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We present a general quantum metrology framework to study the simultaneous estimation of multiple
phases in the presence of noise as a discretized model for phase imaging. This approach can lead to nontrivial
bounds of the precision for multiphase estimation. Our results show that simultaneous estimation (SE) of
multiple phases is always better than individual estimation (IE) of each phase even in noisy environment.
The utility of the bounds of multiple phase estimation for photon loss channels is exemplified explicitly.
When noise is low, those bounds possess the Heisenberg scale showing quantum-enhanced precision with
the O(d) advantage for SE, where d is the number of phases. However, this O(d) advantage of SE scheme in
the variance of the estimation may disappear asymptotically when photon loss becomes significant and then
only a constant advantage over that of IE scheme demonstrates. Potential application of those results is
presented.

A
general estimation scheme of multiple parameters can be divided into three stages: the preparation of

some probes, the interaction of the probes with a system which is determined by the parameter vector h,
and measurements of the probes after the interaction. Then h is estimated from the results of the

measurements. When the dimension of h is 1, the case becomes single parameter estimation. If the probes are

uncorrelated, then the central limit theorem states that the estimation error Tr[Cov(h)] scales as 1
. ffiffiffiffi

N
p

, with N

being the number of resources (photons, atoms) employed. While in quantum world by correlating the probes
nonclassically, the estimation error may scale as 1/N in an ideal scenario, which is the ultimate limit of precision
named as the Heisenberg limit1–4. The enhancement in the estimation precision is the main concern of quantum
metrology, and a lot of work has been done, both theoretically and experimentally5–26.

A quantum enhancement in precision is of great importance in metrology such as for imaging and microscopy.
Recently, the quantum enhanced imaging making use of point estimation theory is presented based on single
parameter estimation procedure through the Fisher information approach17. Since phase imaging is inherently a
multiple parameter estimation problem, the multiple phase estimation is of interest26. It is found that for unitary
evolutions, simultaneous estimation (SE) of multiple phases provides an advantage scaling O(d) in the variance of
the estimation over individual estimation (IE) of each phase, where d is number of phases to be estimated. This
conclusion holds for noiseless processes. However, in a realistic scenario, noise cannot be avoided due to
decoherence. An investigation of whether this advantage still exists for a general evolution is necessary.

For noisy processes, it is not known in general if and when the quantum enhancement of precision from 1
. ffiffiffiffi

N
p

to 1/N can be achieved though general expressions for the uncertainty in the estimation are known. The problem
is that their calculation involves complex optimization procedures. Fortunately, a general framework is proposed
recently to obtain attainable and useful lower bound of the quantum Fisher information (QFI) in noisy systems27.

In particular, this lower bound captures the main features of the transition from the 1/N to 1
. ffiffiffiffi

N
p

precisions for

the cases of noisy channels such as photon loss and dephasing. Those results are for the single parameter
estimation.

In this work, we present a general framework for the estimation of multiple phases with noise. We apply this
framework to study a specific example of the photon loss type noise. Photon loss is a very usual noise type in
optical systems. We make a conjecture that with only photon loss considered the QFI matrix of the phases can be
saturated for a certain set of initial probes, which means that we are in principal able to find a measurement M to
make the Fisher information matrix after measurement equal to the QFI matrix. In this way, the QFI bound
computed is a tight lower bound of the uncertainty of the estimation. We show that in the limit of noiseless, the
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precision can achieve the Heisenberg limit 1/N with an advantage of
O(d) for multiple phase, thus recover the known results26. With noise
increasing, SE is always better than IE, but the O(d) advantage may
disappear asymptotically, with photon loss taken as an example. At
the same time, the precision of estimation decreases to the standard

quantum limit (SQL) 1
. ffiffiffiffi

N
p

. So similar as for single phase, our result

of multiphase can also capture the main features of the transition
from Heisenberg limit to standard quantum limit.

We shall consider a multiple phase estimation model described by
Fig. 1. In the preparation stage, a probe state is created of the form

y0j i~
XD

k~1

ak Nk,0, Nk,1, � � � , Nk,dj i~
XD

k~1

ak N kj i: ð1Þ

We assume that the amount of resources employed in the estimation
process is restricted by the photon number N, and Nk describes the
kth possible distribution of N photons in different modes, which is
represented by a vector (Nk,0,Nk,1, � � � ,Nk,d), where Nk,i stands for the

number of photons employed in the ith mode and
Xd

i~0
Nk,i~N . D

5 (N 1 d)!/N!d! stands for the total number of possible distributions.

Normalization is required such that
XD

k~1
akj j2~1. In an estima-

tion scheme, the probe state is chosen beforehand, and one aim of
metrology is to find out the optimal probe to estimate the parameters.
For simplicity we only choose pure states as probes, so we have r0 5

jy0æ Æy0j.
In the evolution stage, we consider the case that states in different

modes evolve independently. In the mode i, evolution is determined

by the parameter hi, expressed in terms of Kraus operators P̂ ið Þ
li

hið Þ,
which satisfies

X
li
P̂

ið Þ{
li

hið ÞP̂ ið Þ
li

hið Þ~II. The evolved state is then

given by

r hð Þ~
X

l

P̂l hð Þr0P̂
{
l hð Þ, ð2Þ

where we denote h 5 (h1, …, hd), l 5 (l0, l1, …, ld) and

P̂l hð Þ~P̂
0ð Þ

l0
6P̂

1ð Þ
l1

h1ð Þ6 � � �6P̂
dð Þ

ld
hdð Þ.

Results
The advantage of simultaneous estimation. As is shown26, SE
provides an O(d) advantage over IE, without noise considered.
Here we shall show that even under general evolution, SE is still
better than IE, but the O(d) advantage may disappear gradually,
with photon loss taken as an example. We remark that our results
of noisy processes can recover the case of noiseless in a continuum
manner thus possess the SE advantage.

In Fig. 1, only one reference mode 0 is implemented to estimate the
d phases h1 to hd. We now consider the scheme to implement d
reference modes, with each connected to a corresponding phase.
The initial state can be written as

y0j i~
X

k

ak Nk,01, � � � , Nk,0d, Nk,1, � � � , Nk,dj i, ð3Þ

where each reference mode experiences the same evolution as the
original mode 0. We remark that any IE strategy is equivalent to use
an initial state with the form

y0j i~ y1j i01,16 y2j i02,26 � � �6 ydj i0d,d, ð4Þ

and only separate measurement for each phase is allowed. Now we
see that IE is actually contained in the complete set of SE strategies,
which leads to the conclusion that SE is generally better than IE even
under noise.

Phase estimation under photon loss. A beam splitter is generally
used to model photon loss. A possible set of Kraus operators in each
mode is given by31

P̂
ið Þ

li
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{gið Þli

li!

s
eihi n̂i gi

n̂i
2 âi

li , ð5Þ

where g is the square of the transmissivity r (ranging from g 5 1,
lossless case, to g 5 0, complete loss). It is conjectured in
Supplementary Material that, as long as all the ak in Eq.(1) are real,
for this particular set of Kraus operators, the QFI bound can be
saturated. Since equivalent sets of Kraus operators lead to the same
evolved state, the QFI matrix should be the same no matter what
Kraus operators are chosen. Consider the following set of Kraus
operators

P̂
ið Þ

li
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{gið Þli

li!

s
eihi n̂i{di lið Þgi

n̂i
2 âi

li , ð6Þ

where di are arbitrary real numbers that we are free to choose.
In the methods part, we have derived a method to give a lower

bound for the optimal precision of multiple phase estimation

Cov hð Þ§ 1

CQ h,P̂l

� � , ð7Þ

where the element of the matrix of CQ is

CQ h,P̂l

� �
ij~4 B̂ ijð Þ

D E
0
{ Â ið Þ
D E

0
Â jð Þ
D E

0

n o
, ð8Þ

with � � �h i0 standing for S y0h j � � � y0j iS and

Â ið Þ~
X

li

i
dP̂ ið Þ{

li

dhi
P̂

ið Þ
li

, ð9Þ

B̂ ijð Þ~

P
li

dP̂ ið Þ{
li

dhi

dP̂ ið Þ
li

dhi
, i~j

Â ið ÞÂ jð Þ, i=j

8<
: ð10Þ

Under the noise of photon loss, following the same calculation as in
the single phase case, we have27

Â ið Þ~ain̂i,

B̂ ijð Þ~
Â ið ÞÂ jð Þ, i=j

a2
i n̂2

i zbin̂i, i~j,

( ð11Þ

with ai 5 1 2 (1 1 di)(1 2 gi), bi 5 (1 1 di)2gi(1 2 gi). For simplicity
of calculation, we suppose that gi 5 g for all i, or all modes are
symmetric.

We first consider the best IE strategy to estimate d phases with
limited resources of N photons. Generally the minimum uncertainty
of the estimate of phase i can be written as

Figure 1 | A multiple phase estimation model. An initially prepared probe

state | y0æ undergoes a general evolution described by d 1 1 sets of Kraus

operators, depending on d parameters which we are supposed to estimate

simultaneously. Different modes evolve independently.
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Dh2
i ~

Ct

nt
i

, ð12Þ

where t is the scaling coefficient under certain conditions with t 5 2
being the Heisenberg scale and t 5 1 being the SQL scale. Ct is a
constant and ni is the number of photons employed in the estimation
of phase i. Since all modes are symmetric, we assume that under the
best IE strategy, the uncertainty of each phase follows the same

scaling. We then need to minimize
Xd

i~1
Dh2

i ~Ct

Xd

i~1

1
nt

i
.

Through basic calculation we know that the minimum is obtained
when the estimation of each phase uses the same amount of
resources, which is N/d photons, for any positive t. Then we have

min
Xd

i~1

Dh2
i ~

Ct

N=dð Þt
d: ð13Þ

Now we turn to the SE strategy. If we choose di~
1

1{gi
{1 and

substitute them into Eq.(11), all the off-diagonal terms of CQ will
disappear, we then have

Tr C{1
Q

h i
~
X

i

4g

1{g

1
n̂ih i0

, ð14Þ

from which we can clearly observe the disappearance of the
Heisenberg scale as is expected.

To see that the O(d) advantage may disappear in the asymptotic
case, we first assume that N?1, d?1, N=d?1. From Eq.(14), we are

to seek a state jy0æ which maximizes
X

i

1
n̂ih i0

. Since
X

i
n̂ih i0ƒN ,

we have
X

i

1
n̂ih i0

ƒ

d2

N
and the equality is attained when n̂ih i0~

N
d

for any i. Then a lower bound for SE is obtained:

Tr Cov hð Þ½ �§ 1{g

4g

d2

N
: ð15Þ

We know in the asymptotic case, the scaling coefficient t in Eq.(13) is
1, and the total variance isX

i

Dh2
i <C1

1
N=d

d~C1
d2

N
: ð16Þ

Compare Eq.(15) and Eq.(16), we see that the O(d) advantage no
longer exists.

In order to exhibit more clearly the transition from the Heisenberg
scale with the O(d) advantage to the SQL scale without the O(d)
advantage, we investigate the SE strategy using a specific probe state
jysæ. jysæ is a generalized N00N state as defined in Ref. 26, explicitly
written as

ysj i~ a 0,N,0, � � � ,0j iz 0,0,N, � � � ,0j iz � � �zð

0,0,0, � � � ,Nj iÞzb N,0,0, � � � ,0j i,
ð17Þ

where a2~
1

dz
ffiffiffi
d
p and da2 1 b2 5 1. The reason we choose this

state is that in the noiseless case estimation with this state has both
the Heisenberg scale and the O(d) advantage26, and we will show how
they disappear as noise becomes significant. To further simplify the
calculation, we assume that di 5 d, which is reasonable since all
modes are symmetric. Then only one variable d needs to be opti-
mized to make the lower bound CQ as tight as possible.
Asymptotically we have

Tr C{1
Q

h i
<

1
4

1

1
1{g

g Nz1ð Þ2
N
d

� �2
z

1{g
g N2

1{g
g Nz1ð Þ2

N
d

1
d

, ð18Þ

when d~
N=g

1{g
g

Nz1
{1, see Supplementary Material for details. For

1{g

g
=

1
N

, we have

Tr C{1
Q

h i
~

1
4

1

N=dð Þ2
:

We see that it is the Heisenberg scale, additionally, compared with

Eq.(13), the O(d) advantage of SE exists. Whereas for N?
g

1{g
, we

have Tr C{1
Q

h i
~

1{g

4g

1
N=d

d. We see that it is the SQL scale and

compared with Eq.(13), the O(d) advantage of SE disappears.
Although we have proven that SE provides at most a constant

increase of precision over IE asymptotically for large noise, it doesn’t
mean that there is no need to use the SE strategy. Rather contrarily,
it is shown in Fig. [2] that for d 5 2, g 5 0.9 and small numbers
N, a significant decrease of uncertainty about 50% can be
achieved. For IE, an optimized state over all states of the formXN=d

n~0
an n,N=d{nj i is chosen as the probe to estimate an indi-

vidual phase. We have calculated a lower bound of the QFI27. For
SE without loss, the state jysæ is chosen as the probe. For SE with loss,
we use the same probe and calculate its QFI matrix numerically.
Since we have proven that for this initial state, the QFI matrix can
be locally saturated, we have jDhSEj2 5 Tr[IQ(h)21]. So in principal,
an advantage of SE over IE larger than that shown in Fig. [2] can be
obtained. From the result, we see that if we need to estimate multiple
phases, we should estimate simultaneously to achieve higher
precision.

In Fig. 2, we have also made a comparison of different estimation
strategies versus various g. We see that under low g, which means the
photon loss is significant, SE using states jysæ is worse than IE. This is

Figure 2 | A comparison of SE and IE strategies for multiple phase
estimation with d 5 2, h1 5 2, h2 5 2. For (a), g is fixed at 0.9 and N is

various. For (b), N is fixed at 6 and g is various. The black solid line gives

the total variance |DhSEideal | 2 without any noise using the probe states | ysæ.
The red dashed line gives the total variance |DhSE | 2 under photon loss

using the probe states | ysæ. The blue dotted line gives a lower bound of the

total variance |DhIE | 2 under photon loss using IE strategy with the optimal

probe.

www.nature.com/scientificreports
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understandable, because for calculating jDhIEj2, we have used an
optimal probe, but for calculating jDhSEj2, only jysæ is used. jysæ is
a generalized N00N state and is vulnerable to photon loss. A state
robust against photon loss may be necessary21. For higher g, jysæ is
enough to beat the IE strategy.

Discussion
We have presented a lower bound for the error in multi-parameter
estimation under noise, within the framework of quantum met-
rology, and photon loss is exemplified. We have proved the useful-
ness of this bound by showing that it can capture the main feature of
the transition from the Heisenberg limit with the O(d) advantage to
the SQL limit without the O(d) advantage as noise becomes signifi-
cant. We have also shown the advantage of SE over IE in precision.
The enhancement in precision can also be applied for single phase by
replicating it to several copies. This novel scheme is better than
simply duplicating the measurement instrument. Our analysis of
multiple phase estimation should be of wide interest in many pro-
blems. Quantum enhanced phase imaging is one potential applica-
tion. A recent investigation of quantum phase imaging used point
estimation with single parameter17, since phase imaging is inherently
a multiparameter estimation problem, our results provide an
approach to this problem. Our results should also be of interest in
gravitational wave detection32, since it can be recast as optical phase
estimation33. They will also motivate an investigation into the role of
noise in quantum enhancement. Thus, the application of our results
is worth investigating for various quantum metrology problems.

Methods
It is known that, the precision of the estimate of h, described by its covariance matrix
Cov(h), is limited by the quantum Cramér-Rao (QCR) inequality28,29

Cov hð Þ§ MIQ hð Þð Þ{1, ð19Þ

where the inequality means that Cov(h) 2 (MIQ(h))21 is positive semidefinite, IQ(h) is
the QFI matrix, M is the repetition of the whole estimation process. Here we have
assumed that the estimator of h is unbiased. This is a reasonable assumption since
Cramér has proved that the maximum likelihood method will give an asymptotic
unbiased estimate as M R ‘34. A brief introduction about the QFI approach for
quantum metrology is presented in Supplementary Material. Since we are interested
only in the quantum enhancement, we shall set M to 1 for this letter. The total
variance of all the phases is then

Dhj j2~
Xd

i~1

dh2
i ~Tr Cov hð Þ½ �§Tr I hð Þ{1� �

: ð20Þ

Inspired by the work27, we propose a general method to derive an upper bound
CQ h,P̂l

� �
of IQ(h), where P̂l is any Kraus representation of the quantum channel.

Suppose the real value of the parameter vector is h, and is an infinitesimal increment,
then we have the relation between the Bures fidelity and the QFI matrix at h 29:

FB r hð Þ,r hzð Þ½ �ð Þ2~1{
1
4

X
i,j

i jIQ hð Þij, ð21Þ

where the Bures fidelity is defined as: FB r,s½ �~Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
p

s
ffiffiffi
r
pq

. Uhlmann’s theorem

states that30

FB r hð Þ,r hzð Þ½ �ð Þ2~ max
Y hzð Þj i

W hð Þh Y hzð Þj ij j2, ð22Þ

where jW(h)æ is an arbitrary purification of r(h) in an enlarged space SE, and
Y hzð Þj i runs over all purifications of r hzð Þ. Since

W hð Þ Y hzð Þj ihj j2~FB W hð Þj i, Y hzð Þj ið Þ2~1{
1
4

X
i,j i jCQ hð Þij , where CQ(h)

is the QFI matrix at h in space SE, we have IQ(h) # CQ(h). The equality may actually be
achieved. Because for pure states jY(h)æ, its QFI matrix can be explicitly written out.
This will provide us a method to derive useful analytical bounds of IQ(h).

Notice that for the scheme of Fig. 1, although the probe state may be correlated, the
evolution is separated for different modes. Thus rather than to purify the system S on
the whole, we may purify each mode independently, which greatly reduces the dif-
ficulty of purification. Add an environment Ei to the respect system Si, and purify the

evolution P̂
ið Þ

li

n o
to a unitary one Û Si Eið Þ

i , the evolved state rS(h) becomes a pure state

jY(h)æSE, given by

Y hð Þj iSE~Û SEð Þ hð Þ y0j iS 0j iE, ð23Þ

where Û SEð Þ hð Þ~Û S0 E0ð Þ
0 6

d
i~1Û SiEið Þ

i hið Þ, 0j iE~6
d
i~0 0j iEi

. The purified unitary
evolution is connected to the original Kraus representation through the equation30,

P̂
ið Þ

li
hið Þ~Ei lih jÛ Si Eið Þ

i hið Þ 0j iEi, ð24Þ

where lij iEi
form a basis for the environment Ei.

We show in Supplemental Material that the QFI matrix for the enlarged total
system SE can then be expressed as

GQ h,P̂l

� �
ij~4 B̂ ijð Þ

D E
0
{ Â ið Þ
D E

0
Â jð Þ
D E

0

n o
, ð25Þ

with � � �h i0 standing for S y0h j � � � y0j iS and

Â ið Þ~
X

li

i
dP̂ ið Þ{

li

dhi
P̂

ið Þ
li

, ð26Þ

B̂ ijð Þ~

P
li

dP̂ ið Þ{
li

dhi

dP̂ ið Þ
li

dhi
, i~j

Â ið ÞÂ jð Þ, i=j

8<
: ð27Þ

So at first place, we have IQ hð Þ~minP̂l
CQ h,P̂l

� �
, with the minimization running

over all possible Kraus representations of the quantum channel. In order to reduce the
difficulty of the optimization process, we only consider independent purification of
each mode, such that P̂l hð Þ~P̂l06P̂l1 h1ð Þ6 � � �6P̂ld hdð Þ. Further we can restrict
the minimization process to a subclass of all the possible P̂l , depending on a few
variational parameters which shall be optimized. The subclass may be constructed
based on physical insight. In this way nontrivial bound can also be obtained as we will
present below.

1. Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L. & Heinzen, D. J. Spin
squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797
(1992).

2. Wineland, D. J., Bollinger, J. J., Itano, W. M. & Heinzen, D. J. Squeezed atomic
states and projection noise in spectroscopy. Phys. Rev. A 50, 67 (1994).

3. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum metrology. Phys. Rev. Lett. 96,
010401 (2006).

4. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements:
beating the standard quantum limit. Science 306, 1330 (2004).

5. Huelga, S. F. et al. Improvement of frequency standards with quantum
entanglement. Phys. Rev. Lett. 79, 3865 (1997).

6. Boixo, S., Flammia, S. T., Caves, C. M. & Geremia, J. M. Generalized limits for
single-parameter quantum estimation. Phys. Rev. Lett. 98, 090401 (2007).

7. Monras, A. & Paris, M. G. A. Optimal quantum estimation of loss in bosonic
channels. Phys. Rev. Lett. 98, 160401 (2007).

8. Dorner, U. et al. Optimal quantum phase estimation. Phys. Rev. Lett. 102, 040403
(2009).

9. Higgins, B. L., Berry, D. W., Bartlett, S. D., Wiseman, H. M. & Pryde, G. J.
Entanglement-free Heisenberg-limited phase estimation. Nature 450, 393 (2007).

10. Konrad Banaszek, R. et al. Quantum states made to measure. Nature Photon. 3,
673 (2009).

11. Kacprowicz, R. M. et al. Experimental quantum-enhanced estimation of a lossy
phase shift. Nature Photon. 4, 357 (2010).

12. Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23,
1693 (1981).
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17. Pérez-Delgado, C. A., Pearce, M. E. & Kok, P. Fundamental Limits of Classical and
Quantum Imaging. Phys. Rev. Lett. 109, 123601 (2012).

18. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nature
Photon. 5, 222 (2011).

19. Xiang, G. Y., Higgins, B. L., Berry, D. W., Wiseman, H. M. & Pryde, G. J.
Entanglement-enhanced measurement of a completely unknown optical phase.
Nature Photon. 5, 43 (2011).

20. Zhang, Y. L. et al. Quantum network teleportation for quantum information
distribution and concentration. Phys. Rev. A 87, 022302 (2013).

21. Zhang, Y. L., Zhang, Y. R., Mu, L. Z. & Fan, H. Criterion on remote clocks
synchronization within a Heisenberg scaling accuracy. Phys. Rev. A 88, 052314
(2013).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5933 | DOI: 10.1038/srep05933 4



22. Kessler, E. M. et al. Heisenberg-limited atom clocks based on entangled qubits.
eprint arXiv:1310.6043 (2013).
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