
December 2017 | Volume 4 | Article 2271

Review
published: 08 December 2017

doi: 10.3389/fmed.2017.00227

Frontiers in Medicine | www.frontiersin.org

Edited by: 
Stefano La Rosa,  

Centre Hospitalier Universitaire 
Vaudois (CHUV), Switzerland

Reviewed by: 
Cristina Riva,  

University of Insubria, Italy  
Maria Pia Foschini,  

Università di Bologna, Italy

*Correspondence:
Edi Brogi  

brogie@mskcc.org

Specialty section: 
This article was submitted  

to Pathology,  
a section of the journal  

Frontiers in Medicine

Received: 20 October 2017
Accepted: 28 November 2017
Published: 08 December 2017

Citation: 
Turashvili G and Brogi E (2017) Tumor 

Heterogeneity in Breast Cancer.  
Front. Med. 4:227.  

doi: 10.3389/fmed.2017.00227

Tumor Heterogeneity in Breast 
Cancer
Gulisa Turashvili and Edi Brogi*

Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States

Breast cancer is a heterogeneous disease and differs greatly among different patients 
(intertumor heterogeneity) and even within each individual tumor (intratumor heteroge-
neity). Clinical and morphologic intertumor heterogeneity is reflected by staging systems 
and histopathologic classification of breast cancer. Heterogeneity in the expression 
of established prognostic and predictive biomarkers, hormone receptors, and human 
epidermal growth factor receptor 2 oncoprotein is the basis for targeted treatment. 
Molecular classifications are indicators of genetic tumor heterogeneity, which is probed 
with multigene assays and can lead to improved stratification into low- and high-risk 
groups for personalized therapy. Intratumor heterogeneity occurs at the morphologic, 
genomic, transcriptomic, and proteomic levels, creating diagnostic and therapeutic chal-
lenges. Understanding the molecular and cellular mechanisms of tumor heterogeneity 
that are relevant to the development of treatment resistance is a major area of research. 
Despite the improved knowledge of the complex genetic and phenotypic features under-
pinning tumor heterogeneity, there has been only limited advancement in diagnostic, 
prognostic, or predictive strategies for breast cancer. The current guidelines for reporting 
of biomarkers aim to maximize patient eligibility for targeted therapy, but do not take 
into account intratumor heterogeneity. The molecular classification of breast cancer is 
not implemented in routine clinical practice. Additional studies and in-depth analysis are 
required to understand the clinical significance of rapidly accumulating data. This review 
highlights inter- and intratumor heterogeneity of breast carcinoma with special emphasis 
on pathologic findings, and provides insights into the clinical significance of molecular 
and cellular mechanisms of heterogeneity.
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iNTRODUCTiON

Tumor heterogeneity is one of the hallmarks of malignancy. Intertumor heterogeneity is observed 
in breast carcinomas from different individuals. Intratumor heterogeneity is due to the presence 
of heterogeneous cell populations within an individual tumor (1). Early reports defined tumor 
heterogeneity based on the identification of intratumor cell populations with different character-
istics, including tumorigenicity, treatment resistance, and metastatic potential (2–4). Although the 
heterogeneity of breast cancer at the cellular level was recognized already in the nineteenth century 
(5), its clinical relevance was first established about 30 years ago, with the introduction of estrogen 
receptor (ER) testing (6). Variation in the expression of ER among different tumors or distinct cell 
populations within a single tumor was thought to account for differences in clinical behavior and 
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treatment response (6). Currently, understanding the molecular 
and cellular mechanisms of tumor heterogeneity that are relevant 
to the diagnosis, prognosis, and therapy of breast cancer is subject 
of intense research.

iNTeRTUMOR HeTeROGeNeiTY

Clinical and Histopathologic 
Heterogeneity
Intertumor heterogeneity of breast cancer is best illustrated by 
clinical staging of the disease based on physical examination and 
imaging findings. The TNM staging system by the American Joint 
Committee on Cancer (AJCC)/Union for International Cancer 
Control (UICC) incorporates Tumor size, regional lymph Node 
status, and distant Metastases (7). Standard breast cancer treat-
ment is based on the tumor characteristics, including clinical 
stage, histopathologic features, and biomarker profile, and is 
affected by the patient’s age, menopausal status, and general health 
(8). The aforementioned traditional clinicopathologic variables 
have a profound impact on survival, and account for most of 
the differences in clinical outcome among patients with breast  
cancer (9).

The morphologic heterogeneity of breast carcinoma constitutes 
the basis for the histopathologic classification of breast cancer. 
Invasive ductal carcinoma (IDC) of no special type or not other-
wise specified (NOS) is the most common (40–75%) histologic 
type of invasive breast cancer. Albeit common, IDC NOS is not at 
all well defined, and the 2012 World Health Organization (WHO) 
classification defines IDC NOS by exclusion, as “the heterogene-
ous group of tumors that fail to exhibit sufficient characteristics 
to achieve classification as a specific histological type” (9). In 
addition to IDC NOS, the WHO classification includes 21 special 
subtypes with distinctive morphologic features, of which invasive 
lobular carcinoma (ILC) is the most frequent (5–15%) (9). The 
other special subtypes of breast carcinoma are rare and differ 
significantly with regard to prognosis and response to adjuvant 
treatment (10–13). Tubular, mucinous, and papillary carcinomas 
usually have excellent clinical outcome compared to IDC and ILC 
(14, 15) and are not always treated with chemotherapy (16). By 
contrast, metaplastic carcinoma and poorly differentiated IDC 
NOS have a significantly worse outcome and are routinely treated 
with systemic chemotherapy (9).

The grade of breast carcinoma also highlights its tumor het-
erogeneity. Grade is assessed according to a 3-tier (low, interme-
diate, high) system based on the evaluation of three morphologic 
parameters, namely the percentage of the tumor arranged in glands 
and tubular structures, the degree of nuclear pleomorphism, and 
the mitotic rate (17). The grade of breast carcinoma is a robust 
prognostic factor, and is incorporated in clinical decision-making 
tools, such as the Nottingham Prognostic Index and Adjuvant! 
Online (9, 18). Breast cancers of different grades also show dif-
ferent profiles by proteomic, genomic and transcriptomic analysis 
(19–21). In multivariate models that include gene signatures, 
grade remains an independent prognostic factor for ER-positive 
tumors (22). Grade 1 and 3 breast carcinomas likely represent 
two very different diseases, and molecular data indicate that the 

progression from low- to high-grade carcinoma is exceedingly 
rare (9).

Biomarker Heterogeneity
The expression of ER, progesterone receptor (PR), and human 
epidermal growth factor receptor 2 (HER2) is assessed routinely 
in all invasive breast carcinomas by immunohistochemistry 
(IHC) according to the recommendations by American Society 
of Clinical Oncology/College of American Pathologist (ASCO/
CAP) (23, 24). The aforementioned biomarkers are established 
prognostic and predictive factors and their expression in breast 
carcinomas is critical in guiding patient treatment (8, 25).

Estrogen receptor and PR are expressed in approximately 80% 
and 60–70% of breast carcinomas, respectively (26, 27). Although 
ER-positive tumors co-express PR (ER+/PR+) in 70–80% of 
cases, some breast carcinomas are ER+/PR− or, rarely, ER−/
PR+. The response to hormonal treatment also varies, with the 
best response (approximate rate of 60%) in ER+/PR+ tumors and 
lower rates in ER+/PR− and ER−/PR+ tumors (9).

The HER2 oncoprotein is overexpressed in approximately 
15–20% of primary breast carcinoma as detected by IHC staining 
using the approved reagents, testing protocols, and scoring algo-
rithm. Positive (3+) HER2 staining highly correlates with gene 
amplification (9); depending on the definition of HER2-equivocal 
(2+) staining, approximately 10–20% of HER2-equivocal breast 
carcinomas are found to be HER2-amplified by in situ hybridiza-
tion (ISH). HER2-positive breast carcinomas have the most unfa-
vorable prognosis of all types of invasive breast cancers, but they 
show high rate of response to anti-HER2 targeted therapy (e.g., 
trastuzumab, lapatinib) (28), as documented by the pathologic 
complete response post-neoadjuvant treatment in about 50–60% 
of patients with HER2-positive tumors (29).

Breast carcinomas that do not express ER, PR, and HER2, usu-
ally referred to as “triple-negative” breast carcinomas, constitute 
an extremely heterogeneous group histologically, genetically, 
prognostically as well as with regard to treatment response. 
Emerging data suggest that nuclear expression of the androgen 
receptor (AR) can be detected in 12–55% of triple-negative (ER-/
PR-/HER2-) breast cancer (30–32). The prognostic significance 
of AR expression in triple-negative carcinomas is controversial, 
but it is associated with improved survival in other tumor 
subtypes (33). Ongoing clinical trials evaluating AR antagonists 
(such as bicalutamide and enzalutamide) in AR+ (defined as 
nuclear staining in ≥10% of tumor cells by IHC) triple-negative 
breast carcinomas show promising results (31, 34). AR positivity 
is associated with lower Ki-67 proliferation index, suggesting that 
AR may promote a stem-like or mesenchymal phenotype in this 
subset of tumors (32). No standardized assays or guidelines for 
evaluating the AR expression in breast carcinoma are available 
at present.

Hundreds of other biomarkers have been investigated in breast 
cancer for potential diagnostic, prognostic, and therapeutic impli-
cations. Functional classification of these biomarkers includes 
growth and proliferation (Ki-67, survivin, NGAL), invasion and 
metastasis (p53, MMP-9, SK1, DcR3, COX2, EZH2, microRNAs 
miR-105, and miR126), epithelial–mesenchymal transition 
(EMT) (WNT5A/B, Pea3), immune response (PD-L1), therapy 

http://www.frontiersin.org/Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Medicine/archive


3

Turashvili and Brogi Breast Cancer Heterogeneity

Frontiers in Medicine | www.frontiersin.org December 2017 | Volume 4 | Article 227

resistance (HER2Δ16, pSTS3, KLK10), survival (miR-574-3p, 
miR-660-5p, PIWIL3, PIWIL4), and many others (35). The mag-
nitude of the effect of tumor heterogeneity on biomarker expres-
sion or its clinical significance remains uncertain. A systematic 
approach and standardized quantitative reporting of biomarkers 
is required to better guide therapeutic decisions.

Genetic Heterogeneity
Gene expression analysis classifies breast cancer into four major 
intrinsic molecular subtypes with prognostic and therapy impli-
cations: luminal A, luminal B, HER2-enriched, and basal-like 
(36). The luminal A and luminal B subtypes exemplify tumor 
heterogeneity within ER-positive breast carcinomas and have 
better survival than HER2-enriched and basal-like subtypes. 
Both luminal subtypes express ER, but the luminal B tumors are 
characterized by increased expression of proliferation-associated 
genes and have worse prognosis than luminal A tumors (37). 
The HER2-enriched subtype is characterized by increased 
expression of HER2 and proliferation genes and includes ER-/
PR-/HER2+ and ER+/PR+/HER2+ tumors. The basal-like 
subtype is enriched for genes expressed in basal epithelial cells, 
and is triple-negative in 70% of cases (36). Additional subtypes 
include claudin-low tumors with stem-like signature (38) and 
AR-positive molecular apocrine tumors (39). Meta-analysis of 
gene expression studies suggests that the prognostic impact of 
different signatures is related to the proliferation-associated genes 
(40). Although gene expression profiles can predict response to 
chemotherapy and recurrence risk (41), classification of breast 
carcinoma based on gene expression is hindered by clinical and 
molecular heterogeneity. Patients with breast carcinoma of the 
same molecular subtype and receiving identical treatments may 
have different clinical outcomes and/or acquire resistance to ther-
apy (42). Frequent (>10%) somatic mutations in TP53, PIK3CA, 
and GATA3 have been documented in breast carcinomas (43). 
More recent studies have yielded other molecular subgroups, 
including a molecular classification based on integrated genomic 
and transcriptomic profiling of 2,000 breast tumors yielding 10 
novel subtypes of breast cancer with distinct clinical outcomes 
(44, 45). Additional studies are needed to evaluate the practical 
clinical relevance and treatment implications of driver-based 
breast cancer classifications.

RNA-based multigene expression assays have been developed 
to estimate recurrence risk in ER-positive and/or lymph node-
negative patients. According to the ASCO clinical practice 
guidelines (8), some multigene expression assays show sufficient 
evidence for clinical utility. They include the 21-gene assay 
Oncotype DX (46), the 11-gene EndoPredict (47), the 50-gene 
assay Prosigna based on the prediction analysis of microarray 50 
model (48–50), and the 7-gene based Breast Cancer Index (BCI) 
(51). Prosigna, BCI, and EndoPredict predict late recurrence and 
subclassify tumors into molecular subtypes (52). Oncotype Dx 
is a reverse transcriptase polymerase chain reaction-based assay, 
and quantifies the likelihood of early distant recurrence and 
chemotherapy benefit for patients with lymph node-negative, 
hormone receptor-positive, HER2-negative breast cancer (46, 
53). The risk of recurrence is expressed as a numerical value 

between 0 and 100, referred to as recurrence score (RS). Tumors 
are stratified into low risk (RS  ≤  17), intermediate risk (RS 
18–30), and high risk (RS ≥ 31) categories (46). In patients with 
tumors of RS ≤ 17, the benefit of chemotherapy is quantified as 
too small (2%) to outweigh its possible side effects. By contrast, 
patients with RS ≥ 31 greatly benefit from chemotherapy due to 
their increased (28%) recurrence risk (54). The clinical manage-
ment of intermediate risk patients is more varied and includes 
endocrine therapy with or without chemotherapy, depending 
on the patient’s clinicopathologic characteristics and individual 
preference. Two ongoing clinical trials aim to further stratify the 
benefit of chemotherapy in patients with intermediate RS who are 
clinically node-negative (TailorX) or node-positive (RxSponder) 
at presentation.

Due to the costs, time and technical expertise required for 
molecular assays, IHC stains have been evaluated as possible 
alternative methods for indirect assessment of molecular subtype 
that can be used in most laboratories. The IHC staining panel 
comprising ER, PR, HER2, Ki-67, epidermal growth factor 
receptor (EGFR) and cytokeratin 5/6 (CK5/6) can identify the 
molecular subtypes of breast cancer with satisfactory and repro-
ducible accuracy: (1) Luminal A (ER+/PR±/HER2-/Ki-67−); 
(2) Luminal B (ER+/PR±/HER2−/Ki-67+; with Ki-67-positivity 
defined as ≥14%); (3) Luminal/HER2+ (HER2+/ER+/PR ±); (4) 
HER2+ (HER2+/ER−/PR−); and (5) Basal, including core basal 
(ER−/PR−/HER2−/EGFR+ or CK5/6+), and five-marker nega-
tive (ER−/PR−/HER2−/EGFR−/CK5/6−) subgroups (55, 56). 
Considering that not all triple-negative tumors are basal-like and 
vice versa, and that ER-positive luminal tumors are highly diverse, 
genetic heterogeneity of breast cancer is likely far more complex 
than our current understanding of this multidimensional issue 
or the existing molecular classifications. Development of assays 
integrating multigene tests with mutational or genomic profiles is 
required to better elucidate the interplay and clinical significance 
of prognostic and predictive molecular drivers in ER-positive 
breast cancer (52).

iNTRATUMOR HeTeROGeNeiTY

Histopathologic Heterogeneity
Morphologic intratumor heterogeneity can be appreciated as 
variability in different areas of tumor (spatial heterogeneity), or as 
tumor progression over time (temporal heterogeneity) (1). Spatial 
heterogeneity is readily appreciated in daily surgical pathology 
practice within a single tumor, but can also be detected between 
primary breast carcinoma and synchronous lymph node metasta-
ses, and even between synchronous metastases from different sites. 
Breast carcinomas with truly mixed morphology consist of two 
morphologically different components (e.g., IDC and mucinous 
carcinoma), but other tumors exhibit ambiguous morphologic 
features (e.g., IDC with lobular features) or contain foci of dis-
tinct differentiation (e.g., IDC with focal squamous/basaloid or 
spindle cell differentiation) (Figure 1). Morphologically distinct 
areas within individual tumors can be clonal with specific genetic 
aberrations (57–59). Temporal heterogeneity includes evolution 
of an invasive tumor over time or in response to therapy (60, 61), 
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FiGURe 1 | Histopathologic heterogeneity of breast cancer: invasive mammary carcinoma with mixed morphology (A), composed of basaloid areas with osteoid 
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development of asynchronous metastatic disease (62, 63) and 
progression from in situ to invasive carcinoma (64, 65).

Although current clinical management of breast cancer is 
guided by histologic, IHC, and molecular characteristics of the 
primary tumor, treatment efficacy may be affected by altered 
morphologic and IHC features in metastases (1, 66). Discordance 
rates include 16–33.6% for ER, 32–40% for PR, and 10–15.7% 
for HER2 (67–69). Furthermore, women with discordant 
ER-staining results between primary and metastatic breast 
carcinoma had a 48% increased risk of death in one study (69). 
Variability in biomarker expression between primary and meta-
static tumors can be due to treatment (70) or may occur in the 
absence of therapeutic intervention (67, 69, 71, 72). Significant 
variations have also been reported in genomic heterogeneity (62, 
73), single nucleotide or copy number variants (63, 66, 74, 75), 
and chromosomal rearrangements and insertion/deletions (75). 
Due to insufficient evidence that changing treatment based on 
the altered biomarker status affects patient outcome, the current 
practice guidelines only recommend biopsying and retesting ER/
PR/HER2 on accessible metastases if clinically indicated (76).

Biomarker Heterogeneity
Expression of biomarkers can be highly variable within an 
individual tumor (Figure 2) causing interpretation problems and 
discordant results in small biopsies. ER/PR staining variations 
within a single tumor have long been recognized (77, 78). The 
proportion of ER/PR-expressing tumor cells in individual tumors 

varies from 1 to 100%, and expression levels directly correlate 
with response to endocrine therapy (26, 27). However, even 
tumors with very low levels (1% of tumor cells) may respond, 
justifying the use of the 1% cutoff for ER/PR-positivity by the 
ASCO/CAP guidelines (23). Nevertheless, this approach does not 
consider intratumor heterogeneity, accounting for limited clini-
cal significance of classifying tumors with unequal distribution of 
ER-expressing cells as ER-positive (52).

Human epidermal growth factor receptor 2 (HER2) IHC 
staining and gene amplification can be highly heterogeneous 
(78–80) and affect disease-free survival (81). Discrepant HER2 
IHC results ranges from 1 to >50% (79, 82, 83), while the rate 
of gene amplification heterogeneity is 5–30% (84). By IHC, 
HER2-positive tumors show complete, intense, circumferential 
membrane staining in 10–100% of tumor cells (3+ staining). 
Some tumors exhibit incomplete and/or weak-to-moderate 
circumferential membrane staining in >10% of cells or complete, 
intense, circumferential membrane staining in ≤10% of cells (2+ 
staining) by IHC but gene amplification by ISH (24). Some cases 
have protein overexpression without gene amplification, ampli-
fication without protein overexpression, or marked intratumor 
heterogeneity. Although the ASCO/CAP guidelines acknowledge 
heterogeneous amplification and recommend reporting separate 
areas (84), detecting gene amplification in one area is sufficient 
to consider a tumor HER2-amplified. This approach maximizes 
patient eligibility for targeted therapy without considering clini-
cal implications of intratumor heterogeneity (52).
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growth factor receptor 2 (D). Magnification: 200× (A–D); hematoxylin-eosin staining (A,C) and immunohistochemistry (B,D).
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Other biomarkers with heterogeneous expression include 
EGFR (85), p53 (78, 85), c-myc (82), and proliferation markers, 
including Ki-67 (78, 85, 86), cyclin-D1 (82), and PCNA (87). 
Ki-67 is a non-histone nuclear protein expressed in all phases of 
the cell cycle except G0. It has been shown to have a prognostic 
and predictive value in both ER-positive and ER-negative breast 
carcinomas (88–90). However, expression levels of Ki-67 can be 
notoriously higher at the tumor periphery with variable staining 
throughout the tumor in the form of hot spots (91). Furthermore, 
intratumor heterogeneity of Ki-67 expression can occur in breast 
carcinomas of various histologic subtypes and grades (86). 
Several scoring systems have been suggested for the assessment 
of Ki-67 staining, including evaluating the hot spots alone, cal-
culating the average score including hot spots, or even avoiding 
them altogether (91). In contrast to primary tumors, lymph node 
metastases have been reported to have a homogeneous distribu-
tion of Ki-67 expression. Moreover, metastatic tumor cells were 
highly proliferative and associated with Ki-67 levels in the high-
est expression hot spots in primary tumors. This may reflect the 
temporal heterogeneity through clonal expansion of the primary 
tumor growth fraction with metastatic potential (92).

It is unclear whether intratumor heterogeneity represents a 
true biologic phenomenon or a technical artifact due to poor fixa-
tion and/or processing (78, 93). Nonetheless, extensive sampling 
and IHC testing with adequate negative and positive controls are 
always prudent.

Circulating Tumor Cells (CTCs)
Circulating tumor cells are cancer cells that detach from a 
primary tumor and circulate in the bloodstream during cancer 
progression (94). CTCs have been reported in 26% of metastatic 
breast tumors (95). CTC count is an independent predictor of 
poor survival, treatment resistance, and early recurrence in some 
studies (96–104). However, practical application of CTC-based 
assays as “liquid biopsies” is limited by significant molecular 
and functional heterogeneity of CTCs (105–107), including 
variability at the protein (HER2, ER, Ki-67) (76, 108–114) and 
gene (PIK3CA) levels (76, 108–114), and EMT (115, 116). During 
the process of EMT, which is thought to precede the develop-
ment of lymphovascular invasion and metastasis, the tumor cells 
lose epithelial characteristics, such as cell polarity, cell-to-cell 
adhesion, and expression of epithelial markers (EpCAM), and 
acquire mesenchymal properties including motility and inva-
siveness (115, 116). The presence of EMT in CTCs indicates a 
poor prognosis (117). Discordant HER2-expression in CTCs in 
particularly relevant (118–121), and clinical trials (DETECT, 
TREAT-CTC) are underway to evaluate treatment options based 
on the HER2 status of CTCs in metastatic breast cancer (122, 
123). Heterogeneity in CTCs is thought to represent one of the 
mechanisms of resistance to endocrine therapy (1). Nonetheless, 
due to insufficient clinical evidence, the ASCO guidelines do not 
recommend changing therapy solely on the basis of CTC counts 
for monitoring treatment response (76).
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Genetic Heterogeneity
Breast cancer shows considerable intratumor heterogeneity with 
regard to chromosomal and genomic alterations (44, 124–130) 
which affect many processes and functions, such as signaling 
pathways, antitumor immunity, cell senescence, migration and 
metastasis, angiogenesis, treatment response, and metabolic 
pathways (52). Different cell clones can either segregate in differ-
ent areas of the tumor or scatter and intermingle within the same 
area (131). Complexity of intratumor genetic heterogeneity is 
best exemplified by a study of 100 tumors which identified driver 
mutations in >40 cancer genes, including AKT2, ARID1B, CASP8, 
CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and 
TBX3, and 73 combinations of mutated genes (129). Intratumor 
genetic heterogeneity can be characterized by bulk sequencing 
and single-cell or single-molecule sequencing (132). Bulk tumor 
sequencing cannot determine the cellular origin of molecular 
changes, location within tumors or the degree of heterogeneity, 
while single-cell sequencing cannot provide information on the 
remaining cell population, limiting their clinical use in clinical 
practice (52). An autopsy study comparing the molecular altera-
tions in multiple synchronous metastases of breast carcinoma 
documented molecular evolution and clone selection of tumor 
cells in response to targeted treatment, and highlighted the chal-
lenges to targeted treatment posed by the complex molecular 
heterogeneity of metastatic disease (133).

Non-Genetic (epigenetic) Heterogeneity
Epigenetic heterogeneity is defined as modifications in gene 
expression without DNA sequence changes (52, 134, 135). In 
breast cancer, epigenetic silencing through histone modification 
or DNA methylation can affect tumor suppressor genes including 
p16INK4A (136) and RASSF1A (137), and ER/PR/HER2 (138). 
Transient phenotypic variants of cells can also arise due to sto-
chastic changes in the biochemical processes within cells (135), 
which might involve changes in chromatin states or mRNAs (139) 
and affect sensitivity to therapy (139). The clinical significance of 
non-genetic heterogeneity remains to be determined.

FOUR MeCHANiSMS OF BReAST 
CANCeR HeTeROGeNeiTY

Differentiation State of the Cell-Of-Origin
Each mammary cell type has a specific molecular profile (140, 
141). Tumor phenotype is determined by the combination of 
this differentiation state and the tumor-initiating genetic event. 
Distinct differentiation states of human mammary epithelial cells 
grown in cell cultures lead to different tumor subtypes in mouse 
xenografts (142, 143), e.g., EpCAM+ cells form epithelial tumors 
with variable ER-positivity, while CD10+ cells are precursors of 
metaplastic carcinoma (144). Multiple phenotypes can arise from 
one cell-of-origin depending on the initiating genetic event, e.g., 
HER2-expression in luminal cells forms luminal tumors, while 
BRCA1/2 leads to basal differentiation (145, 146). Furthermore, 
expression of the same oncogene (e.g., PIK3CA) in luminal 
cells can lead to different tumor types (147), while BRCA2/
TP53 depletion results in IDC and metaplastic carcinoma in 

luminal cells, but myoepithelial carcinoma in basal cells (141). 
Nevertheless, the final tumor phenotype does not always reflect 
the cell-of-origin (141).

Cell Plasticity
The equilibrium of cell states within tumors is maintained by 
dynamic bidirectional cell conversions between “cancer stem 
cells” (CSCs) and non-CSCs (148). CSCs self-renew and form 
more stem cells, differentiated cells, and tumor cells (149), while 
differentiated tumor cells can dedifferentiate (150). Cell plasticity 
may involve EMT and PIK3CA-expression (147, 151, 152).

Genetic evolution of Cancer
Tumorigenesis is a multi-step evolutionary process driven by 
Darwinian selection of the fittest cells and genetic instability (149, 
153). Although most tumors arise from a single cell due to the 
initiating genetic event (“driver mutation”), cancer cells acquire 
additional aberrations during tumor evolution and, thus, each 
tumor contains multiple subclones harboring “passenger muta-
tions” (132). Cell plasticity and genetic evolution may overlap 
as CSCs evolve and change in frequency due to clonal evolution 
during tumor progression (149).

Tumor Microenvironment
Tumor stroma contains fibroblasts, blood vessels, and immunocompe-
tent cells. Interactions between this non-cancerous microenvironment 
and tumor cells can contribute to carcinogenesis (154), exemplified 
by decreased sensitivity of tumor cells to growth inhibitors (155) and 
suppressed tumor growth by microvasculature (156).

Clinical implications
Despite our improved understanding of complex phenotypic 
and genetic aspects of tumor heterogeneity, no significant 
clinical progress has been made with regards to incorporating this 
knowledge into effective diagnostic, prognostic, and therapeutic 
strategies for breast cancer (52). Patients are managed based on 
the ER/PR/HER2 status of the primary tumor, and metastatic 
sites may not always biopsied for histologic confirmation or bio-
marker retesting (68). Since “actionable” mutations in the initial 
tumor may no longer be responsible for tumor progression, it 
is essential to identify the dominant clones driving metastatic 
disease and treatment resistance (157, 158). Ideally, intratumor 
heterogeneity should be assessed by sequencing technologies 
at diagnosis for each patient, followed by monitoring of clonal 
dynamics during disease progression and treatment. This will 
allow for the identification of genetic changes driving resistance 
as well as therapy adjustments (1, 141, 159). Potential strategies to 
overcome treatment resistance include targeting driver mutations 
and deleterious passenger mutations, and modulating the tumor 
microenvironment and immunotherapy (93). Further well-
designed studies are required to elucidate the clinical validity of 
rapidly accumulating data.
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