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SUMMARY

Energy burden directly influences households’ health and safety. Amid a growing
literature on energy, poverty and gender remains relatively understudied. We
evaluate socioeconomic, geographic, and health factors as multidimensions of
concentrated disadvantage that magnify energy burden in the United States
over time.We show that the energy burden ismore pronounced in disadvantaged
counties with larger elderly, impoverished, disabled people, and racialized popu-
lations where people do not have health insurance. Neighborhoods with house-
holds headed by women of color (especially Black women) are more likely to
face a high energy burden, which worsened during the COVID-19 pandemic.
Although energy costs are often regarded as an individual responsibility, these
findings illustrate the feminization of energy poverty and indicate the need for
an intersectional and interdisciplinary framework in devising energy policy
directed to households with the most severe energy burden.

INTRODUCTION

Energy poverty magnifies the material, health, educational, and social stressors of poverty and creates bar-

riers for participation in society (Bouzarovski, 2018). Research on energy burden, which is a measure of en-

ergy poverty that describes the percentage of household income spent on utility expenditure, such as bills

for electricity, gas, and water, shows compounding negative effects on the mental and physical health of

vulnerable populations (Hernández, 2013; Mayer and Smith, 2019) that exacerbate pervasive social inequal-

ities, especially during the COVID-19 pandemic (Castán Broto and Kirshner, 2020; Chen et al., 2020, 2021;

Graff and Carley, 2020; Memmott et al., 2021). Several factors contribute to the high energy burden; how-

ever, even after controlling for household size, age, heating source, and local weather, high electricity con-

sumption remains a key component (U.S. Department of Energy Office of Energy Efficiency and Renewable

Energy, 2018). In addition, in the United States, low-income, Black/African American, Hispanic/Latino,

multifamily, and renting households, on an average, consume less electricity than their counterparts, yet

have higher energy use when normalized by housing quality and efficiency (Reames, 2016).

Although these disparities are geographically specific, neither national or state averages nor cross-

sectional survey analyses (i.e., non-longitudinal studies) can demonstrate the particular and long-term ef-

fects of energy burden in vulnerable households. There are significant regional and local variations (i.e.,

county-level) in the energy burden that low-income households (LIHs; defined as earning less than 80%

of the Area Median Income) face; for example, 38% of LIHs in southeast states suffer an energy burden

of 6% or higher, compared to 29% of LIHs in other regions of the United States. Further, LIHs across the

United States. spend up to three times more of their income on utility bills than higher-income households

(Drehobl et al., 2020). More seriously, energy burden follows a pattern sociologists have described within

the framework of concentrated disadvantage, whereby low-income areas, and especially communities of

color, are characterized by intersecting and compounding socioeconomic disparities, such as high levels

of households headed by a single parent, rentership, and disability (Sampson et al., 2008). With the recent

growth in studies of energy insecurity, this article aims to situate energy as it relates to social stressors to

understand changes in energy burden in the United States over time while also accounting for the effects of

the COVID-19 pandemic. Echoing recent studies that point to the feminization of energy poverty outside of

the United States (Casabonne et al., 2019; Nguyen and Su, 2021; Petrova and Simcock, 2019), our results

indicate the need for an intersectional account of the magnified effects of gender, racial, and income
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disparities in energy burden (Crenshaw, 1989). This analysis recognizes that neither gender nor race is

reducible to class and calls for greater attention, as several key studies have already evidenced, to the spe-

cific social and historical patterns that reproduce gender and racial inequalities in energy (Luke, 2021; Pet-

rova and Simcock, 2019; Reames, 2016).

The extant literature provides important contributions to understand the combination of spatial and so-

cial dimensions of energy poverty (Gouveia et al., 2019; Mashhoodi et al., 2019; Robinson et al., 2019;

Walker et al., 2012), although analyses of the intersections of geography, race, and gender have been

more limited. This literature also contains limitations that arise in part from scant data on energy use

among vulnerable populations in the United States. First, nationally representative data such as the Res-

idential Energy Consumption Survey (RECS) does not provide state or county-level geographical identi-

fiers or detailed demographic information. Second, the widely used American Community Survey (ACS)

did not capture the most updated energy-specific expenditures (e.g., electricity, natural gas) in 2019 or

during the pandemic. Third, recent efforts to use survey data to fill these gaps rely on limited sample

observations over time (Memmott et al., 2021). Finally, limited research has been devoted to local geog-

raphies as a social context that may influence energy burden and insecurity. To address these shortcom-

ings, this study examines the relationship between concentrated disadvantage in socioeconomic, race/

ethnicity, gender, and energy burden across a range of spatial and temporal scales from 2014–2018 and

during the COVID-19 pandemic in 2020.

Conceptualizing energy burden and concentrated disadvantage

This study analyzed the five-year average energy burden of the U.S. low-income households between 2014–

2018 and 2020 and calculated the annual energy burden from the monthly average at the county and state

levels. The data are from Low-income Energy Affordability Data (LEAD) tool by the U.S. Department of

Energy and the Energy Information Administration (EIA) (U.S. Department of Energy Office of Energy Effi-

ciency and Renewable Energy, 2021).

We bring these data into conversation with sociological literature on concentrated disadvantage, which is

guided by the understanding that spatial relationships that are determined through interrelated and inter-

dependent political, economic, and social relations define the everyday lived experience of communities

(Massey and Denton, 1993; Sampson et al., 2008). The concentrated disadvantage framework is used to

explain the intensification of inequalities in ways that systematically produce less favorable outcomes for

individuals or groups within specific locations. Recent scholarship has combined concentrated disadvan-

tage with issues of environmental justice to analyze the negative health effects associated with lead and

ambient environmental pollution (Liévanos, 2019; Mennis et al., 2016; Winter and Sampson, 2017). We

contend that this framework can also be applied to the concentrated and uneven spatial distribution of

high energy burden.

Energy burden is in part linked to historic patterns of racial discrimination in the lending and other racist

housing policies, as well as racial disparities in poverty and accumulated wealth (Lewis et al., 2020). This

study accounts for electricity price, location, and demographic indicators to substantiate that energy

burden is not only a result of higher rates of an individual or household poverty among racialized and ethnic

groups but also because of the high rates of residential racial segregation experienced by people of color,

particularly in predominately Black communities. The concentrated disadvantage neither been used to

investigate energy burden despite growing attention to the racial, class, and geographic disparities in en-

ergy burden in the United States (Bednar and Reames, 2020; Drehobl et al., 2020) nor has been used to

investigate energy burden and account for the interactions between gender, racial, and economic factors.

These disparities, alongside inequality in access to healthcare, have also shaped differences in COVID-19

exposure and death. In this study, we are less focused on the direct effects of COVID-19 on energy burden,

which other analyses have expertly examined (Chen et al., 2021, p. 19; Graff and Carley, 2020; Memmott

et al., 2021), and are instead interested in trends in energy burden over time and interconnected factors

influencing energy burden. More importantly, this study expands prior uses of the concentrated disadvan-

tage framework that focus on limited variables, namely the share of people in poverty, unemployed, under

the age of 18, who receive public assistance, and who live in female-headed households, as well as the

racial/ethnic composition of neighborhoods (Life Course Metrics Project, 2013). Here, we explore ten so-

cioeconomic and health variables (see Table 3), as well as the geographic differences between rural and

urban settings.
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RESULTS AND DISCUSSION

Energy burden shows a strong local-level pattern

Average energy burden in 2020 and the five-year average of 2014–2018, across state and county levels

show that, in 2020, approximately half of LIHs in 24 states had an energy burden greater than 10%,

with the highest percentage of LIHs in Mississippi (13.48%), followed by 13.02% in Maine and 12.97%

in Alabama (Table 1). The energy burden patterns are similar between 2014–2018 and 2020, yet there

is a noticeable monthly difference (Figure 1). Overall, the energy burden is most severe during the winter

and summer months. However, our comparison finds that people in 2020 had a relatively lower energy

burden during January, February, March, October, and November compared to 2014–2018. Most stark is

the nearly 2% decrease in energy burden in January 2020 compared to January 2014–2018. Between May

and July of 2020, the energy burden rose relative to the 2014–2018 period, which may be because of

stay-at-home orders during the COVID-19 pandemic (Figure 1, also see Figure S3) (Chen et al., 2021).

At the state level, residents in Alaska noticeably contributed a significantly higher share of their income

to energy in the first four months of the year in both 2014–2018 and 2020, as shown in Figure 2 (See Fig-

ure S1 for 2014–2018).

Our analysis at the county level indicates spatial heterogeneity or local variation in energy burden across

the country is more significant than the differences observed at the state level. For example, in 2020, the

energy burden ranges from 6.04% to 13.48% at the state level compared to 2.93%–30.45% at the county

level. At the county level, Quitman County, Georgia, has the highest monthly energy burden of 30.45%,

virtually the same as the 2014–2018 energy burden (30.00%). In this part of Georgia, the energy burden

has not improved over time. This more granular analysis points to potential aggregation effects at the state

level that may obscure understanding of energy burden and analysis at more local levels. Therefore, finer-

scale analysis provides a more nuanced and accurate snapshot.

Table 1. Comparison of energy burden by county and state between 2020 and 2014–2018

County - state

Energy

burden

2020

(%)

Energy

burden

2014-8

(%)

Energy

burden

difference

(%)

Expenditure

2014-8 ($)

Expenditure

2020 ($)

Expenditure

difference ($)

Quitman GA 30.45 30 0.45 403.42 409.5 6.09

Hyde NC 28.15 29 �0.85 437.92 425.04 �12.87

Buffalo SD 26.64 26 0.64 451.42 462.58 11.16

Lake MI 26.29 25 1.29 407.08 428.11 21.02

Carter MT 25 24 1 472.75 492.51 19.76

Harding NM 22.77 21 1.77 341.67 370.47 28.8

Catron NM 22.72 21 1.72 359.58 389.12 29.53

Greene AL 22.49 23 �0.51 254 248.42 �5.58

Danville City VA 21.68 22 �0.32 344.75 339.72 �5.03

McCone MT 21.64 21 0.64 452.17 465.88 13.72

Bullock AL 21.56 22 �0.44 227.58 223.06 �4.52

Franklin FL 21.39 20 1.39 308.83 330.26 21.43

Clare MI 21.18 20 1.18 344.5 364.8 20.3

Treasure MT 20.95 20 0.95 463.25 485.29 22.04

Powder River MT 20.89 20 0.89 431.17 450.31 19.15

Alcona MI 20.85 20 0.85 342.67 357.29 14.62

Edwards TX 20.68 20 0.68 341.75 353.31 11.56

Stewart GA 20.41 20 0.41 236 240.84 4.84

Holmes MS 20.35 21 �0.65 233.08 225.91 �7.18

Jackson SD 20.23 20 0.23 322.08 325.77 3.68

Crawford MI 20.19 19 1.19 338.33 359.51 21.17

This Table lists those counties with an energy burden of at least 20% across the United States in 2020.
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At the regional level, energy burden rose across the Mountain West, including Nevada, Utah, NewMexico,

Arizona, Idaho, Montana, and Wyoming; parts of the Midwest, including Michigan and Wisconsin; and

some outlier states, including West Virginia, Oklahoma, Delaware, and Florida, as depicted in Figure 4.

For many of these states, there have been more record-setting temperatures and increasingly volatile

weather events (e.g., droughts and wildfires) that could contribute to both higher utility bills (resulting

from heating and cooling costs) and a diminished ability to pay unexpected bills. Conversely, we observe

a few cold spots or clusters of decreased energy burden in parts of Vermont, North Carolina, Illinois, Ken-

tucky, Mississippi, and Alabama, which corroborates the visual analysis of the map of energy burden be-

tween 2014–2018 and 2020 in Figure 3.

While examining specific states, we found that Delaware has the largest increase in monthly energy burden

(1.61% or an additional $37.53 per month). In addition, there are six states that have at least a 0.5% relative

increase in their energy burden between 2014–2018 and 2020, which also increased annual energy costs in

2020, including Arizona (1.03%; $203.84), New Mexico (0.81%; $158.51), Michigan (0.57%; $131.92), Hawaii

(0.55%; $179.35), Nevada (0.55%; $146.08), and Florida (0.51%; $109.00). However, analysis at the county

level shows notable local incidents where a higher energy burden was witnessed: twelve counties’ energy

burden increased over 1%, ranging from a $225.96 to $354.36 increase in yearly utility costs.

Local effects of concentrated disadvantage and energy burden

We observed the compounding effects of social factors on energy burden by testing for an expanded set of

variables that have been used to describe conditions of concentrated disadvantage. Our first step in this

analysis focused on differences in energy expenditure (i.e., the number of energy bills) and energy burden

in rural and urban areas. There is a notable difference in the amount of money allocated to utility bills be-

tween urban (n = 1,321) and rural (n = 1,821) counties across the country (Table 2). Rural LIHs spent 25.2%

Figure 1. Comparison of monthly energy burdens (%/month) for the five-year average of 2014–2018 and 2020

Figure 2. Average energy burdens by state from January to December 2020

Darker red colors indicate a higher energy burden, whereas darker blue colors indicate a lower energy burden.
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more on monthly utilities (additional $38.37/month, $460.44/year), compared to their urban counterparts

between 2014 and 2018. This disparity grew marginally larger in 2020, as rural LIHs spent 25.4% more on

utilities (an additional $39.59/month, $475.08/year) than urban LIHs. Analysis of energy burden shows a

similar pattern: rural areas have an average monthly burden of 10% or more, which is higher than urban

areas (Table 2).

Our second analysis on the concentrated disadvantage shows the potential impacts of socioeconomic and

health factors on energy burden. Our estimatedmodels include ten independent variables: the percentage

of (1) non-white people: PerMinorit, (2) people receiving public assistance via social welfare and social in-

surance programs: PerSSI, (3) people who are disabled people: PerDisable, (4) people over age 65:

PerAge65, (5) people under age 18: PerAge17, (6) people with household incomes at or below 200% of

the Federal Poverty Level (FPL): PerPoverty, (7) people without insurance: PerNoInsur, (8) female-headed

households: PerFemHead, (9) people with COVID-19 in 2020: PercCase20, (10) people who died because

of COVID-19 in 2020: PercDeat20, and (11) dummy variables for each state, excluding North Dakota, to es-

timate our dependent variable, energy burden. North Dakota was excluded to avoid the dummy trap, as it

is the state with the energy burden closest (10.28%) to the average national energy burden (10.30%). As

opposed to traditional OLS models, we also explicitly included spatially-lagged variables that relate the

values at a given location to those in surrounding and nearby locations, which can reflect how geography

may mediate energy burden and capture the observed spatial dependence. In effect, we can also capture

site and situational effects of concentrated disadvantage and energy burden.

Results of our spatial regression model with a spatially-autocorrelated error term and spatially-lagged in-

dependent and dependent variables find all of the explanatory variables, excluding PerSSI, PerFemHead,

PercAge17, PercCase20, and PercDeat20, to be statistically significant at p < 0.05. All else were equal; a 1%

increase in the population at or below 200% of FPL correlates to a 0.149% increase in energy burden. A 1%

increase in the following factors also leads to corresponding changes in energy burden: without health in-

surance (0.055% increase), who are racial minorities (0.013%), who are disabled people (0.114%), and who

are at least the age of 65 (0.241%). The age of 65 or over appears to be the strongest predictor.

More importantly, there are also indirect effects that can be quantified by the change in the spatial lag of

each independent variable. Most spatially lagged terms, excluding PerPoverty, are statistically significant

at p < 0.05. A 1% increase in the average level of neighboring counties’ minority population and youth pop-

ulation would increase energy burden by 0.016% and 0.041%, respectively, in the typical county.

Conversely, a 1% increase in the average population on some type of public assistance in neighboring

counties corresponds to a reduction of 0.046%, whereas a 1% increase in female-headed households in

Figure 3. Hot/Cold spots of difference in energy burden, 2014–2018 vs. 2020

A statistically hot/cold spot is a feature that has both a high/low energy burden and has neighboring feature locations that have a similar high/low value. Cold

and hot spots are classified by their significance levels. Blue indicates statistically significant spatial clusters of counties with the decreased difference in

energy burden, whereas red spots indicate an increased difference in energy burden between 2014–2018 and 2020.
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neighboring counties corresponds to a reduction of 0.110% in energy burden after controlling all other fac-

tors. These findings indicate that public assistance to support household income may reduce the energy

burden. Yet, more information is needed to understand whether this is because households already

receiving public assistance are more likely to be aware of or participating in seasonal, federal programs

for utility bill assistance (i.e., LIHEAP) and/or rate-payer funded initiatives offered in some states to cap en-

ergy costs to a percent of income. Meanwhile, a 1% increase in energy burden across an average set of

neighboring counties correlates to a 0.544% increase in energy burden in the typical county. Although

the variable of families with a female head shows a negative relationship with energy burden after account-

ing for other factors, we further examine this predictor in various contexts in the next section.

Racial/ethnic minorities, public assistance, and the feminization of energy poverty

To gain a deeper understanding of the influence of concentrated disadvantage on energy burden, we

further analyzed three interconnected variables, including female-headed households, public assistance,

and minority status, to investigate why these variables had a negative relationship to energy burden in

the earlier models. First, we hope to understand where clusters of counties with a high minority population

and high energy burden exist. Second, we examine differences in energy burden across racial/ethnic

groups by analyzing the relationships between women of color-led households, public assistance, and

COVID-19 death rate to consider the impacts of the COVID-19 pandemic in investigating energy burden

in 2020.

To understand the relationship between specific minority populations and energy burden, we carry out

bivariate local indicators of spatial autocorrelation test. The Moran’s I statistic describes the pattern of

spatial autocorrelation – clustered, dispersed, or random; a positive value indicates that counties are likely

to be nearby other counties with a similar value (clustered). A negative value indicates that counties are

likely to be nearby other counties with a dissimilar value (dispersed). Most Moran’s I statistical values in

our models are relatively small but significant, indicating weak patterns of spatial autocorrelation. More

importantly, we find different patterns by racial/ethnic group at the county level. Notably, the Moran’s I sta-

tistic for Black populations and energy burden is 0.19, indicating that counties are more likely to be around

the counties that share a similar local relationship. For example, counties with a relatively large Black pop-

ulation and energy burden are likely to be surrounded by other counties with the same characteristics. The

corresponding map (Figure 5) below illustrates some clusters that have both a relatively large Black pop-

ulation and high energy burden, most notably in the southern United States. In examining the Black pop-

ulations and the number of COVID-19 deaths using the OLS multiple regression model to predict energy

burden in 2020, we found that a county-level increase of 1% of the Black population correlates to a 0.045%

Figure 4. Percentage of monthly energy burden differences at the county level between 2014–2018 and 2020

A positive value, indicated by hues of yellow, orange, and red, represents counties that have experienced more considerable energy burdens in 2020

compared to 2014–2018. Meanwhile, a negative value, indicated by hues of blue, represents counties that have experienced a reduction in their energy

burden in the same time frame.
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increase in energy burden, in comparison with the nonblack population. Counties with a significant Hispan-

ic population show slightly different geographical patterns in 2020. For instance, many counties in New

Mexico have both a relatively large number of Hispanic residents, ranging from 5.51% to 54.85%, and a

high monthly energy burden, ranging from 5.29% to 22.77% (Figure 6). Specifically, Lincoln with 40.7%

Hispanic has 19.6% energy burden, Guadalupe with 37.1% Hispanic has 19.5% energy burden, and Socorro

with 37.1% Hispanic has 16.1% energy burden are a few counties in New Mexico where a sizable cluster of

both a large Hispanic population and high energy burden exists.

Second, we conducted three steps of analysis by performing a series of OLS regression models to examine how

households led by women of color are affected by a high energy burden. Thesemodels also included the overall

minority population and public assistance receipt, after accounting for the factors of 50 states and Washington

D.C. (indicating different socioeconomic status, electricity price, and weather) and COVID-19 death rate in each

county. While examining only the predictor of female-headed households, we found that counties with a higher

percentage of families with female heads (B = .10; p < .001) saw their energy burden increase in 2020 after con-

trolling for COVID-19 death and states, which is the opposite result from the earlier model (see Table 3). The

earlier model indicates that the effect of female-headed households becomes less important (negative) when

including other socioeconomic factors, such as race/ethnicity and poverty. Results of this model reveal a direct

positive influence of female-headed households on energy burden.

While comparing differences across racial groups in female-headed households, we found households

headed by Black women faced the highest energy burden in 2020 (B = 0.212; p < .001), higher than those

headed by white, Hispanic, Native Hawaiian or Pacific Islander, and American Indian or Alaskan Native

women, though there is no significant relationship between Asian female-headed households and energy

burden, after accounting for COVID-19 death and states. After considering specific femaleminority groups,

public assistance, and COVID-19 deaths based on five OLS regression models, we found that counties with

a higher percentage of Black women household heads (B = 0.785; p < .001) have greater energy burden

than the counties with a large overall Black population (B = �0.770; p < .001), receipt of public assistance

(B = 0.394; p < .001), or COVID-19 mortality (B = 0.212; p < 0.001). In contrast, counties with a higher

percentage of white overall female-headed household are less likely to have higher energy burden (B =

�0.588; p < .001) than overall white population (B = 0.635; p < .001), recipients of public assistance (B =

0.400; p < .001), female-headed households (B = 0.158, p < .001), and counties with high rates of

COVID-19 deaths (B = 0.085; p < .001). Examining the Hispanic population model, we found Hispanic

female household heads are not significant to their energy burden, whereas counties with a higher percent-

age of overall female-headed households (B = �0.390; p < .001) are less likely to have a higher energy

burden. However, the COVID-19 mortality rate (B = 0.092; p < .001) and public assistance recipients (B =

0.401; p < .001) are positively related to energy burden. This result is similar to the findings for Native

Hawaiian and Pacific Islander, American Indian and Alaskan Native, and Asian women-led households.

For all racial/ethnic groups except for Black women-headed households, COVID-19 mortality and public

assistance are more important influencers of energy burden.

Table 2. Mean and median energy burdens of LIHs in rural and urban areas in the U.S., 2014–2018 & 2020

Living

areas

Energy

burden

2020

(%)

Energy

burden

2018

(%)

Energy

burden

difference

(%)

Expenditure

2020 ($)

Expenditure

2018 ($)

Expenditure

difference ($)

a. Mean energy burdens

Rural 11.53 11.42 0.11 214.28 211.80 2.41

Urban 8.60 8.54 0.05 174.69 173.44 1.25

b. Median energy burdens

Rural 11.15 11.00 0.15 202.97 201.73 1.24

Urban 8.38 8.00 0.38 175.46 173.08 2.38

Counties are identified as urban if they, in any way, spatially intersect ‘‘urbanized areas (UA) and urban clusters (UC)’’ as classified by the 2010 U.S. Census. UAs

comprise contiguous census blocks that contain at least 50,000 people, whereas a UC contains between 2,500 and 50,000 people. Based on Shapiro–Wilk tests,

data for both urban and rural counties were can be inferred to have an nonnormal distribution (p < .001). In addition, ensuing results from a Kruskal-Wallis H-test

to compare the median of each population strongly support a statistically significant difference between energy burden in rural and urban counties (p < .001).
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DISCUSSION

This study analyzes a novel dataset compiled from publicly available sources to examine the geographic,

socioeconomic, and health factors that magnify energy burden through the lens of concentrated disadvan-

tage. We have identified a global positive spatially autocorrelated pattern of energy burden in the U.S.,

such that counties are likely to be nearby other counties with similar values, either high or low. We find

that energy burden is more pronounced in counties with larger elderly, impoverished, disabled, and racial-

ized populations, as well as in counties where people are less likely to have health insurance. While exam-

ining these intersecting socioeconomic factors that contribute to concentrated disadvantage, we first find

counties where a larger share of the population receives public assistance show lower levels of energy

burden, suggesting that financial assistance can help reduce inequitable energy burden in the most

impacted areas. However, existing federal programs (i.e., the Weatherization Assistance Program and

the Low-Income Home Energy Assistance Program) that assist with energy bill payment and aim to improve

underlying conditions that contribute to energy vulnerability, including housing quality, the functionality of

Figure 5. Bivariate hot spot map: Black population and energy burden in 2020

Deep red indicates counties with a largeminority population and high energy burden; lighter red indicates counties with a largeminority population and low

energy burden; light blue indicates counties with a small minority population and high energy burden; deep blue indicates the counties that have a small

minority population and low energy burden.

Figure 6. Bivariate hot spot map: Hispanic population and energy burden in 2020

The color scheme is the same as is described in Figure 5.
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heating/cooling equipment, and utility debt management, are underfunded and limited in scope (Bednar

and Reames, 2020; Franklin et al., 2017).

Later, we found that when focusing only on the intersections of COVID-19 mortality and public assistance

receipt in households headed by women of different racial/ethnic backgrounds, public assistance is linked

to a higher energy burden. This indicates the need for additional research to understand whether and how

women householders access energy assistance programs and the need for targeted efforts to link women,

householders to weatherization and programs that address factors contributing to the likelihood of

becoming energy poor. This analysis also revealed certain limits to the concentrated disadvantage thesis

that occluded the relationships between gender and energy insecurity. Testing for this relationship specif-

ically, we observed that women of color, especially Black women heads of households, are more likely to

face a high energy burden, which worsened during the pandemic. Women lost employment at higher rates

than men and Black women were especially affected. The pandemic worsened employment outcomes in a

labor market that is already highly unequal because of employment segregation, racial discrimination, lack

of affordable childcare, and insufficient paid family leave, meaning many women may be forced to take un-

paid leave to care for family (Wilson, 2021). Following research outside of the United States (Morris et al.,

2019), this finding indicates the need for an intersectional framework that addresses gender and racial dis-

parities in energy policy and programs. Building energy justice into policy design would also require

engaging with themost affected people in decision-making processes that govern changes in energy infra-

structure (Baker et al., 2019; Carley and Konisky, 2020).

Although our study attempts to capture changes across time, this perspective also offers contemporary

insight into the context of the COVID-19 pandemic. We find that counties with a higher COVID-19 mortality

Table 3. Results of a spatial regression model with a spatially-autocorrelated error term and spatially-lagged

concentrated disadvantage variables and energy burden in 2020

Independent variables Unstandardized coefficient (b) S.E. z-Statistic p value

Public assistance �0.009 0.006 �1.468 0.142

No insurance 0.055 0.012 4.465 0.000

Minority status 0.013 0.004 2.961 0.003

Female household heads �0.019 0.012 �1.620 0.105

Disable 0.114 0.014 8.222 0.000

Below poverty 0.149 0.012 12.662 0.000

Age 65 or older 0.241 0.013 18.660 0.000

Age 17 or younger 0.014 0.016 0.874 0.382

COVID-19 cases �0.022 0.020 �1.079 0.280

COVID-19 death 0.621 0.556 1.118 0.264

w-public assistance �0.046 0.011 �4.361 0.000

w-minority group 0.016 0.005 3.192 0.001

w-age 17 or younger 0.041 0.020 2.043 0.041

w-poverty 0.012 0.019 0.635 0.526

w-female household head �0.110 0.011 �9.977 0.000

w-P2020 (energy burden) 0.544 0.023 23.947 0.000

Lambda �0.099

F-statistic (67, 3074) = , 72.848***

N 3142

Adjust R2 0.593

*p< 0.05, **p< 0.01, ***P< 0.001; coefficients of categorical variables, including 50 states andWashington D.C, were consid-

ered as controlled variables, and therefore, were not listed here. Each of the ‘w-‘ variables relate the values at a given county

to those in surrounding counties. In contrast to the coefficients of the other variables, which reflect global averages, variables

such as w-P2020 reflect the average energy burden of every county’s neighboring counties. A 1% increase in the energy

burden of surrounding counties correlates to a 0.544% increase in energy burden for the average county, and this interpre-

tation can be held for all other ‘w-‘ variables.

ll
OPEN ACCESS

iScience 25, 104139, April 15, 2022 9

iScience
Article



rate are observed also to have a higher energy burden when examining only minority status, public assis-

tance, and female-headed households. Energy burden is a geographic phenomenon and nonstationary

across the U.S. and is more pronounced in rural than urban areas, as other studies have noted (Gouveia

et al., 2019; Walker et al., 2012). Based on the results of our spatial regression modeling, we observe

that both local and situational effects are present but local-specific (i.e., own-county) are more sizable

than situation-specific (i.e., neighboring counties) effects, such that neighboring counties may have an

impact on a county’s energy burden. Thus, it is not enough to examine a county solely within itself, as

the characteristics of nearby counties form a larger region that also has an effect on the energy burden

it faces. This relationship also affirms other scholars’ findings of the need for attention to how social pro-

cesses are spatialized (Mashhoodi et al., 2019; Robinson et al., 2019) as well as more refined geographic

data on utility providers, which often stretch across multiple counties, as regions needing greater consid-

eration (Brown et al., 2020; Graff et al., 2021).

Utilities are an important site of intervention to change policies related to disconnections, customer debt,

and late fees and can also help to ameliorate the factors that contribute to energy burden for LIHs through

rate design, on-bill financing, and community solar programs among other interventions. At a more micro-

geographic scale, additional analysis at census tract or block levels to account for neighborhood effects

can also improve the understanding on where and how different neighborhoods within counties are

most and least burdened. Investigating the ongoing interactions between relationships at a local, state,

and national level policy will be necessary to devise policies and programs capable of ameliorating the

geographically-specific concentrations of severe and localized energy burden.

Limitations of the study

There are several limitations to the present study that could inspire future research. First, this paper only

focuses on the effects of household energy expenditure in electricity, fuel, and natural gas; however, future

research can investigate other household burdens, such as expenses for rent, medicine, food, transporta-

tion, and since LIHs may be forced to make tradeoffs between energy expenditure and other necessities.

Second, the datasets analyzed here did not have the variables related to psychological stress, which is an

important research area relating to LIHs’ energy poverty; therefore, qualitative research incorporating

focus groups, interviews, or other methods may help researchers reach LIHs and underserved communities

(e.g., elderly, people with disabilities) without internet access to conduct psychological or attitudinal

related research. Third, this study only focuses on moderate and lower-income households at the county

level. Future research should study other geographic scales to capture neighborhood, urban, and utility-

scale processes. Finally, the datasets analyzed here did not have policy-related variables, and future

research should investigate the impacts of local and national policies on energy poverty issues.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Variables

B Methodological justification

B Data analysis

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2022.104139.

ACKNOWLEDGMENTS

General: The authors thank Hannah Nelson for comments and Gregory Bonilla for data collection. C-F.C.

thanks the support of 2019 Fulbright Global Scholar Award through US-UK Fulbright Commission. J.F. was

supported by the Office of Research Innovation and Economic Development Summer Graduate Research

ll
OPEN ACCESS

10 iScience 25, 104139, April 15, 2022

iScience
Article

https://doi.org/10.1016/j.isci.2022.104139


Assistantship Fund at the University of Tennessee. C-P.K. is supported by the Institute for a Secure & Sus-

tainable Environment at the University of Tennessee.

AUTHOR CONTRIBUTIONS

C-F.C. conceived and designed this project. J.F. compiledmost of the data used in the analysis, created the

models, and led the result interpretation. C-P.K. estimated energy burden. C-F.C. led the overall manu-

script writing and conducted OLS regression models. N.L. led literature review and conclusion writing

and revised the entire manuscript. C-P.K. and J.S.F. contributed to writing literature review. J.S.F. edited

the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

INCLUSION AND DIVERSITY

One or more of the authors of this paper self-identifies as an underrepresented ethnic minority in science.

One or more of the authors of this paper received support from a program designed to increase minority

representation in science. While citing references scientifically relevant for this work, we also actively

worked to promote gender balance in our reference list.

Received: November 5, 2021

Revised: February 24, 2022

Accepted: March 18, 2022

Published: April 15, 2022

REFERENCES
Anselin, L. (1988). Lagrange multiplier test
diagnostics for spatial dependence and spatial
heterogeneity. Geogr. Anal. 20, 1–17. https://doi.
org/10.1111/j.1538-4632.1988.tb00159.x.

Anselin, L. (2003). Spatial econometrics. In A
Companion to Theoretical Econometrics, B.H.
Baltagi, ed. (Blackwell Publishing Ltd),
pp. 310–330. https://doi.org/10.1002/
9780470996249.ch15.

Baker, S., DeVar, S., and Prakash, S. (2019). The-
Energy-Justice-Workbook-2019-web.pdf
(Initiative for Energy Justice).

Bednar, D.J., and Reames, T.G. (2020).
Recognition of and response to energy poverty in
the United States. Nat. Energy 5, 432–439.
https://doi.org/10.1038/s41560-020-0582-0.

Bouzarovski, S. (2018). Energy Poverty: (Dis)
Assembling Europe’s Infrastructural Divide
(Palgrave Macmillan).

Brown, M.A., Soni, A., Lapsa, M.V., Southworth,
K., and Cox, M. (2020). High energy burden and
low-income energy affordability: conclusions
from a literature review. Prog. Energy 2, 042003.
https://doi.org/10.1088/2516-1083/abb954.

Carley, S., and Konisky, D.M. (2020). The justice
and equity implications of the clean energy
transition. Nat. Energy 5, 569–577. https://doi.
org/10.1038/s41560-020-0641-6.

Casabonne, U., Faria, M.M., Graiff Garcia, R., and
Sacks, A. (2019). Energy Vulnerability in Female-
Headed Households: Findings from the Listening
to Citizens of Uzbekistan Survey (International
Bank for Reconstruction and Development/
World Bank).

Castán Broto, V., and Kirshner, J. (2020). Energy
access is needed to maintain health during
pandemics. Nat. Energy 5, 419–421. https://doi.
org/10.1038/s41560-020-0625-6.

CDC Social Vulnerability Index (2020). Agency for
toxic substances and disease registry. https://
www.atsdr.cdc.gov/placeandhealth/svi/index.
html.

Chen, C., Zarazua de Rubens, G., Xu, X., and Li, J.
(2020). Coronavirus comes home? Energy use,
home energy management, and the social-
psychological factors of COVID-19. Energy Res.
Social Sci. 68, 101688. https://doi.org/10.1016/j.
erss.2020.101688.

Chen, C., Nelson, H., Xu, X., Bonilla, G., and
Jones, N. (2021). Beyond technology adoption:
examining home energy management systems,
energy burdens and climate change perceptions
during COVID-19 pandemic. Renew. Sustain.
Energy Rev. 145, 111066. https://doi.org/10.
1016/j.rser.2021.111066.

COVID-19 United States Cases by County (2021)
(Johns Hopkins University). https://coronavirus.
jhu.edu/us-map.

Crenshaw, K. (1989). Demarginalizing the
Intersection of Race and Sex: A Black Feminist
Critique of Antidiscrimination Doctrine, Feminist
Theory and Antiracist Politics (University of
Chicago Legal Forum), pp. 139–167.

Drehobl, A., Ross, L., and Ayala, R. (2020). How
High are Household Energy Burdens? An
Assessment of National andMetropolitan Energy
Burden across the United States (American
Council for an Energy-Efficient Economy).

FACTS, U. (2021). Detailed Methodology and
Sources: COVID-19 Data.

Franklin, M., Kurtz, C., Alksnis, M., Steichen, L.,
and Younger, C. (2017). Lights out in the Cold:
Reforming Utility Shut-Off Policies as if Human
Rights Matter (NAACP Environmental and
Climate Justice Program).

Gouveia, J.P., Palma, P., and Simoes, S.G. (2019).
Energy poverty vulnerability index: a
multidimensional tool to identify hotspots for
local action. Energy Rep. 5, 187–201. https://doi.
org/10.1016/j.egyr.2018.12.004.

Graff, M., and Carley, S. (2020). COVID-19
assistance needs to target energy insecurity. Nat.
Energy 5, 352–354. https://doi.org/10.1038/
s41560-020-0620-y.

Graff, M., Carley, S., Konisky, D.M., and
Memmott, T. (2021). Which households are
energy insecure? An empirical analysis of race,
housing conditions, and energy burdens in the
United States. Energy Res. Social Sci. 79, 102144.
https://doi.org/10.1016/j.erss.2021.102144.

Hernández, D. (2013). Energy insecurity: a
framework for understanding energy, the built
environment, and health among vulnerable
populations in the context of climate change. Am.
J. Publ. Health 103, e32–e34. https://doi.org/10.
2105/AJPH.2012.301179.

Lewis, J., Hernández, D., and Geronimus, A.T.
(2020). Energy efficiency as energy justice:
addressing racial inequities through investments
in people and places. Energy Effic. 13, 419–432.
https://doi.org/10.1007/s12053-019-09820-z.

ll
OPEN ACCESS

iScience 25, 104139, April 15, 2022 11

iScience
Article

https://doi.org/10.1111/j.1538-4632.1988.tb00159.x
https://doi.org/10.1111/j.1538-4632.1988.tb00159.x
https://doi.org/10.1002/9780470996249.ch15
https://doi.org/10.1002/9780470996249.ch15
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref4
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref4
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref4
https://doi.org/10.1038/s41560-020-0582-0
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref6
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref6
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref6
https://doi.org/10.1088/2516-1083/abb954
https://doi.org/10.1038/s41560-020-0641-6
https://doi.org/10.1038/s41560-020-0641-6
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref9
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref9
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref9
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref9
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref9
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref9
https://doi.org/10.1038/s41560-020-0625-6
https://doi.org/10.1038/s41560-020-0625-6
https://www.atsdr.cdc.gov/placeandhealth/svi/index.html
https://www.atsdr.cdc.gov/placeandhealth/svi/index.html
https://www.atsdr.cdc.gov/placeandhealth/svi/index.html
https://doi.org/10.1016/j.erss.2020.101688
https://doi.org/10.1016/j.erss.2020.101688
https://doi.org/10.1016/j.rser.2021.111066
https://doi.org/10.1016/j.rser.2021.111066
https://coronavirus.jhu.edu/us-map
https://coronavirus.jhu.edu/us-map
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref15
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref15
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref15
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref15
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref15
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref16
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref16
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref16
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref16
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref16
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref17
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref17
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref18
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref18
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref18
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref18
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref18
https://doi.org/10.1016/j.egyr.2018.12.004
https://doi.org/10.1016/j.egyr.2018.12.004
https://doi.org/10.1038/s41560-020-0620-y
https://doi.org/10.1038/s41560-020-0620-y
https://doi.org/10.1016/j.erss.2021.102144
https://doi.org/10.2105/AJPH.2012.301179
https://doi.org/10.2105/AJPH.2012.301179
https://doi.org/10.1007/s12053-019-09820-z


Life Course Metrics Project (2013). Life Course
Indicator: Concentrated Disadvantage.

Liévanos, R.S. (2019). Racialized structural
vulnerability: neighborhood racial composition,
concentrated disadvantage, and fine particulate
matter in California. Int. J. Environ. Res. Publ.
Health 16, 3196. https://doi.org/10.3390/
ijerph16173196.

Luke, N. (2021). Powering racial capitalism:
electricity, rate-making, and the uneven energy
geographies of Atlanta. Environ. Plann. E: Nat.
Space. 251484862110167. https://doi.org/10.
1177/25148486211016736.

Ma, O., Laymon, K., Day, M., Oliveira, R., Weers,
J., and Virmont, A. (2019). Low-Income Energy
Affordability Data (LEAD) Tool Methodology
(National Renewable Energy Laboratory (NREL),
Golden, CO. 2021). https://www.nrel.gov/docs/
fy19osti/74249.pdf, Accessed 01 July 2021.

Manski, C.F. (1993). Identification of endogenous
social effects: the reflection problem. Rev. Econ.
Stud. 60, 531–542. https://doi.org/10.2307/
2298123.

Mashhoodi, B., Stead, D., and van Timmeren, A.
(2019). Spatial homogeneity and heterogeneity of
energy poverty: a neglected dimension. Ann. GIS
25, 19–31. https://doi.org/10.1080/19475683.
2018.1557253.

Massey, D.S., and Denton, N.A. (1993). American
Apartheid: Segregation and the Making of the
Underclass, Later Printing edition (Harvard
University Press).

Mayer, A., and Smith, E.K. (2019). Exploring the
link between energy security and subjective well-
being: a study of 22 nations. Energy Sustain. Soc.
9, 34. https://doi.org/10.1186/s13705-019-0216-
1.

Memmott, T., Carley, S., Graff, M., and Konisky,
D.M. (2021). Sociodemographic disparities in
energy insecurity among low-income households
before and during the COVID-19 pandemic. Nat.
Energy 6, 186–193. https://doi.org/10.1038/
s41560-020-00763-9.

Mennis, J., Stahler, G., and Mason, M. (2016).
Risky substance use environments and addiction:
a new frontier for environmental justice research.
IJERPH 13, 607. https://doi.org/10.3390/
ijerph13060607.

Morris, E., Greene, J., and Healey, V.M. (2019).
Blueprint Guide for Creating Gender-Sensitive
Energy Policies (No. NREL/TP-7A40-73927,

1544544) (Clean Energy Solutions Center).
https://doi.org/10.2172/1544544.

Nguyen, C.P., and Su, T.D. (2021). Does energy
poverty matter for gender inequality? Global
evidence. Energy Sustain. Dev. 64, 35–45. https://
doi.org/10.1016/j.esd.2021.07.003.

Petrova, S., and Simcock, N. (2019). Gender and
energy: domestic inequities reconsidered. Soc.
Cult. Geogr. 1–19. https://doi.org/10.1080/
14649365.2019.1645200.

Prevention, C.for D.C. (2020). Calculating percent
positivity. https://www.cdc.gov/coronavirus/
2019-ncov/lab/resources/calculating-percent-
positivity.html.

Project, T.C.T. (2021). About the data. https://
covidtracking.com/about-data.

Reames, T.G. (2016). Targeting energy justice:
exploring spatial, racial/ethnic and
socioeconomic disparities in urban residential
heating energy efficiency. Energy Pol. 97,
549–558. https://doi.org/10.1016/j.enpol.2016.
07.048.

Robinson, C., Lindley, S., and Bouzarovski, S.
(2019). The spatially varying components of
vulnerability to energy poverty. Ann. Am. Assoc.
Geogr. 109, 1188–1207. https://doi.org/10.1080/
24694452.2018.1562872.

Sampson, R.J., Sharkey, P., and Raudenbush,
S.W. (2008). Durable effects of concentrated
disadvantage on verbal ability among African-
American children. Proc. Natl. Acad. Sci. 105,
845–852. https://doi.org/10.1073/pnas.
0710189104.

Surgo Ventures (2021). The U.S. COVID commu-
nity vulnerability index (CCVI). https://
precisionforcovid.org/ccvi.

Tobler, W.R. (1970). A computer movie simulating
urban growth in the detroit region. Econ. Geogr.
46, 234–240. https://doi.org/10.2307/143141.

United States Census Bureau. American
Community Survey 2015-2019 5-Year Estimates
[WWW Document]. URL https://data.census.gov/,
2021.

U.S. Census Bureau (2019). American Community
Survey and Puerto Rico Community Survey 2019
Subject Definitions (United States Census
Bureau), Accessed 30 January 2022.

U.S. Department of Energy Office of Energy
Efficiency and Renewable Energy (2018). Low-

Income Household Energy Burden Varies Among
States — Efficiency Can Help in All of Them.
https://www.energy.gov/sites/prod/files/2019/
01/f58/WIP-Energy-Burden_final.pdf, Accessed
01 July 2021.

U.S. Department of Energy Office of Energy
Efficiency and Renewable Energy (2021). LEAD
tool. https://www.energy.gov/eere/slsc/maps/
lead-tool.

U.S. Energy Information Administration (2020).
Monthly Energy Review. https://www.eia.gov/
totalenergy/data/monthly/. Accessed 01 July
2021.

US Coronavirus Cases & Deaths by State (2021).
USAFACTS. https://usafacts.org/visualizations/
coronavirus-covid-19-spread-map/.

van Ginkel, J.R., Linting, M., Rippe, R.C.A., and
van der Voort, A. (2020). Rebutting existing
misconceptions about multiple imputation as a
method for handling missing data. J. Personal.
Assess. 102, 297–308. https://doi.org/10.1080/
00223891.2018.1530680.

Walker, R., McKenzie, P., Liddell, C., and Morris,
C. (2012). Area-based targeting of fuel poverty in
Northern Ireland: an evidenced-based approach.
Appl. Geogr. 34, 639–649. https://doi.org/10.
1016/j.apgeog.2012.04.002.

Wang, J., and Johnson, D.E. (2018). An
examination of discrepancies in multiple
imputation procedures between SAS� and SPSS
� an examination of discrepancies in multiple
imputation procedures between SAS and SPSS.
Am. Statistician 0, 1–9. https://doi.org/10.1080/
00031305.2018.1437078.

Wilson, V. (2021). Black Women Face a Persistent
Pay Gap, Including in Essential Occupations
during the Pandemic (Economic Policy Institute).
https://www.epi.org/blog/black-women-face-a-
persistent-pay-gap-including-in-essential-
occupations-during-the-pandemic/?utm_
source=Economic+Policy+Institute&utm_
campaign=1abf423812-EMAIL_CAMPAIGN_
2021_04_30_07_37_COPY_01&utm_medium=
email&utm_term=0_e7c5826c50-1abf423812-
59964657&mc_cid=1abf423812&mc_eid=
9536d0b206.

Winter, A.S., and Sampson, R.J. (2017). From lead
exposure in early childhood to adolescent health:
a chicago birth cohort. Am. J. Publ. Health 107,
1496–1501. https://doi.org/10.2105/AJPH.2017.
303903.

ll
OPEN ACCESS

12 iScience 25, 104139, April 15, 2022

iScience
Article

http://refhub.elsevier.com/S2589-0042(22)00409-6/sref24
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref24
https://doi.org/10.3390/ijerph16173196
https://doi.org/10.3390/ijerph16173196
https://doi.org/10.1177/25148486211016736
https://doi.org/10.1177/25148486211016736
https://www.nrel.gov/docs/fy19osti/74249.pdf
https://www.nrel.gov/docs/fy19osti/74249.pdf
https://doi.org/10.2307/2298123
https://doi.org/10.2307/2298123
https://doi.org/10.1080/19475683.2018.1557253
https://doi.org/10.1080/19475683.2018.1557253
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref30
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref30
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref30
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref30
https://doi.org/10.1186/s13705-019-0216-1
https://doi.org/10.1186/s13705-019-0216-1
https://doi.org/10.1038/s41560-020-00763-9
https://doi.org/10.1038/s41560-020-00763-9
https://doi.org/10.3390/ijerph13060607
https://doi.org/10.3390/ijerph13060607
https://doi.org/10.2172/1544544
https://doi.org/10.1016/j.esd.2021.07.003
https://doi.org/10.1016/j.esd.2021.07.003
https://doi.org/10.1080/14649365.2019.1645200
https://doi.org/10.1080/14649365.2019.1645200
https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/calculating-percent-positivity.html
https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/calculating-percent-positivity.html
https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/calculating-percent-positivity.html
https://covidtracking.com/about-data
https://covidtracking.com/about-data
https://doi.org/10.1016/j.enpol.2016.07.048
https://doi.org/10.1016/j.enpol.2016.07.048
https://doi.org/10.1080/24694452.2018.1562872
https://doi.org/10.1080/24694452.2018.1562872
https://doi.org/10.1073/pnas.0710189104
https://doi.org/10.1073/pnas.0710189104
https://precisionforcovid.org/ccvi
https://precisionforcovid.org/ccvi
https://doi.org/10.2307/143141
https://data.census.gov/
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref44
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref44
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref44
http://refhub.elsevier.com/S2589-0042(22)00409-6/sref44
https://www.energy.gov/sites/prod/files/2019/01/f58/WIP-Energy-Burden_final.pdf
https://www.energy.gov/sites/prod/files/2019/01/f58/WIP-Energy-Burden_final.pdf
https://www.energy.gov/eere/slsc/maps/lead-tool
https://www.energy.gov/eere/slsc/maps/lead-tool
https://www.eia.gov/totalenergy/data/monthly/
https://www.eia.gov/totalenergy/data/monthly/
https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/
https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/
https://doi.org/10.1080/00223891.2018.1530680
https://doi.org/10.1080/00223891.2018.1530680
https://doi.org/10.1016/j.apgeog.2012.04.002
https://doi.org/10.1016/j.apgeog.2012.04.002
https://doi.org/10.1080/00031305.2018.1437078
https://doi.org/10.1080/00031305.2018.1437078
https://www.epi.org/blog/black-women-face-a-persistent-pay-gap-including-in-essential-occupations-during-the-pandemic/?utm_source=Economic+Policy+Institute&amp;utm_campaign=1abf423812-EMAIL_CAMPAIGN_2021_04_30_07_37_COPY_01&amp;utm_medium=email&amp;utm_term=0_e7c5826c50-1abf423812-59964657&amp;mc_cid=1abf423812&amp;mc_eid=9536d0b206
https://www.epi.org/blog/black-women-face-a-persistent-pay-gap-including-in-essential-occupations-during-the-pandemic/?utm_source=Economic+Policy+Institute&amp;utm_campaign=1abf423812-EMAIL_CAMPAIGN_2021_04_30_07_37_COPY_01&amp;utm_medium=email&amp;utm_term=0_e7c5826c50-1abf423812-59964657&amp;mc_cid=1abf423812&amp;mc_eid=9536d0b206
https://www.epi.org/blog/black-women-face-a-persistent-pay-gap-including-in-essential-occupations-during-the-pandemic/?utm_source=Economic+Policy+Institute&amp;utm_campaign=1abf423812-EMAIL_CAMPAIGN_2021_04_30_07_37_COPY_01&amp;utm_medium=email&amp;utm_term=0_e7c5826c50-1abf423812-59964657&amp;mc_cid=1abf423812&amp;mc_eid=9536d0b206
https://www.epi.org/blog/black-women-face-a-persistent-pay-gap-including-in-essential-occupations-during-the-pandemic/?utm_source=Economic+Policy+Institute&amp;utm_campaign=1abf423812-EMAIL_CAMPAIGN_2021_04_30_07_37_COPY_01&amp;utm_medium=email&amp;utm_term=0_e7c5826c50-1abf423812-59964657&amp;mc_cid=1abf423812&amp;mc_eid=9536d0b206
https://www.epi.org/blog/black-women-face-a-persistent-pay-gap-including-in-essential-occupations-during-the-pandemic/?utm_source=Economic+Policy+Institute&amp;utm_campaign=1abf423812-EMAIL_CAMPAIGN_2021_04_30_07_37_COPY_01&amp;utm_medium=email&amp;utm_term=0_e7c5826c50-1abf423812-59964657&amp;mc_cid=1abf423812&amp;mc_eid=9536d0b206
https://www.epi.org/blog/black-women-face-a-persistent-pay-gap-including-in-essential-occupations-during-the-pandemic/?utm_source=Economic+Policy+Institute&amp;utm_campaign=1abf423812-EMAIL_CAMPAIGN_2021_04_30_07_37_COPY_01&amp;utm_medium=email&amp;utm_term=0_e7c5826c50-1abf423812-59964657&amp;mc_cid=1abf423812&amp;mc_eid=9536d0b206
https://www.epi.org/blog/black-women-face-a-persistent-pay-gap-including-in-essential-occupations-during-the-pandemic/?utm_source=Economic+Policy+Institute&amp;utm_campaign=1abf423812-EMAIL_CAMPAIGN_2021_04_30_07_37_COPY_01&amp;utm_medium=email&amp;utm_term=0_e7c5826c50-1abf423812-59964657&amp;mc_cid=1abf423812&amp;mc_eid=9536d0b206
https://www.epi.org/blog/black-women-face-a-persistent-pay-gap-including-in-essential-occupations-during-the-pandemic/?utm_source=Economic+Policy+Institute&amp;utm_campaign=1abf423812-EMAIL_CAMPAIGN_2021_04_30_07_37_COPY_01&amp;utm_medium=email&amp;utm_term=0_e7c5826c50-1abf423812-59964657&amp;mc_cid=1abf423812&amp;mc_eid=9536d0b206
https://www.epi.org/blog/black-women-face-a-persistent-pay-gap-including-in-essential-occupations-during-the-pandemic/?utm_source=Economic+Policy+Institute&amp;utm_campaign=1abf423812-EMAIL_CAMPAIGN_2021_04_30_07_37_COPY_01&amp;utm_medium=email&amp;utm_term=0_e7c5826c50-1abf423812-59964657&amp;mc_cid=1abf423812&amp;mc_eid=9536d0b206
https://doi.org/10.2105/AJPH.2017.303903
https://doi.org/10.2105/AJPH.2017.303903


STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead

Contact, Chien-fei Chen (cchen26@utk.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Data: This study analyzes existing, publicly available data. The key resources table documents five na-

tionally representative data sources, including the COVID-19 Community Vulnerability Index (CCVI)

data (‘‘CDC Social Vulnerability Index,’’ 2020), the U.S. Department of Energy’s Low-Income Energy

Affordability Data (LEAD) tool (U.S. Department of Energy Office of Energy Efficiency and Renewable En-

ergy, 2021), energy expenditure from the U.S. Energy Information Administration (EIA) (U.S. Energy In-

formation Administration, 2020), John Hopkins’ COVID-19 data(‘‘COVID-19 United States Cases by

County,’’ 2021), and the U.S. Census Bureau American Community Survey (ACS) (U.S. Census Bureau,

2021).

d Code: Original code was written in Python and is available from the lead contact upon request.

d All additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

METHOD DETAILS

Variables

Household income and energy burden (EB)

The household annual income data before taxes were generated from the American Community Survey

(ACS) (U.S. Census Bureau, 2019). We used this income information and energy expenditure to establish

the 2020 county-level energy burden for LIHs in the U.S. Due to the lack of official energy consumption

data at the zip code and county level in 2020, historical energy expenditure (electricity, fuel, and natural

gas) and burden estimations among LIHs were collected from the LEAD Tool by the National Renewable

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Social and demographic data in the United

States

U.S. Census Bureau https://data.census.gov/

Low-income energy affordability data (LEAD)

tool

Department of Energy https://www.energy.gov/eere/slsc/low-

income-energy-affordability-data-lead-tool

COVID-19 cases and deaths in the United

States

Johns Hopkins University & USAFacts https://coronavirus.jhu.edu/us-map https://

usafacts.org/visualizations/coronavirus-covid-

19-spread-map/

COVID-19 community vulnerability Index Centers of Disease and Control & Agency for

Toxic Substances and Disease Registry

https://www.atsdr.cdc.gov/placeandhealth/

svi/index.html

Software and algorithms

ArcGIS Pro 2.7 Esri https://www.esri.com/en-us/arcgis/products/

arcgis-pro/

GeoDa 1.18.0 Luc Anselin, University of Chicago https://geodacenter.github.io/

Python 3.8.5 Python Software Foundation https://www.python.org/downloads/release/

python-385/
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Energy Laboratory (NREL) and the U.S. Department of Energy (DOE) (Ma et al., 2019), as well as the energy

expenditure data from the EIA (U.S. Energy Information Administration, 2020). Stakeholders have used the

LEAD tool to fill knowledge gaps, conduct strategies to improve energy program planning, and promote

public awareness of LIH issues (Ma et al., 2019). Technically, the 2020 county-level energy burden data were

estimated from the 2014-2018 county-level information of LIHs’ annual income (Income2014�2018 ij) and 2020

state-level energy expenditure data by using the following equation (
Pk

1Exp2020 ijk). Because 2020 county-

level income data had not been reported until the end of the study period, the 2014-2018 income data were

assumed to represent the 2020 income of each county.

EBs2020 ij =

Pk
1Exp2020 ijk

Income2014�2018 ij

=

 Xk

1
Exp2014�2018 ik 3

Exp2014�2018 ijk

Exp2014�2018 ik

3
Con2020 ijk

Con2014�2018 ijk

!
3

EBs2014�2018 iPk
1Exp2014�2018 ik

where EB2020 ij was 2020 EB for the ith county in the jth month for LIHs, Exp2020 ijk was the sum of energy

expenditure for the kth source (electricity, fuel, and natural gas) of the ith county in the jth month in

2020, and Income2014�2018 ij was the average income of ith county in the jth month during 2014-2018 for

LIHs. Exp2020 ijk was further calculated by using energy expenditure for the kth source of the ith county dur-

ing 2014-2018 (Exp2014�2018 ik), energy expenditure fluctuation ratio in jth month for kth source compared

with the monthly average (Exp2014�2018 ijk =Exp2014�2018 ik), and 2020 state-level residential energy con-

sumption ratio for kth source of ith county in jth month compared with 2014-2018 data

(Con2020 ijk=Con2014�2018 ijk). The applied monthly energy consumption indices for electricity, fuel, and nat-

ural gas in each state were sales of electricity to the residential sector, prime supplier sales volume (pro-

pane), and natural gas consumption by the residential sector. Income2014�2018 ij was calculated by using

the EB for ith county for LIHs (EB2014�2018 i) and the sum of energy expenditure for the kth source of the

ith county during 2014-2018 ðPk
1Exp2014�2018 ikÞ. The missing values of our EBs data were replaced by

the estimations from the multiple imputation techniques with the regression method (van Ginkel et al.,

2020; Wang and Johnson, 2018), which employed county-level COVID-19 Community Vulnerability Index

(CCVI) data. The U.S. Center for Disease Control and Prevention (CDC) built the CCVI, has complete data-

sets for all the U.S. counties, and reflects the socioeconomic and health vulnerability status of each county.

Concentrated disadvantage and Community Vulnerability Index (CCVI)

The concentrated disadvantage was measured by the proportion of households located in census tracts with a

high level of socioeconomic disadvantage, calculated using ten census variables. The CCVI was used tomeasure

concentrated disadvantage at the county-level to identify the factors influencing EBs, such as socioeconomic

and health vulnerabilities that indicate communities that may be less resilient to the impacts of natural disasters

and other extreme events, such as the COVID-19 pandemic (Surgo Ventures, 2021). The CCVI is a validated

metric that uses census tract and county-level data include six themes: (1) socioeconomic status; (2) household

composition and disability; (3) minority status and language; (4) housing type, transportation, household compo-

sition, anddisability; (5) healthcare system factor; and (6) epidemiological factor. Each county is ranked from least

vulnerable to most vulnerable in each of these categories. We extended five original variables in the concen-

trated disadvantage framework and used the subthemes of the CCVI to identify the impacts of specific variables.

The variables from the CCVI include the percentage of minority groups, people aged 65 or older, people aged

18 or younger, people older than age 5 with a disability, and people living below 200% of the FPL. The present

study also includes female-headed households, public assistance recipients, and households without health in-

surance from the ACS.

Households with female heads, public assistance recipients, and no health insurance

Since the CCVI does not capture the share of female-headed households or public assistance recipients in

the past 12 months, we generated these variables from the ACS. Families with female heads are measured

by the share of women householders with no spouse or partner present. Public assistance income, or wel-

fare, provides cash payments to low-income families and includes general assistance and Temporary Assis-

tance to Needy Families (TANF), which replaced Aid to Families with Dependent Children (AFDC) in 1997.

Public assistance income also includes Supplemental Security Income (SSI) and non-cash benefits such as

food stamps (U.S. Census Bureau, 2019). Additionally, the variable of unemployment in the CCVI was re-

placed by households without health insurance in the ACS to estimate residents’ overall level of safe

and secure employment.
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COVID-19 confirmed cases and mortality

The information on COVID-19 confirmed cases and deaths were observed from January 21 to December

31, 2020, using the data from John Hopkins’ University and USA FACTS (‘‘US Coronavirus Cases & Deaths

by State,’’ 2021). These data sources use three main methods to collect this data: first, by drawing aggre-

gate county-level data from the Covid Tracking Project, John Hopkins’ utilizes data from 52 U.S. states and

territories under CDC guidelines for test positivity (Prevention, 2020; Project, 2021). Second, USA FACTS

indicates where presumed cases are included as COVID positive cases and adjusted per capita to repre-

sent the cumulative total. Lastly, USA FACTS estimates the gaps in daily cumulative cases and deaths by

direct referencing or scraping from state and local agencies (FACTS, 2021). Both sources were used to

validate confirmed cases and mortality to ensure accuracy.

Methodological justification

EB is geographic and varies across the U.S. Changes in the relative energy cost in a county may impact the

relative energy cost decisions in neighboring counties, and these changes may happen at local (e.g.,

county-level) and global (e.g., country-level) scales. A Moran’s I test of spatial autocorrelation on county-

level energy burden in 2020 confirms this idea of spatial dependence. AMoran’s Index value of 0.49, z-score

of 45.37, and a p-value < 0.001, indicates a pattern of positive spatial autocorrelation: those similar situa-

tions of EB tend to be clustered together. We additionally used the Hot Spot Analysis tool in ArcGIS Pro 2.7

to identify statistically significant hot and cold spots of the areas experiencing either greater or lower EB.

This tool calculates the Getis-Ord Gi* statistic, z-score, and p-value for each county to identify spatial clus-

ters of high and low values of EB. Our local hot spot analysis finds that the United States is marked by clus-

ters of counties with high energy burdens and similarly with low energy burdens. Thus, EB in the United

States is characterized by spatial dependency and spatial heterogeneity. Spatial dependence refers to

the tendency for things closer together to be more similar than things further apart (Tobler, 1970), while

spatial heterogeneity refers to local variation across an area due to changes in the underlying properties

of the landscape. Classical statistical analysis requires the assumption of independent and identical data

but the nonrandom distribution of EB across the United States violates this requirement. A conventional

ordinary least squares (OLS) model would likely result in coefficients that are biased and inefficient, and

not able to capture this spatial process.We adopted a spatial regressionmodel with spatially-lagged exog-

enous and endogenous regressors and errors based on concentrated disadvantage theory to predict EB,

with additional tests for spatial dependence, and the results corroborate the notion of spatial structure in

EB across the country. We discuss our analysis process to understand the relationship between concen-

trated disadvantage and geography with EB. In the next section, we explain our four models, including

(1) a traditional OLS without control variables for the states and compare them to another model with con-

trol variables. Based onmodel diagnostics and tests for spatial dependence (2), we decided to include con-

trols for states and introduce local effects into the equation with a spatially-lagged dependent variable.

This paper compared a (3) spatial lag model with a spatial error model and ultimately concluded with a

(4) spatial regression model with a spatially-autocorrelated error term and spatially-lagged independent

and dependent variables that in addition to global effects, also included neighborhood effects of concen-

trated disadvantage variables.

Summary of regression models

Independent variables (1a) OLS No state (1b) OLS state (2) Spatial lag (3) Spatial error (4) MSARSAR

Public assistance �0.012 �0.012 �0.013* �0.008 �0.009

No insurance 0.075*** 0.067*** 0.068*** 0.077*** 0.055***

Minority status 0.004 0.015*** 0.015*** 0.014*** 0.013***

Female household heads �0.017 �0.034*** �0.034*** �0.038*** �0.019

Disable 0.091*** 0.135 0.115*** 0.119*** 0.114***

Below poverty 0.212*** 0.186 0.170*** 0.161*** 0.149***

Age 65 or older 0.272*** 0.291 0.274*** 0.287*** 0.241***

Age 17 or younger �0.005 0.015 0.012 0.007 0.014

(Continued on next page)
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Data analysis

OLS regression model and Lagrange Multiplier (LM) tests for spatial dependence

We first compared a model with and without the dummy variables. A traditional OLS model with these vari-

ables, excluding the dummies, is significant, F(11,3131) = 248.208, p < .001, with an adjusted R-squared of

0.440, Log likelihood of�7197.26, and Akaike info criterion (AIC) of 14,416.53. TheOLSmodel that included

the state dummy variables was also statistically significant, F(61,3081) = 62.6925, p < .001, with an adjusted

R-squared value of 0.541, Log likelihood of �6860.82, and AIC of 13,843.642. Based on these model diag-

nostics, we confirmed that including dummy variables for the states improved model fit and estimation.

Introducing states as control variables helped capture the spatial regime or structural differences in energy

burdens across the U.S. Each state is likely to have its own distinct contribution of energy burdens owing to

relative wages, incomes, and utility costs. Excluding the control variables for the states, with the exception

of the percentage of public assistance (which is close to being significant, p = 0.062), all variables were sig-

nificant at p < 0.05 (Table S2). The Moran’s I test statistic on the residuals from our OLS model is positive,

large (0.230), and statistically significant (p < .001). This result indicated strong spatial autocorrelation in the

errors. Additional spatial dependence tests in linear models including the LM lag and error were, respec-

tively, for a missing spatially lagged dependent variable and error dependence (Anselin, 1988). The Robust

LM counterparts were the tests for each in the possible presence of the other (e.g., a Robust LM test for

error dependence with the possibility that a spatially lagged dependent variable is missing). Meanwhile,

the LM SARMA is a portmanteau test that assessed both LM Error and LM Lag together; and the test sta-

tistic was significant when either was also highly significant. Both LM tests were statistically significant at

very high significance levels (p < .001), indicating the presence of spatial dependence in our model.

However, the test statistic for the Robust error test (165.354) was larger than that of the test statistic for

the Robust lag test (10.651), indicating a spatial error model would be better suited to capture the spatial

dependence. Nonetheless, we used both an SLM and SEM and compare their results in the following

sections.

Spatial lag model

In our models, geographic space was introduced by including variables that relate the values at a given

location to those in surrounding and nearby locations. With LM Lag tests indicating that there was spatial

dependence in our dependent variable of energy burdens, we fit a spatial lag model that includes this

dependence in the result. Spatial lag describes how a variable in location i is influenced by variables in

neighboring locations j. In other words, a spatially lagged dependent variable is one that averages the

values of a location i’s neighbors j and they can be used to account for autocorrelation in the model

(Anselin, 2003). For example, we believe that energy burdens in a county are similar to that of its neigh-

boring counties. While there are many ways to define the spatial relationship between each pair of

Continued

Independent variables (1a) OLS No state (1b) OLS state (2) Spatial lag (3) Spatial error (4) MSARSAR

COVID-19 cases �0.020 �0.012 �0.015 0.002 �0.022

COVID-19 death 2.812*** 0.679 0.699 0.741 0.621

w-public assistance – – – – �0.046***

w-minority group – – – – 0.016***

w-age 17 or younger – – – – 0.041**

w-poverty – – – – 0.012

w-female household head – – – – �0.110***

w-P2020 (energy burden) – – 0.181*** – 0.544***

Lambda – – – 0.355 �0.099

F-statistic (11, 3131) =

248.2084***

(61, 3081) =

62.6925***

(62, 3080) =

67.6821***

(61, 3081) =

58.4314***

(67, 3075) =

71.7442***

Adjusted R-Squared 0.4404 0.5410 0.5643 0.5377 0.5930

N 3142

[1] The number in parentheses refers to the model described in the next section on Data Analysis; for example (3) Spatial Error refers to 3. Spatial Error Model. [2]

*** Significant at the 0.1% level. ** Significant at the 1% level. * Significant at the 5% level.
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locations i and j, we adopted a queen criterion (i.e., all shared vertices and edges between a county i and

county j are deemed neighbors). A spatial weights matrix W was constructed to capture this spatial rela-

tionship between all locations i and its neighbors j and row-standardized. Our spatial lag model included

all the variables from the OLS model with control variables for states and the addition of the spatial lag of

EB (i.e., the average energy burdens of neighboring counties around county i) to estimate EB. The spatial

lag model was also significant, F(62,3080) = 67.6821, p < .001), with a Log likelihood of�6778.44 and AIC of

13,680.88, and has better predictive ability compared to the OLS model, accounting for 56.43% of the vari-

ation in averagemonthly energy burdens across the country in 2020. All independent variables’ coefficients

and their respective p values were similar to those in the OLS model with the additional inclusion of PerSSI

and PerFemHead as statistically significant variables at p < 0.05 (Table S3). The estimated coefficient

parameter (Rho) for the spatial lag of energy burdens (W_P_2020) was statistically significant and positive

(0.181), and this result indicates that there are likely processes of spatial interaction that occur in the relative

cost of electricity between counties. Including the spatial lag of our dependent variable has improved the

model fit, relative to the traditional OLS model, and is reflected in both the Adjusted R-squared and Log

likelihood value. However, the significance of the Breusch-Pagan test statistic (p < 0.001) indicates that

there is heteroskedasticity in the model even when the spatial lag term is included, leading us to believe

that there are still spatial effects unaccounted for in the model for further analysis.

Spatial error model

Whereas spatial dependence was incorporated into the dependent variable in a spatial lag model, it is

instead incorporated in the errors/residuals in a spatial error model (SEM) (Anselin, 2003). This assumes

that error terms are correlated across space; the error for one location affects its neighboring locations.

An OLS model may underestimate the standard errors if there is a spatial process. We also use a SEM,

F(61,3081) = 58.431, p < .001, on the same set of independent variables used in the original OLS model.

Coefficient estimates and p values were somewhat similar to those from the spatial lag model, but with

a worse adjusted R-squared value of 0.538 and AIC of 13,865.61. Lambda is the spatial error parameter

and rather large (0.355), positive and significant, and these results told us that the unexplained variation

in EB was spatially correlated (Table S4). However, the Breusch-Pagan (1026.120) test statistic was still sig-

nificant at p < .001, meaning while we explicitly included spatial structure in the error terms, there remained

spatial effects that were unaccounted for in our model, such as the neighborhood level effect of EB in our

earlier spatial lag model. There may be omitted variables that contribute to EB and are common between

neighboring locations. The spatial error model assumes that these omitted variables are not correlated

with other independent variables.

Spatial regression model with a spatially-autocorrelated error term and spatially-lagged
dependent and independent variables (MSARSAR – Modified SARSAR)

We adopt a model with spatially-lagged independent and dependent variables and spatially-correlated

error terms similar to the foundational spatial interaction model by Manski (1993). In our model, the depen-

dent variable of EB in each location i depends not only on the own-location-specific independent variables

but also those same independent variables spatially weighted over its neighboring locations j with a

spatially-correlated error term capturing unobserved characteristics. This model was statistically signifi-

cant, F(67,3075) = 71.744, p < .001. With an adjusted R-squared value of 0.593, this model dramatically im-

proves upon the predictive capacity of the other models. Model fit is improved as the AIC (13,474.60) was

comparatively smaller than the other specified models. These test statistics led us to adopt this model as

our final one to understand EB based on the concentrated disadvantage framework. The spatial error

parameter, lambda, is �0.099 and indicates that the unexplained variation in EB is weakly and negatively

correlated. All independent variables, excluding PerSSI, PerFemHead, PercCase20, and PercDeat20 were

statistically significant at p < 0.05. These findings describe the direct effects of our selected independent

variables to understand EB. In contrast, indirect effects can be quantified by the change in the spatial lag of

each independent variable. Most spatially lagged terms, excluding PerPoverty, are statistically significant

at p < 0.05 (Table 3).
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