transcriptomic analysis of the �cspD1 mutant exposed to
different oxygen levels. Although these data were published previously as part of a larger gene
regulatory network study (43), here we report the details of the experiment and specific analysis of the
effect of the ΔcspD1 deletion on gene expression. Briefly, the ΔcspD1 mutant and Δura3 strain were
grown to mid-logarithmic phase in batch mode in a New Brunswick BioFlo100 modular benchtop
fermentor (New Brunswick Scientific) in CM medium as described in reference 1. At mid-log phase,
oxygen sparging and agitation were stopped to induce anoxia. The cultures were incubated anaerobi-
cally overnight, then oxygen was sparged, and RNA was collected at time points immediately prior to the
addition of oxygen and 5, 10, 20, 45, and 180 min afterwards. RNA extraction, microarray hybridization,
scanning, and preprocessing were conducted as described in reference 1. Data were analyzed using a
modified ANOVA in the Statistical Analysis of Microarrays (SAM) package in the TM4 freeware program
(80) to determine the final list of genes differentially expressed in response to oxygen and cspD1 deletion
(Table S4).

(ii) Analysis of PQ transcriptomic data. Wild-type H. salinarum NRC-1 cultures in mid-logarithmic
phase were exposed to 4 mM PQ, and transcriptomics by microarrays were monitored immediately prior
to PQ exposure and 30, 60, 120, and 240 min afterward. These data were previously described in
reference 15. In this study, we performed hierarchical clustering of these data in the TM4 program to
determine which genes were induced and which genes were repressed in response to PQ. These
PQ-responsive gene sets were then filtered to include only the 132 genes differentially expressed in the
ΔcspD1 mutant (Fig. 6C) and plotted in the R environment base package (Fig. 6D) (81).

(iii) Comparison of CspD1 target genes from EGRIN predictions with transcriptomic validation
data. EGRIN predictions of CspD1-regulated genes were filtered in Cytoscape (78). For predictions from
reference 7, cluster residuals of �0.4 and CspD1 target gene edge weights of �0.2 were considered
significant; for predictions from reference 15, residuals of �0.4 and edge weight of �0.1 were considered
significant. These criteria are consistent with those used in the original EGRIN publications. The signifi-
cance of the overlap between genes in resultant clusters and genes differentially expressed in the ΔcspD1
mutant (Table S4) was determined using the hypergeometric distribution.

General statistical methods used for analysis of validation experiments. ODΔ phenotype corre-
lations and their significance described in the legend to Fig. 4 were calculated in R using the rcorr()
function in the Hmisc package (82) and visualized using the corrplot package (83). Significance of overlap
between disparate gene lists was calculated by the hypergeometric distribution test. For all gene lists,
enrichment in arCOG functional categories (61) relative to the genomic background was calculated by
the hypergeometric distribution test as described previously (84, 85).

Data availability. Raw and normalized microarray data and metadata from the ΔcspD1 mutant
exposed to oxygen are freely accessible at the NCBI Gene Expression Omnibus (GEO) database (86)
(https://www.ncbi.nlm.nih.gov/geo/) under accession numbers GSE97933 and GPL22925. Data for PQ
gene expression are accessible in the GEO database via accession GSE17515. Phenotyping data gener-
ated in this study are available in the supplemental material (Table S3). The code repository for the
FANOVA model is freely available at https://github.com/ptonner/hsalinarum_tf_phenotype. Code for
determining enrichment in arCOG functional groups is freely available at https://github.com/amyschmid/
histone_arCOG (85).
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