
����������
�������

Citation: Liu, T.; Wang, W.; Qian, J.;

Li, Q.; Fan, M.; Yang, C.; Huang, S.;

Lu, L. Excellent Energy Storage

Performance in

Bi(Fe0.93Mn0.05Ti0.02)O3 Modified

CaBi4Ti4O15 Thin Film by Adjusting

Annealing Temperature.

Nanomaterials 2022, 12, 730. https://

doi.org/10.3390/nano12050730

Academic Editors: Dong-Joo Kim

and Alain Pignolet

Received: 29 January 2022

Accepted: 18 February 2022

Published: 22 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Excellent Energy Storage Performance in
Bi(Fe0.93Mn0.05Ti0.02)O3 Modified CaBi4Ti4O15 Thin Film by
Adjusting Annealing Temperature
Tong Liu 1,2,†, Wenwen Wang 1,†, Jin Qian 1, Qiqi Li 1, Mengjia Fan 1, Changhong Yang 1,* , Shifeng Huang 1

and Lingchao Lu 1

1 Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of
Jinan, Jinan 250022, China; shandongmems@163.com (T.L.); wangwenwen_0717@163.com (W.W.);
j28_qian@163.com (J.Q.); q1635376692@163.com (Q.L.); fan15176103198@163.com (M.F.);
mse_huangsf@ujn.edu.cn (S.H.); mse_lulc@ujn.edu.cn (L.L.)

2 MEMS Institute of Zibo National High-Tech Development Zone, Zibo 255000, China
* Correspondence: mse_yangch@ujn.edu.cn
† These authors contributed equally to this work.

Abstract: Dielectric capacitors with ultrahigh power density are highly desired in modern electri-
cal and electronic systems. However, their comprehensive performances still need to be further
improved for application, such as recoverable energy storage density, efficiency and temperature
stability. In this work, new lead-free bismuth layer-structured ferroelectric thin films of CaBi4Ti4O15-
Bi(Fe0.93Mn0.05Ti0.02)O3 (CBTi-BFO) were prepared via chemical solution deposition. The CBTi-BFO
film has a small crystallization temperature window and exhibits a polycrystalline bismuth layered
structure with no secondary phases at annealing temperatures of 500–550 ◦C. The effects of annealing
temperature on the energy storage performances of a series of thin films were investigated. The
lower the annealing temperature of CBTi-BFO, the smaller the carrier concentration and the fewer
defects, resulting in a higher intrinsic breakdown field strength of the corresponding film. Especially,
the CBTi-BFO film annealed at 500 ◦C shows a high recoverable energy density of 82.8 J·cm−3 and
efficiency of 78.3%, which can be attributed to the very slim hysteresis loop and a relatively high
electric breakdown strength. Meanwhile, the optimized CBTi-BFO film capacitor exhibits superior
fatigue endurance after 107 charge–discharge cycles, a preeminent thermal stability up to 200 ◦C, and
an outstanding frequency stability in the range of 500 Hz–20 kHz. All these excellent performances
indicate that the CBTi-BFO film can be used in high energy density storage applications.

Keywords: CBTi-BFO; fine grain; electric breakdown strength; recoverable energy storage

1. Introduction

At present, energy and environmental issues are the focus of social attention. The
vigorous development of green and clean energy (such as wind and solar energy) is one
of the future trends. The instability and intermittency of green energy put forward higher
requirements for energy storage technology [1–5]. Dielectric capacitors typically display
ultrafast charge–discharge rates and long life-time, temperature/frequency stability, fatigue
resistance, which play key roles in various modern electrical and electronic systems, such
as hybrid electric vehicle, aircraft and military [6–9]. Film capacitors offer a smaller size
and higher energy storage density, making them easier to integrate into circuits than other
devices such as ceramic capacitors [10]. Currently, most commercial dielectrics are mainly
made of organic polymers, such as biaxially oriented polypropylene (BOPP), which have
been widely used as the dielectric layer in power inverter capacitor systems, making the
storage system bulky due to the low energy density (<5 J·cm3). Furthermore, the operating
temperature of BOPP cannot be higher than 80 ◦C, which increases the difficulty of structure
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design due to the need for an extra cooling system [11,12]. By contrast, inorganic dielectric
film capacitors have the advantages of relatively high energy densities, better thermal
stability in wider operating temperature ranges, and long-term endurance. Among this,
inorganic ferroelectric film capacitors (TFFCs) are considered as good candidates for energy
storage due to their large polarization and high temperature resistance [13,14]. However,
low energy storage density and efficiency limit its further development in energy storage
applications; thus, further improvements are needed.

For film capacitors, two important energy storage parameters, the recoverable en-
ergy storage density (Wrec) and energy storage efficiency (η), can be calculated from the
measured hysteresis loops adopting the following equations [15,16]:

Wrec =
∫ Pm

Pr
E dP (1)

Wt =
∫ Pm

0
E dP (2)

n =
Wrec

Wt
× 100% (3)

where E, Wt, Pm and Pr are the applied electric field, total energy storage density, the maxi-
mum polarization and remanent polarization during the discharge process, respectively.
Therefore, Wrec can be improved by increasing the difference between Pm and Pr, and the
electric breakdown strength (Eb). It is well known that the Eb of dielectric materials is
mainly contingent on its microstructure, such as grain size and degree of densification.
Therefore, increasing Eb by reducing grain size is an effective way to improve energy stor-
age performance [17]. Wang et al. sort out the relationship between grain size and electric
breakdown strength, confirming the optimization effect of energy storage via grain size-
engineering [6]. As is well known, the annealing temperature has an immense impact on the
quality of films prepared by chemical solution deposition (CSD). For instance, Wang et al.
unveil a large value of Wrec up to 91.3 J·cm−3 at 4993 kV·cm−1 for Pb0.88Ca0.12ZrO3 (PCZ)
antiferroelectric thin films by designing a nanocrystalline structure of the pyrochlore phase
by optimizing the annealing temperature to 550 ◦C [18]. However, the negative effect
caused by the application of lead-containing dielectrics to human health and environmental
sustainability cannot be ignored, and the exploration of lead-free energy storage materials
is raised in the agenda. For example, Zuo et al. investigate that a high Wrec of 8.12 J·cm−3

and a great η of ∼90% are obtained simultaneously in BiFeO3-BaTiO3-NaNbO3 ceramics,
which can be attributed to the significantly enhanced Eb of BiFeO3-based ternary solid
solutions originating from the increased resistivity and refined grain size [19].

Bismuth layer-structured ferroelectric (BLSF) compounds, such as SrBi2Nb2O9 (SBN),
SrBi2Ta2O9 (SBT), Bi4Ti3O12 (BIT), CaBi4Ti4O15 (CBTi), belong to a large category of ferro-
electric materials [13,20–22]. They have the advantages of excellent anti-fatigue property,
large dielectric constant and small dielectric loss, high resistivity and low leakage current
density, high ferroelectric Curie transition temperature, and so on [23–26]. Those traits
show a good application prospect in the field of dielectric energy storage, but there is little
research on BLSF compounds in this field [27,28]. This is mainly due to their intrinsic short-
comings, namely, relatively low polarization and high coercive field, which lead to lower
energy density and higher losses in energy storage applications [29]. Recently, Pan et al.
presented a composition modification method in ferroelectric Aurivillius Bi3.25La0.75Ti3O12
by introducing BiFeO3 to increase the polarization value and optimize hysteresis loops,
in which Wrec (113 J·cm−3) and η (80.4%) are observed. Yang et al. prepared a series of
0.6BaTiO3-0.4Bi3.25La0.75Ti3O12 thin films, and the modified thin film also shows higher di-
electric breakdown strength and polarization. CBTi is also a representative BLSF compound,
which exhibits distinct advantages including being lead-free and fatigue-free. Meanwhile,
it possesses a high Curie point of about 790 ◦C to be used in relatively high temperature
applications [30]. However, it also faces troubles of low spontaneous polarization.
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In this work, we select Bi(Fe0.93Mn0.05Ti0.02)O3 introduced into CBTi, namely, CBTi-
BFO, to reduce leakage current and enhance breakdown field strength. In order to further
optimize the energy storage performance of CBTi-BFO thin films, the effect of anneal-
ing temperature on their energy storage capacity has been studied in detail. We found
that the microstructures of the CBTi-BFO thin films can be dominated by adjusting the
annealing temperature. The CBTi-BFO film annealing at 500 ◦C possesses an excellent
Wrec of 82.8 J·cm−3 and η of 78.3%, simultaneously, due to the obviously enhanced Eb of
3596 kV·cm−1. Meanwhile, the film shows outstanding temperature/frequency stability up
to 150 ◦C and superior fatigue stability after 107 switch cycles. The findings overcome the
shortcomings of organic thin films in energy storage, including low energy storage density
and low application temperature, unveiling an effective way towards high performance
lead-free and eco-friendly ferroelectric materials for energy storage applications.

2. Materials and Methods

Fabrication: CBTi-BFO films were synthesized on Pt/Ti/SiO2/Si substrates by chemi-
cal solution deposition. Bismuth nitrate pentahydrate [Bi(NO3)3·5H2O], calcium nitrate
tetrahydrate [Ca(NO3)2·4H2O], iron nitrate nonahydrate [Fe(NO3)2·9H2O], manganese
acetate tetrahydrate [C4H6MnO4·4H2O] as raw materials were dissolved in ethylene glycol
and acetic acid. Here, 10 mol% excess Bi was added to compensate for elements volatiliza-
tion. After that, the tetrabutyl titanate and acetylacetone were added into the mixed
clarified salt solution. The final concentration of the precursor solution was 0.1 M. After
24 h of aging, the precursor solution was spin coated on Pt/TiO2/SiO2/Si substrates with
a speed of 4000 rpm for 30 s. After that, the as-prepared CBTi-BFO films were pyrolyzed
at 350 ◦C for 120 s and annealed at 450, 500, 550, 600 ◦C for 10 min in a rapid thermal
annealing procedure, respectively. The spin coating and annealing process procedures
were duplicated up till the desired thickness of 300~700 nm was obtained. Circular Pt top
electrodes, ~200 µm in diameter, were sputtered through a shadow mask on the films for
the next electrical measurements.

Characterization and Measurements: The crystalline structure of CBTi-BFO films was
characterized by an X-ray diffractometer (XRD) with Cu Kα radiation (XRD, D8 ADVANCE,
Karlsruhe, Germany). The cross-sectional microstructure and surface morphology were
characterized by a field emission scanning electron microscope (FESEM, ZEISS Gemini300,
Oberkochen, Germany). The polarization-electric field (P-E) loops and insulating char-
acteristic were acquired from a standard ferroelectric tester (aixACCT TF3000, Aachen,
Germany). The frequency-dependent dielectric properties and impedance data were mea-
sured using impedance analyzer (HP4294A, Agilent, Palo Alto, CA, US). Impedance data
were analyzed by a Z-view software. The temperature-dependent electrical performance
tests were completed with the help of a temperature-controlled probe station (Linkam-
HFS600E-PB2, London, UK).

3. Results

Figure 1 displays the X-ray diffraction (XRD) patterns of the CBTi-BFO films annealing
at four different temperatures and standard JCPDS cards of the target phases. From
Figure 1a, as the temperature is at a lower value of 450 ◦C, most of the diffraction peak of
Aurivillius phases have not appeared yet or just a bump, indicating that some amorphous
phases formed due to insufficient heat energy. Note that the CBTi-BFO films annealed at
500 and 550 ◦C show the (119) and (200) diffraction peaks accompanied with another peak
with low intensity, which are consistent with the reported results of other CBTi films with
Aurivillius phase, demonstrating a polycrystalline bismuth layered structure without any
second phase [31–33]. As the annealing temperature continued to rise to 600 ◦C, apart from
the Aurivilius phase, two diffraction peaks that do not belong to the characteristic of the
bismuth layered ferroelectric appeared near 15◦ and 30◦, which is due to the formation of
the pyrochlore phase of Bi2Ti2O7 [34–37]. Generally, the pyrochlore phase can be formed
frequently due to the bismuth element volatilize as the annealing temperature increases,
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resulting in the ratio of bismuth ions to titanium ions approaching 1:1. As shown in
Figure 1b, the diffraction peak of (119) slightly shifts to a large angle with the increase
of the annealing temperature, which may be caused by the release of surface residual
stress [38,39].
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Figure 1. (a) X-ray diffraction (XRD) patterns in the 2θ range of 10–60◦ of the CBTi-BFO films annealed
at various temperatures. (b) Enlarged XRD patterns of the diffraction peaks of 2θ at around 30◦.

The SEM images clearly display the surface and the cross-sectional morphologies of
the CBTi-BFO thin films annealing at different temperatures. In Figure 2, the inset images
reveal that the thickness of all samples is approximately 550 nm. Meanwhile, all CBTi-BFO
thin films present compact and pore-free surface, which is favorable to energy storage
performance. As shown in Figure 2a, when the film is annealing at 450 ◦C, relatively
uniform fine grains can be noticed on the surface. As the temperature rises to 500 ◦C, the
grains absorb heat energy and thus, increase uniformly (Figure 2b). In sharp contrast, the
CBTi-BFO film annealing at 550 ◦C possesses different grains with a wide range of grain
size from ~17 to ~70 nm in Figure 2c. As the annealing temperature rises up to 600 ◦C, the
grain size further increases in the range of ~20 to ~85 nm (Figure 2d). The phenomenon
can be ascribed to: (i) different grain shapes corresponding to different orientations [40];
(ii) an inhomogeneous nucleation and grain-growth at a high annealing temperature [41].

It is well known that thin film with a high dielectric constant (εr) typically achieves
tremendous recoverable energy density and energy efficiency [27,42]. Figure 3a presents
the room-temperature frequency dependence of dielectric constant (εr) and the dissipation
factor (tanδ) of the CBTi-BFO thin films annealing at different temperatures. The εr value
of each film slightly decreases with the frequency raising, and increases obviously with
the annealing temperature increasing. The values of εr for the films annealing at 450 and
500 ◦C have slightly changed with the frequency increases, indicating that the samples
annealed at these two temperatures have better frequency stability. Generally, the dielectric
properties of ferroelectric film contain the intrinsic and extrinsic contributions, which could
be influenced by different factors, such as the grain size, preferred orientation, and so
on [43,44]. The reason that in the changes of εr with increasing annealing temperature may
be due to the fact that the increased annealing temperature resulted in the increased grain
size and reduced grain boundaries, leading to the enhancement of εr [27]. Moreover, the
dielectric loss (tanδ) gradually increases with increasing frequency in all samples. Besides,
all samples possess smaller loss (tanδ < 0.08) at 10 kHz.
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Figure 3. CBTi-BFO films annealed at 450, 500, 550 and 600 ◦C: (a) Frequency dependence of dielectric
properties. (b) Weibull distributions dielectric breakdown strengths. (c) Leakage current density as
a function of applied electric filed. (d) The bipolar P-E loops at 2500 kV·cm−1. (e) The bipolar P-E
loops around Eb, The inset shows the variation of Pmax, Pr, and Pmax-Pr as a function of annealing
temperature. (f) The variations of Wrec, Wloss and η values.

Generally, Eb is analyzed by two parameter Weibull statistics, which is closely affected
the energy storage performance of dielectric materials [45], as displayed in Figure 3b.
Meanwhile, the Eb endurance of four films with different annealing temperatures are
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demonstrated in the inset of Figure 3b. The Weibull distribution of Eb can be expressed by
the following formulas:

Xi = Ln(Ei) (4)

Yi = Ln(−Ln(1 − i
n + 1

)) (5)

where Ei is the breakdown electric field for each sample, i signifies the number of test
samples and n denotes the total number of test samples. Based on the Weibull distribution
function, the mean Eb for each film can be obtained from the intersection of the fitted
lines with the horizontal axis at Yi = 0. β represents Weibull shape parameter. It can be
observed that Eb increases rapidly with the annealing temperature decreasing, as shown
in the inset of Figure 3b. The average breakdown strength of the dielectric film increases
from 3241 kV·cm−1 to 3984 kV·cm−1, with the annealing temperature decrease from 600 to
450 ◦C. The enhancement of dielectric breakdown strength can be ascribed to the following
factor. It is well-known that electric breakdown field strength is inversely proportional to
the grain size (G), which can be manifested by the following formula:

Eb ∝ (G)−a (6)

where a is the exponent values, being in the range of 0.2–0.4 [6,46]. It can be seen that the
dielectric breakdown strength increases with the decreased grain size, which is aligned
with the results in Figures 2 and 3b. That is owing to grain boundaries producing depletion
regions similar to Schottky barriers located in semiconductor interfaces. Then, the grain
boundaries depletion layers establish important barriers for the cross-transport of ionic and
electronic charges [47]. Therefore, the Eb for CBTi-BFO film annealing at 450 ◦C is superior
to the films that have higher annealing temperature. The slope parameter β, related to the
scatter of Eb data, increases from 12.88 to 17.71 with the annealing temperature decrease
from 600 ◦C to 450 ◦C, indicating an enhancement in dielectric reliability by annealing
temperature decreasing. At the same time, the β of all films based on the linear fitting is
higher than 12, suggestive of all samples possessing high reliability.

Figure 3c represents the leakage current of all films, which are measured by applying
0–185 kV·cm−1 to the electrodes. The CBTi-BFO films annealed at 450 and 500 ◦C illustrate
well insulating properties with leakage current densities < 7 × 10−7 A cm−2 under an ap-
plied electric field of 185 kV·cm−1. The CBTi-BFO films annealed at 550 and 600 ◦C exhibit
higher leakage currents, which is ascribed to the greater grain size and the simultaneously
declined number of the grain boundary.

Presented in Figure 3d are bipolar polarization-electric filed (P-E) loops of the CBTi-
BFO films annealing at different temperatures applying the electric field of 2500 kV·cm−1 at
frequency of 10 kHz. With the annealing temperature decreasing, a monotonous decrease
of polarization (Pmax) is observed, from 33 µC cm−2 of 450 ◦C to 63 µC cm−2 of 600 ◦C.

Figure 3e shows P-E loops of CBTi-BFO films near their respective Eb annealing at dif-
ferent temperatures. It can be seen that the CBTi-BFO thin film annealing at 600 ◦C presents
a practically saturated P-E loop with a remnant polarization Pr of 20 µC/cm2, which is
lower than previous reports [32,33], suggesting that the derived CBTi-BFO thin films have
somewhat discrepant ferroelectric properties. For the CBTi-BFO thin films annealing at
lower temperatures, the obtained P-E hysteresis loops exhibit slim shape, which can be
ascribed to the function of lower leakage current and small crystallite size [48–50]. Figure 3f
presents the corresponding energy storage parameters of Wrec, Wloss and η determined from
P-E loops about all CBTi-BFO films. The value of Wrec and η for the CBTi film annealing at
500 ◦C, respectively, reaches 82.8 J·cm−3 and 78.3% due to an integration of remarkable Eb
of 3596 kV·cm−1 and a large polarization disparity of 52.3 µC cm−2 (inset of Figure 3e). It
is well known that the dielectric film can induce outstanding energy performance due to
high Pmax, low Pr and high electric breakdown strength. The lower annealing temperature
leads to more slender electric hysteresis loops and lower Wloss. Meanwhile, Eb is enhanced
with the decrease of the annealing temperature.
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Figure 4a–d show the Nyquist plots of films measured in the frequency range of 100 Hz
to 1 MHz at a series of temperatures (225–300 ◦C). As is known to all, a low-frequency arc
means the dielectric response of grain boundaries, while a high-frequency arc means the
dielectric response of grains. One semicircular arc is observed for the samples. As the grain
boundary dielectric relaxation of the material mainly contributes to the total impedance,
only the semi-circular arc corresponding to the grain boundary response is observed. The
intercept of impedance semicircular arcs on the Z’-axis can represent the total resistance
(Rb) values of the film. Clearly, the value of Rb gradually decreased with the increasing
measured temperature in each film, showing a negative temperature characteristic. This
phenomenon can be attributed to the fact that the mobility of the space charge becomes
easier, and more charge carriers will accumulate at the grain boundaries with the increasing
measured temperature, thus resulting in increased electrical conductivity and decreased
grain boundary resistance [51,52].
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Figure 4. Nyquist diagrams of complex-plane of the CBTi-BFO films with annealing temperature of
(a) 450, (b) 500, (c) 550, (d) 600 ◦C measured at 20 V under four measured temperatures.

In order to compare the impedance differences of the four samples in more detail, we
separately take out the impedance diagrams tested at 300 ◦C and showed them in Figure 5a.
It can be seen that Rb of CBTi-BFO films gradually increases with a decreasing annealing
temperature, indicating that the charge carrier concentration decreases in low-temperature
annealed samples [53].

Generally, the energy required for carriers to cross the energy barrier is called conduc-
tive activation energy (Ea), which can be calculated by Arrhenius formula:

σ = σ0 exp(−Ea/kBT) (7)

where T, σ0, Ea and kB are the measuring temperature on the Kelvin scale, preexponential
factor, activation energy and Boltzmann constant, respectively. The plots of ln(σ) as a
function of 1000/T for the films and linear fittings are shown in Figure 5b. The activation
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energies (Ea) obtained from the slopes of fitting lines for films annealing at 450, 500, 550,
600 ◦C are estimated to be 1.21, 0.84, 0.68, 0.66 eV, respectively. Generally, the higher value
of activation energy means fewer defects exist in the film [54]. Thus, we can deduce that the
sample with the lowest annealing temperature has the least defects. Combining the above
two points, it can be seen that CBTi-BFO with lowest annealing temperature possesses the
smallest charge carrier concentration and fewer defects, which contribute greatly to the
observed highest intrinsic breakdown field in this film.
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For practical application, the requirement of reliability and stability is emphasized,
such as under high/low temperature, high/low frequency and long-term working
environments. Thus, in view of the CBTi-BFO film annealing at 500 ◦C possessing
large Wrec and η among all samples, further investigations are carried out on it under
an electric field of 2500 kV·cm−1. Firstly, the temperature stability of the CBTi-BFO
film annealing at 500 ◦C is measured. The bipolar P-E loops of the film measured
from relatively low temperature of −25 ◦C to ultrahigh temperature of 200 ◦C are
displayed in Figure 6a. For the purpose of expressing the variation of polarization more
clearly, the unipolar hysteresis loop diagrams’ dependence on temperature is drawn in
Figure 6d. It can be seen that the Pmax value varies slightly from 42.62 to 45.89 µC cm−2.
Correspondingly, Wrec values are slightly increased by 2% from 44.88 to 45.84 J·cm−3

and η is reduced by 6% from 80.04 to 75.19% with temperature increasing, as shown in
Figure 6g. The aforesaid energy storage performance of the film shows good temperature
stability, which is adequate to meet the demands of applications in extreme environments
(capacitors used in underground industrial instruments need to work at temperatures
higher than 150 ◦C and the inverter must work at about 140 ◦C in HEV) [55–57]. Besides,
frequency dependence of the energy storage behavior is also researched at 2500 kV·cm−1.
Figure 6b, e are the bipolar and unipolar hysteresis loops measured at the frequency
range of 500 Hz to 20 kHz, respectively; and the corresponding energy performance Wrec
and η are shown in Figure 6h. Clearly, the P-E loop can maintain a slim feature and no
discernible decline in energy storage performance can be discovered. Even though the
frequency rises from 500 Hz to 20 kHz, the Wrec and η values slightly drop from 48.71 to
43.80 J·cm−3 and 83.94 to 77.47%, respectively, indicating that a good frequency stability
can be realized. Furthermore, to assess the long-term charging–discharging stability of
dielectric capacitors, the fatigue endurance should be investigated. The P-E loops of
CBTi-BFO film annealing at 500 ◦C over 107 charge–discharge cycles are exhibited in
Figure 6c, f. It can be seen that there is no obvious change in the hysteresis loops. The
corresponding Wrec and an excellent η present a negligible degradation with 1% and 0.3%
as shown in Figure 6i. The observed superior antifatigue feature is closely related to the
(Bi2O2)2+ layer in the Aurivillius phase, which has a good insulating effect inhibiting the
flow and generation of leakage charges during the repeated polarization process. Thus,
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the Aurivillius phase can more effectively suppress the electrical breakdown during the
fatigue process and improve the anti-fatigue performance.
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Figure 7 summarizes a serious of results on the energy storage performance of Aurivil-
lius ferroelectric films [12,13,27,28,58–60]. In this study, the CBTi-BFO thin film annealing
at 500 ◦C possesses a relatively high η (~78%) superior than BaLa0.2Bi3.8Ti4O15 (BLBT~60%)
and Bi3.25La0.75Ti3O12/BiFeO3/Bi3.25La0.75Ti3O12 (BLT/BFO/BLT~74%), but inferior to
Ba2Bi4Ti5O18 (BBT~92%), 0.6BaTiO3-0.4Bi3.25La0.75Ti4O12 (0.6BT-0.4BLT~84%), CaBi2Nb2O9
(CBNO~82%), Sr2Bi4Ti5O18 (SBT~81%), Bi3.25La0.75Ti3O12-BiFeO3 (BLT-BFO~80%). In con-
trast, its Wrec clearly outperforms the surveyed dielectric systems with a high η. That is, the
CBTi-BFO thin film annealing at 500 ◦C has excellent comprehensive properties, namely, a
good balance between Wrec and η. Meanwhile, the film has a great Eb (~3596 kV·cm−1) at a
high level. Taken together, the CBTi-BFO thin film annealing at 500 ◦C is a good candidate
for application in energy storage devices.
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4. Conclusions

In this work, a series of CBTi-BFO thin films are prepared by chemical solution
deposition under different annealing temperatures. We found that by optimizing the
microstructures and crystalline structure of films via adjusting the annealing temperature,
the electrical properties and energy storage performance can be greatly improved, especially
in the film with a relatively lower annealing temperature. In the annealing temperature of
500–550 ◦C, CBTi-BFO thin films demonstrates a polycrystalline bismuth layered structure
without any second phase. The CBTi-BFO with the lowest annealing temperature has the
smallest carrier concentration and fewer defects, which greatly contribute to the highest
intrinsic breakdown field of this film. Here, ultrahigh energy storage density of Wrec
(~82.8 J·cm−3) and η (~78.3%) are achieved in the CBTi-BFO film that annealed at 500 ◦C.
The excellent energy storage performance can be ascribed to its uniform fine grain size. The
film also shows superior thermal stability (from −25 to 200 ◦C), frequency stability (from
500 Hz to 20 kHz) and fatigue endurance (after 107 switching cycles). In a word, annealing
temperature plays an important part in performance tuning, which is a vital factor needed
to be considered for preparing thin film capacitors with high energy storage characteristics.
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