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Numerous studies have reported how inner cell mass (ICM) and trophectoderm (TE) was
determined during the process of early mouse embryonic development from zygotes into
organized blastocysts, however, multiple mysteries still remain. It is noteworthy that
pluripotent stem cells (PSCs), which are derived from embryos at different
developmental stages, have identical developmental potential and molecular
characteristics to their counterpart embryos. Advances of PSCs research may provide
us a distinctive perspective of deciphering embryonic development mechanism.
Minocycline hydrochloride (MiH), a critical component for maintaining medium of novel
type of extended pluripotent stem cells, which possesses developmental potential similar
to both ICM and TE, can be substituted with genetic disruption of Parp1 in our previous
study. Though Parp1-deficient mouse ESCs are more susceptible to differentiate into
trophoblast derivatives, what role of MiH plays in mouse preimplantation embryonic
development is still a subject of concern. Here, by incubating mouse zygotes in a
medium containing MiH till 100 h after fertilization, we found that MiH could slow down
embryonic developmental kinetics during cleavage stage without impairing blastocyst
formation potential. Olaparib and Talazoparib, two FDA approved PARP1 inhibitors,
exhibited similar effects on mouse embryos, indicating the aforementioned effects of
MiH were through inhibiting of PARP1. Besides, we showed an embryonic protective role
of MiH against suboptimal environment including long term exposure to external
environment and H2O2 treatment, which could mimic inevitable manipulation during
embryo culture procedures in clinical IVF laboratory. To our knowledge, it is not only
for the first time to studyMiH in the field of embryo development, but also for the first time to
propose MiH as a protective supplement for embryo culture, giving the way to more
studies on exploring the multiple molecular mechanisms on embryonic development that
might be useful in assisted reproductive technology.
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INTRODUCTION

During early murine embryo development, the zygote undergoes
a serials of cell divisions and generates a blastocyst which consists
of two distinct cell types: the inner cell mass (ICM) and the
trophectoderm (TE) that surrounds the ICM (Johnson and
Ziomek 1981; Fleming 1987; Morris et al., 2010). The TE gives
rise to trophoblast lineages of placenta, and the ICM forms
pluripotent epiblast, which following develops to the embryo
proper and the primitive endoderm (Chazaud et al., 2006).
Though numerous studies have reported how these lineages
are determined, multiple mysteries still remain (Chazaud and
Yamanaka 2016).

Studies focused on mechanical regulation of stem cells
pluripotency have offered many clues for embryonic
development research (Nichols and Smith 2012; Boroviak
et al., 2014; Baker and Pera 2018). In our previous study,
extended pluripotent stem cells (EPS) were derived from
blastocyst and exhibited widespread bi-potency for both
embryonic and extraembryonic lineages in vivo. This novel
type of pluripotent stem cells (PSCs) was maintained with a
chemical cocktail, consisting of human leukemia inhibitory factor
(hLIF), CHIR 99021, (S)-(+)-dimethindene maleate (DiM) and
minocycline hydrochloride (MiH), which was short for LCDM
(Yang et al., 2017). Notably, Parp1-deficient mouse EPS cultured
in condition withoutMiH could develop into both TE and ICM of
the embryos as well (Yang et al., 2017), indicatingMiH performed
through inhibiting Poly (ADP-ribose) polymerase-1 (PARP1),
which was consistent with the work of Alano et al., 2006. What
role MiH plays in the embryonic development procedure and
whether it works through PARP1 inhibition are subjects of
concern.

PARP1 is the most abundant isoform of PARP family. To date,
three functionally defined domains of PARP1 has been found: 1)
N-terminal DNA binding domain; 2) C-terminal catalytic
domain and 3) central automodification domain (Rolli et al.,
1997). It is an important nuclear factor in modulating cell mitosis,
DNA replication, transcription, metabolism and epigenetic
events through PARylation of downstream proteins (Pleschke
et al., 2000; Simbulan-Rosenthal et al., 2001; Hassa and Hottiger
2002; Simbulan-Rosenthal et al., 2003; Kanai et al., 2007;
Nusinow et al., 2007; Caiafa et al., 2009). Moreover, PARP1
acts as a DNA damage sensor and binds to both single and double
stranded DNA breaks (Virag and Szabo 2002; Gibson and Kraus
2012), promoting both base excision repair and homologous
recombination (Burkle 2001; Curtin 2013). Studies in somatic
cells indicate that when PARP1 activated, it attaches PAR units
which were derived from NAD+ to various nuclear proteins
including itself, histones and other nuclear proteins such as
transcription factors (Cohen-Armon 2007; Hinz et al., 2010;
Kraus and Hottiger 2013). Several works have proved that
genetic and pharmaceutical disruption of PARP1 in oxidative
stress played a protective role against cell death by maintaining
integrity of mitochondrial membrane and activating
phosphatidylinositol-3 kinase (PI3K)-AKT signal pathway
(Veres et al., 2004; Tapodi et al., 2005; Bartha et al., 2009;
Mester et al., 2009; Szanto et al., 2009).

Oxidative stress, a cellular condition caused by the
accumulation of reactive oxygen species (ROS), have been
repeatedly shown to be prevalent in defective embryo
development and result in suboptimal pregnancy rates (Guerin
et al., 2001; Kovacic and Vlaisavljevic 2008; Ciray et al., 2009;
Waldenstrom et al., 2009). Although numerous studies have
reported the effects of individual antioxidants on embryo
development (Fujitani et al., 1997; Ali et al., 2003; Kitagawa
et al., 2004; Choe et al., 2010; Silva et al., 2015), it seems that none
of the available ones can fully mimic the physiological conditions
of the female tract (Aviles et al., 2010).

Taking all this information into consideration, we sought to
determine whether MiH can improve embryo quality in
suboptimal culture environment.

MATERIALS AND METHODS

Animals and Ethics
ICR mice (5–6 weeks female and 10 weeks old male) were
purchased from Animal Care Facility of Nanjing Medical
University and were housed in ventilated cages at constant
temperature (22°C) and controlled humidity and light dark
cycle. All animal experiments were approved by the Animal
Care and Use Committee of Nanjing Medical University and
were performed in accordance with institutional guidelines.

Antibodies
Rabbit polyclonal anti-OCT4 antibody (Cat#: ab181557) was
purchased from Abcam (Cambridge, MA, United States);
mouse monoclonal anti-CDX2 antibody (Cat#:AM392-5M)
was purchased from BioGenex (Fremont, United States);
mouse monoclonal PAR/pADPr antibody (Cat#:4335-MC-100)
was purchased from R&D Systems (Minnesota, United States).
Donkey anti-Mouse Alexa Fluor 488, 555 and Donkey anti-
Rabbit Alexa Fluor 555 antibodies (Cat#: A21202, A31570,
A31572) were purchased from Thermo Fisher Scientific
(Rockford, IL).

In vitro Fertilization and Embryo Culture
To promote ovulation, female mice were intraperitoneally
injected with 7 IU Pregnant Mare Serum Gonadotropin
(PMSG) followed by 7 IU of Human Chorionic Gonadotropin
(hCG) after PMSG priming. Cumulus-oocyte complexes (COC)
were isolated from oviduct ampullae 14–15 h post-hCG injection
and were cultured in drops of HTF fertilization medium under
mineral oil. Sperm was collected from the tail of epididymis of
adult male mice and incubated in HTF fertilization medium at
37°C in a 5% CO2 incubator for 1 h before fertilization. Then
capacitated spermatozoon was added to HTF drops containing
COC and co-cultured together for 6 h in the incubator to allow
for fertilization. Zygotes were then washed and transferred into
drops of KSOM (Aibei Biotechnology, Nanjing, M1450) medium
supplemented with chemical inhibitors or not. Chemical
inhibitors were used at the following concentrations: 2 μM
Minocycline hydrochloride (MiH, Selleck, S4226); 20, 50 or
100 nM Olaparib (Ola, APExBio, A4154); 0.2, 0.5 or 1 nM
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Talazoparib (Tala, APExBio, A4153). Embryos were observed
and imaged with an inverted phase-contrast microscopy (Nikon
Ts2R, Japan).

Immunostaining
Embryos were fixed in 4% paraformaldehyde for 15 min and then
were permeabilized with PBS containing 0.2% Triton X-100 for
10 min at room temperature (RT). After being blocked for 1 h in
blocking buffer, which comprised of PBS together with 0.1% BSA,
0.01% Tween-20 and 2.5% donkey serum, embryos were
incubated with primary antibodies diluted in blocking buffer
overnight at 4°C. Embryos were then washed for three times with
PBS and labeled with secondary antibodies in the dark for 1 h at
RT. Samples were then washed for three times with PBS and
stained with 1 μg/ml DAPI for 5 min, and washed for three times
before mounting on glass slides in small drops of antifade
medium. Samples were then imaged using an inverted phase-
contrast microscopy (Nikon Ts2R, Japan).

In Vitro Exposure of Mouse Zygotes and
Developmental Potential Tests Beyond
Preimplantation
Zygotes were collected in drops of HTFmedium after fertilization
and place them on the warmed microscope stage for 1 h at 37°C.
Zygotes were then transferred to the KSOM medium with or
without MiH to culture.

After 100 h, the blastocysts of the above three groups were
randomly selected and surgically transferred into the uteri of
pseudopregnant female mice. 9 days after transferring, mice were
euthanized to see whether they were pregnant.

An IVC assay was also carried out to observe the
developmental potential in vitro by culturing the rest of
blastocysts in the afore mentioned experiments according to a
protocol we used before (Zhao et al., 2021). All the blastocysts
were embedded in Matrigel drops and culture for further 120 h to
see whether they could form egg cylinder structures.

Mouse Zygotes Model for Oxidative
Damage
Zygotes were incubated in HTF fertilization medium containing
0.1 mM H2O2 for 1 h at 37°C, then washed with fresh HTF
fertilization medium three times to remove H2O2 and transferred
into KSOM medium for further culture. NAC group of ROS
measurement experiment were performed as control by addition
of N-Acetyl-l-cysteine (Sigma-Aldrich, A9165) to a working
concentration of 5 mM.

TUNEL Assay
TUNEL assay was carried out to analyze apoptosis of embryos
using One Step TUNEL Apoptosis Assay Kit (Beyotime, C1086)
in accordance with the instruction manual. Embryos were fixed in
4% paraformaldehyde for 30 min and permeabilized in PBS
containing 0.5% Triton X-100 for 5 min. Then embryos were
incubated in the TUNEL reaction mixture (containing FITC-
conjugated dUTP and terminal deoxynucleotidyl transferase) at

37°C in the dark for 1 h. The reaction was terminated by washing
in washing buffer (containing 0.1% Tween-20 and 0.1% BSA in
PBS) for three times. Finally, the embryos were stained with DAPI
for 5 min at RT and washed before mounting on glass slides. The
TUNEL labeling was observed using a fluorescence microscope
(Nikon Ts2R, Japan).

Detection of ROS Content in Embryos
2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) was used
to evaluate the intracellular ROS level in embryos. Embryos were
incubated in KSOM medium supplemented with 10 μM DCFH-
DA for 30 min at 37°C in a 5% CO2 incubator and stained with
Hoechst 33342 for 10 min. Fluorescence was observed under a
Laser Scanning Confocal Microscope (LSM 710, Zeiss, Germany)
at a 488 nm excitation wavelength and analyzed with the Image J
software.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 7
software and all results were presented as means ± standard
deviation from three independent experiments. Data were
analyzed with the Student’s t-test. p0.01<p < 0.05; ppp < 0.01;
no labeling indicates no statistical significance.

RESULTS

MiH-Treated Embryos Developed Slower
During Cleavage Stage but Formed
Blastocyst Normally
Firstly, to decipher the effect of MiH on preimplantation mouse
embryos, in vitro fertilization (IVF) was employed to obtain
zygotes, which were randomized into two groups and cultured
with KSOM medium in the absence (control group) or presence
of 2 μM MiH (MiH group) till most of them developed into
blastocysts at 100 h after fertilization (Figure 1A). We found that
almost all embryos in MiH group progressed normally at 2-cell
and 4-cell stages (Supplementary Figure S1A) and there were no
statistical differences in the rates of 2-cell or 4-cell embryos to
total zygotes at 16 h or 40 h, respectively (Supplementary
Figures S1B,C).

However, MiH-treated embryos showed slower progression of
development since 53 h, with only 50% of embryos being
consisted of 7–8 cells while that of control group was nearly
65% (Figure 1B). Then nearly 90% of embryos in both groups
would undergo compaction and continue to form morula at 70 h
(Figure 1C). In order to count the cell number of each embryo,
we stained nuclei with DAPI and found that the count of each
morula in MiH group was significantly fewer than that in control
group (Supplementary Figures S1C,D), indicating a slower
developmental kinetics as well. The difference became more
evident at 85 h, with only 45% of zygotes formed blastocysts,
whereas the efficiency of control group was about 70%
(Supplementary Figures S1A,C). Notably, the blastocyst
formation efficiencies of the two groups were comparable at
100 h (Figure 1D).
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In order to further determine whether there was any other
difference in the blastocysts, we classified blastocysts into three
types depending on their expansion level as cavitated, expanded
and hatching. The cavitated blastocyst is one whose blastocele has
already formed, but it later continues to fill with fluid so that the
blastocyst can expand. When it is expanded, the blastocyst is
larger and the zona pellucida is thinner, so hatching can begin
(Figure 1D). We analyzed the frequencies of these three types of
blastocysts in the two groups and found a higher ratio of cavitated
blastocyst in the company with lower ratios of expanded and
hatching blastocyst in MiH group without statical significance

(Figures 1D,E), which could be attributed to the slower
developmental rate. However, the total cell number per
blastocyst was comparable between the ones in control and
MiH group at 100 h (Figure 1F). Here, cavitated blastocysts in
the two groups were excluded for statistics because of the great
individual variation. Combined these data, we could not exclude
the possibility that the above phenomenon was caused by slower
pumping of fluid into the blastocyst cavity.

In brief, MiH would develop slower during cleavage stage but
formed blastocyst with similar efficiency at last. These were not
consistent with findings of T. Osadaet al. and Imamura T et al.,

FIGURE 1 | MiH-treated embryos developed slower during cleavage stage but formed blastocyst normally. (A) Time scheme of in vitro fertilization (IVF) and main
procedure of MiH treatment assay of mouse embryos. (B–D) Representative images and frequencies of embryos observed at 53 h (B), 70 h (C) and 100 h (D) after
fertilization in control (n � 65) and MiH-treated (n � 60) groups. Bar � 100 μm. (E) Quantitative analysis of cavitied, expanded and hatching blastocysts at 100 h. Dotted
arrow, arrowheads and arrows indicated the cavitied, expanded and hatching blastocysts respectively. (F)Cell number of each expanded or hatching blastocyst at
100 h. Data are presented as mean ± SD in three independent experiments and student’s t tests are used for statistical analysis. p0.01<p < 0.05; ppp < 0.01; no labeling
indicates no statistical significance.
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who used 3-ABA, PJ-34 and 5-AIQ. The inconsistency perhaps
was related with inappropriate does and different side effects
among inhibitors.

MiH Affected Embryo Development
Through Inhibiting PARP1
For the maintenance of EPS self-renewal, MiH can be replaced by
other PARP1 inhibitors and Parp1-deficient mouse EPS could
contribute to both TE and ICM in the absence of MiH (Yang
et al., 2017). We further examined whether the influence of MiH
on embryonic development was through inhibiting PARP1 as
well. Olaparib (Ola) and Talazoparib (Tala) were two Food and
Drug Administration (FDA) approved canonical PARP1

inhibitors that recommended for the treatment of various
cancers (Robson et al., 2017; Litton et al., 2018). Then we
treated zygotes with 20, 50 and 100 nM Ola and 0.2, 0.5 and
1 nM Tala. Nearly half of the zygotes were impaired in higher
concentrations groups while embryos in 20 nM Ola and 0.2 nM
Tala-treated groups progressed normally (Supplementary Figure
S2). To further evaluate effects of PARP1 inhibitors at lower
concentrations on embryonic development, we traced embryos in
the four groups at multiple timepoints during blastocysts
formation. We noticed that embryos treated with 20 nM Ola
or 0.2 nM Tala showed no difference in the formation efficiencies
of 2-cell nor 4-cell at 16 and 40 h respectively (Supplementary
Figure S3), similar to those in MiH group (Supplementary
Figure S1). However, embryos treated with PARP1 inhibitors

FIGURE 2 | Canonical PARP1 inhibitors showed similar effects on preimplantation embryos. (A) Brightfield images of embryos in control, MiH-, Olaparib (Ola)- and
Talazoparib (Tala)-treated groups at 53, 85 and 100 h after fertilization. Bar � 100 μm. (B–D) Frequencies of embryos observed at 53 h (B) and blastocyst formation
efficiencies at 85 h (C) and 100 h (D). n (Control) � 46, n (MiH) � 44, n (Ola) � 45, n (Tala) � 43. (E,F) Staining and fluorescence intensity of expanded blastocysts in the
four groups for PAR. Bar � 50 μm. Data are presented as mean ± SD in three independent experiments and student’s t tests are used for statistical analysis. p,
0.01<p < 0.05; pp, p < 0.01; no labeling indicates no statistical significance.
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turned to develop slower at 53 h, with only 40% of zygotes in Ola
group contained 7–8 blastomeres. The ratio of Tala group was
about 35%, comparable to that of MiH group but significantly less
than that of control group (Figures 2A,B). The delay turned to be
obvious at 85 h that the blastocyst formation rates were
significantly decreased in Ola- and Tala-treated groups
(Figures 2A,C), whereas the final outcome was not impaired
(Figures 2A,D). Moreover, embryos treated with Tala developed
most slowly among those in four groups, which might be ascribed
to the most potent effects of inhibition on PARP1 (Murai et al.,
2012; Murai et al., 2014).

To further address whether PARP1 was inhibited in embryos
treated withMiH, Ola and Tala, PAR (poly ADP-ribose polymer),
a product of PARP1 activity, was detected with an anti-PAR
antibody to assess inhibition. It was previously reported that
distribution of PAR remained diffused and cytosolic during
preimplantation development (Imamura et al., 2004). As
shown in Figures 2E,F, the distribution of PAR was diffuse
and cytosolic in some cells of blastocysts in control group. On
the contrary, embryos cultured in KSOM supplemented with
MiH, Ola and Tala showed no signal. These results suggest that
PARP1 was inhibited by MiH and two other well-known PARP1
inhibitors as previous reports.

MiH is a critical chemical compound for EPS cells
maintenance (Yang et al., 2017). We hypothesized that MiH
played similar roles in first cell fate decision that generated
populations of outside cells and inside cells, respectively. This
is a critical developmental stage because the embryo must allocate
its blastomeres into either TE or ICM. To determine whether
supplementation of MiH, Ola or Tala would affect the
specification of TE and ICM, immunostaining for CDX2 and
OCT4 was applied (Palmieri et al., 1994; Niwa et al., 2005;
Strumpf et al., 2005). As shown in Supplementary Figure
S4A, OCT4 was almost expressed in each blastomere, while
CDX2 was only expressed in the cells which lately develop
into TE at 70 h. All of the PARP1 inhibitors-treated embryos
contained much more CDX2+/OCT4+ cells than untreated ones
but significantly fewer CDX2-/OCT4+ cells. When blastocyst
forms, OCT4 and CDX2 is restricted to ICM and TE cells
separately, with several CDX2+/OCT4+ cells exist. In
PARP1 inhibitors-treated blastocysts, more CDX2+ cells
emerged with fewer CDX2-/OCT4+ cells remaining
(Supplementary Figure S4B), indicating that PARP1
inhibition might promote specification of TE identity, similar
to the effect of MiH on EPS cells.

Thus, we supposed that MiH affected embryo development
through inhibiting PARP1 and boosted a trophoblast bias.

MiH Protected Zygotes From Long-Term
Exposure to External Environment
In vitro fertilization (IVF) is an effective clinical strategy for the
couple who fail to conceive. While the percentage of successes is
much higher nowadays, one of the most plausible causes of the
failure of IVF procedures is the poor quality of gametes leading to
aberrant embryonic development. Previous Studies have shown
that psychological stress can exert detrimental effects on

reproduction in women. In vitro fertilization techniques, in
particular, gametes collection, manipulation, and culture may
generate stress environment which would cause oxidative stress.
Furthermore, some studies suggested that inhibited PARP
activity could protect against the loss of cell viability, preserve
NAD + levels and improve cellular bioenergetics in in vitro
experiments in U937 cells subjected to oxidative stress
(Ahmad et al., 2019). Thus, we wonder whether MiH could
restore the outcome of the embryos under stressful
environment. To verify this hypothesis, we placed zygotes on
the warmed microscope stage for 1 h, then cultured them in
medium in the absence (in vitro exposure, IVE) or presence of
MiH (IVE+MiH). The ratios of 2-cell and 4-cell embryos were
strikingly resembling in all groups (Figures 3A,B,
Supplementary Figures S5A,B). Since 53 h, zygotes in IVE
and IVE+MiH groups developed slowly, with no more than
50% of them reaching 8-cell stage while the ratio of control
group was 80% (Supplementary Figures S5A,C). Later, nearly
90% of zygotes in IVE+MiH group developed into morula, which
was much higher than that of IVE group and was comparable to
control group (91 vs. 96% control; 83 vs. 96% control)
(Supplementary Figures S5A,D). Though long-term exposure
to external environment significantly reduced blastocyst
formation efficiencies of embryos in both IVE and IVE+MiH
groups at 85 h (Supplementary Figures S5A,E), the supplement
of MiH rescued the final blastocyst formation potential of
embryos in IVE+MiH group, with equivalent ratio (93%) to
that of control group, but significantly higher than that of IVE
group (77%) at 100 h (Figures 3A,B). Additionally, the average
cell number of blastocysts in IVE group was markedly less than
that in control and IVE+MiH groups (Figure 3C). Analogously,
the frequency of hatching blastocyst in IVE group decreased
dramatically than that of control and IVE+MiH groups, while the
ratio of cavitated blastocyst exhibited much higher in IVE group
(Figure 3D). All these data above suggested that MiH played a
protective role for preimplantation embryos in the process of
suffering long-term exposure to environment.

In order to further address whether these recovered blastocysts
possessed normal developmental potential beyond
preimplantation stage, they were randomly selected from the
three groups and surgically transferred into the uteri of
pseudopregnant female mice. 9 days after transferring, only
one which had been transferred with blastocysts in IVE+MiH
group was pregnant, indicating that MiH may partly rescue the
embryo developmental potential from long time exposure to the
external environment (Supplementary Figure S6). However, we
could not make a very solid conclusion that embryos in this group
possessed better developmental potential beyond
preimplantation stage, due to the limited sample size and
failure of control group. Actually, a satisfyingly pregnant rate
of embryo transplantation experiment will be inevitably affected
by the uncertainty of embryo implantation even in the presence of
what appears to be a receptive endometrium. It is well known that
late blastocyst development is delayed in embryos in in vitro
culture relative to their in vivo counterparts. However, we had to
culture all of the embryos for 100 h to ensure the restoration of
the suboptimal environmental exposure, perhaps resulting in the
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miss of appropriate transplanting time, especially for those
unexposed ones. This perhaps in turn led to embryo-
endometrial desynchronization of control group.

We also performed an IVC assay to observe the developmental
potential in vitro by culturing the rest of blastocysts in the afore
mentioned experiments according to a protocol we used before

(Zhao et al., 2021). However, the egg cylinder formation
efficiencies of all the three groups were as low as less than
10%, hardly to say whether IVE+MiH blastocysts obtained
better further developmental potential. When the natural
fertilized and in vivo developed E3.5 embryos were used, in
the previous studies, the efficiencies were only 30–40% as well

FIGURE 3 | PARP1 inhibitors could protect preimplantation mouse embryos from exposure to external environment. (A,B) Representative images and frequencies
of 2-cell embryo observed at 16 h and blastocyst at 100 h after fertilization. Control, zygotes were transferred into incubators soon after washing and cultured in KSOM
condition till 100 h; IVE and IVE+MiH, zygotes were exposed to external environment for 1 h and then were transferred into incubator and cultured in KSOMwithout (IVE)
or with MiH supplemented (IVE+MiH). Bar � 100 μm. (C) Comparison of cell numbers of blastocyst at 100 h. (D) Ratios of cavitated, expanded and hatching
blastocysts at 100 h. 46, 49, 47 embryos were totally counted in Control, IVE and IVE+MiH groups. (E–G) Immunofluorescent images of blastocysts and cell numbers in
each blastocyst at 100 h. CDX2 (green) and OCT4 (red) were used as markers for TE and ICM separately. Bar � 50 μm. N (Control) � 12, n (IVE) � 11, n (IVE+MiH) � 18.
(H) Staining images of expanded blastocysts in the three groups for PAR. Bar � 50 μm. (I) Fluorescent images of ROS for expanded blastocysts. Bar � 100 μm. (J,K)
Quantification intensity levels for PAR (J) and ROS (K) in in Control, IVE and IVE+MiH groups. Data are presented as mean ± SD in three independent experiments and
student’s t tests are used for statistical analysis. p0.01<p < 0.05; ppp < 0.01; no labeling indicates no statistical significance.
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(Bedzhov et al., 2014; Zhao et al., 2021), which could partly
explain the low efficiency in our experiments. Though both the
transplantation and IVC assays were statistically not conclusive,
they provide some hints of what to expect if the experiments were
performed many times.

Clinical data collected in recent years proved that embryo
culture impaired embryonic developmental potential including
delaying cell cycle kinetics and reducing TE cells in blastocysts
(Giritharan et al., 2007). We then asked whether IVE affected the
specification of TE and ICM and observed significant reduction of
CDX2 positive cell numbers of blastocysts in both IVE and
IVE+MiH groups comparing with those in control and MiH
groups. However, blastocysts in IVE+MiH group containedmuch
more CDX2 positive cells than those in IVE group, implying that
MiH might protect TE cells from environmental stress
(Figure 3F). Meanwhile, blastocysts in all three groups had
much less OCT4 positive cells when they were compared with
ones in control group, with great variations between individuals
in IVE group (Figure 3G). Hence, we supposed the protective
effect of MiH might be partly attributed to its boost of cells into a
TE fate.

Long term exposure to external environment may lead to
unexpected pH and temperature shifts in the embryo culture
medium. Alternation in pH has been shown to influence
intracellular homeostasis, with particular effects, including
protein synthesis, mitochondrial function, cellular metabolism,
and cytoskeletal remodeling (Will et al., 2011). Temperature is
another important factor for embryonic development, which will
influence integrity of spindles and DNA fragmentation. It has
been reported that over-activation of PARP1 led to apoptotic and
necrotic cell death during Myocardial ischemia-reperfusion
injury (Raedschelders et al., 2012). To confirm whether long
term exposure to external environment would cause PARP1 over-
activation, we performed immunodetection of PAR and found a
significant stronger signal in embryos of IVE group, which
exhibited weaker in embryos of both control and IVE+MiH
groups (Figures 3H,J).

Besides, unavoidable environmental factors, such as light
exposure, excess temperature and pH fluctuation of culture
medium, which increase ROS production, have been
recognized to negatively affect embryo developmental potential
and result in suboptimal pregnancy rates (Agarwal et al., 2005a).
For this reason, we wondered whether long term exposure to
external environment induced the production of ROS. To verify
this problem, we explored the intracellular ROS level at 100 h.
Fluorescent analysis showed robust signal in the embryos of IVE
group while supplementing culture medium with MiH could
restore it to normal level (Figures 3I,K). Thus, MiHmight reduce
the adverse effects of long-term exposure to external environment
on embryos through inhibiting the generation of ROS.

PARP1 Inhibitors Might Improve Embryo
Viability Against Oxidative Injury
Having shown that MiH could partly reduce ROS level in
embryos that exposed to external environment, we assessed
whether PARP1 inhibitors would improve embryo viability

against oxidative damage. Hydrogen peroxide (H2O2) is one
of the strongest oxidants and will lead to overproduction of ROS.
However, increased ROS production induces multiple cellular
damages and mitochondrial alternation, which consequently
disturbs embryonic development of preimplantation embryos
in vitro (Liu et al., 2000; Kitagawa et al., 2004; Zhang et al.,
2010). Accordingly, zygotes were randomly divided into
untreated and treated groups. In the treated group, zygotes
were exposed to 100 μM H2O2 for 1 h, washed extensively,
and then cultured in medium with (H2O2+MiH) or without
MiH (H2O2) while untreated zygotes were incubated in HTF for
1 h and then cultured in KSOM medium (Control) (Figure 4A).
Since 40 h, H2O2-treated zygotes in both two groups
(H2O2+MiH and H2O2) exhibited lower rates of 4-cell and 8-
cell stages embryos (Supplementary Figure S7). Only zygotes in
H2O2 group showed decreased rates of morula at 70 h (Figures
4B,C). Furthermore, though blastocyst formation efficiencies of
H2O2+MiH, H2O2-treated zygotes were both much lower than
those of non-treated ones at 85 h (Figure 4D), rate of
H2O2+MiH group was restored to the equivalent level of
control group at 100 h (Figure 4E). Morphologic analysis also
revealed that treatment of zygotes with H2O2 induced
fragmentation and developmental retardation during this
process, while embryos in H2O2+MiH and control group
exhibited less (Figure 4B). Moreover, the average cell numbers
of blastocysts at 100 h significantly decreased in the H2O2 and
H2O2+MiH groups than that of control group (Figure 4F). To
further address the influence of H2O2 on cell fate decision,
embryos were immunostained with CDX2 and OCT4
antibodies. We found that though CDX2 positive cell numbers
decreased both in H2O2 and H2O2+MiH treated ones,
blastocysts in H2O2+MiH group had much more CDX2
positive cells than those in H2O2 group. By contrast, no
restoration of OCT4 positive cells were found in H2O2+MiH
treated ones (Figures 4G–I), implying that the protective effect of
MiH was associated with protection for TE cells.

Additionally, to confirm whether the antioxidative effect of
MiH was through inhibition of PARP1, we firstly explored the
level of PAR in the expanded blastocysts. As shown in Figures
5A,B, we found that H2O2 exposure induced nucleic localization
signal of PAR. But in H2O2+MiH and H2O2+Ola groups, almost
no signal was found in blastocysts, which was consistent with that
in all non-treated groups. Combined with the data that no PAR
signal emerged in H2O2-untreated groups, we indicated that
MiH and Ola would inhibit PARP1 overactivation which was
induced by H2O2 treatment. Then, we used N-acetyle-cysteine
(NAC), a conventional antioxidant for ROS inhibition, as a
positive control to investigate whether MiH could decrease
ROS level in H2O2-treated embryos like NAC did. These
results showed that H2O2 treatment increased ROS signal in
embryos, but both PARP1 inhibitors and NAC supplementation
could recover the ROS level (Figures 5C,D).

A TUNEL assay was also performed to establish whether MiH
reduced apoptosis rate in blastocysts developed from H2O2-
treated zygotes. As expected, H2O2 caused severe apoptosis in
embryos in comparison with those in non-treated ones, however,
blastocysts in H2O2+MiH and H2O2+Ola groups possessed

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 10 | Article 7990428

Hou et al. Minocycline Hydrochloride Protects Mouse Embryos

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


much fewer apoptotic cells than those in H2O2 group, suggesting
a protective role of MiH against apoptosis in embryonic
development (Figures 5E,F).

DISCUSSION

It is well-established that though lots of technical advances have been
achieved in the administration of in vitro fertilization (IVF) to
infertile couples, embryo quality is still a major contributing
factor to the outcomes of IVF cycles (Moragianni et al., 2019).
During IVF, the development of human preimplantation embryos
progresses in an artificial environment and is tightly controlled by

extrinsic factors during inevitable processes of handling,
manipulation and culture of gametes and embryos. Clinical data
collected in recent years suggested that embryo culture impaired
embryonic developmental potential including delaying cell cycle
kinetics and reducing trophectoderm cells (TE) in blastocysts
(Giritharan et al., 2007). As the trophoblastic cells develop into
placenta, decrease of trophectoderm cell number may partly explain
why in vitro cultured animals’ embryos exhibit impaired placental
development and function, and thus fetal growth (Bloise et al., 2012;
Chen et al., 2015; Tan et al., 2016). Chen et al. (2019) also showed
that mouse blastocysts which were cultured in vitro after fertilization
had fewer numbers of total cells, TE cells and ICM cells than those
developed in vivo. In order to mimic the evitable and frequent

FIGURE 4 | MiH improved mouse preimplantation embryos viability against oxidative stress. (A) Main procedure of oxidative embryo model and MiH treatment
assay. (B) Representative images of embryos in control and H2O2-treated groups with or without MiH at 70, 85, 100 h after fertilization. Bar � 100 μm. Control referred
to embryos who had not suffered from H2O2 treatment and cultured under KSOM; H2O2 and H2O2+MiH referred to zygotes who were treated with 0.1 mM H2O2 for
1 h and then cultured under KSOM in the absence (H2O2) or presence of MiH (H2O2+MiH), respectively. (C–E)Morula or blastocyst formation efficiencies at 70 h
(C), 85 h (D) and 100 h (E) after fertilization. 44, 47, 45 embryos were totally counted in control, H2O2- and H2O2+MiH-treated groups, respectively. (F) Comparison of
cell numbers of blastocyst at 100 h (G–I) Immunofluorescent images of blastocysts at 100 h. CDX2 (green) and OCT4 (red) were used as markers for TE and ICM
separately. Bar � 50 μm.N (Control) � 26, n (H2O2) � 34, n (H2O2+MiH) � 31. Data are presented as mean ± SD in three independent experiments and student’s t tests
are used for statistical analysis. p0.01<p < 0.05; ppp < 0.01; no labeling indicates no statistical significance.
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removal from the incubator for assessment in clinical IVF
laboratories, we placed zygotes on a hot-stage microscope for 1 h
and cultured them in traditional KSOM embryonic culture medium
in incubator (IVE) till 100 h. This would induce a lot of external
factors such as light, temperature, reduced oxygen tension and pH
fluctuation of culture medium that contributed to the outcome of
embryonic development. Consistently with these aforementioned
reports, no more than 80% of IVE embryos formed blastocyst and
none implanted in the transplantation assay (Supplementary Figure
S6), with reduction in total cells, TE cells and ICM cells as well
(Supplementary Figures S3A–C, Supplementary Figures S3E–G,

Supplementary Figures S5C–E). Though average OCT4 positive
cell numbers of IVE embryos did not decrease when being compared
with those of MiH-treated ones, they varied a lot among each
blastocyst (Figure 3G). In this procedure, the accumulation of
ROS was trigged (Figures 3I,K) in IVE embryos, suggested that
this long-term exposure to external environment might impair
embryonic developmental potential through oxidative stress.

Among numerous external factors contributing to embryonic
development, O2 concentration is important to human
embryonic development (Gardner 2008). Previous studies have
shown that oxygen tension is found to range from 2 to 8% in the

FIGURE 5 | PARP1 inhibitors could protect mouse embryos from ROS and reduced cell apoptosis. (A,B) Staining and intensity levels for PAR of expanded
blastocysts in untreated and H2O2-treated groups supplemented MiH, Ola or not. (C,D) Fluorescent images and intensity levels of ROS in expanded blastocysts. (E,F)
Representative fluorescent images of apoptotic cells (E) and quantitative analysis of TUNEL-positive blastocysts (F). Data are presented as mean ± SD in three
independent experiments and student’s t tests are used for statistical analysis. p0.01<p < 0.05; ppp < 0.01; no labeling indicates no statistical significance. Bars �
50 μm.
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oviduct and uterus of most mammalian species (Yedwab et al.,
1976; Fischer and Bavister 1993). In addition, numerous studies
suggest that embryo development can be improved by culturing
embryos under low O2 tension. However, only around 25% of
IVF cycles worldwide are performed exclusively under 5%
oxygen, with 34% of clinics reporting using 5% oxygen for
specific embryonic culture stages. A significant percentage of
clinical laboratories are still using atmospheric oxygen
concentrations (20%) for the culture of human embryos
(Christianson et al., 2014). Besides, unavoidable environmental
factors which elevate ROS level are recognized to impair
embryonic developmental potential and result in suboptimal
pregnancy rates (Agarwal et al., 2005a). In this study, zygotes
were exposed to H2O2, which would result in overproduction of
ROS (Figure 4A). In agreement with multiple reports, zygotes in
H2O2 group exhibited impaired developmental potential,
including developmental delay (Figures 4B,C and
Supplementary Figure S7), blastocyst formation efficiency
(Figures 4D,E) and cell number decrease (Figure 4F), whereas
the number of apoptotic cells increased (Figure 5E). Meanwhile,
an intracellular accumulation of ROS and PAR was observed
(Figures 5A–D), reminding a relationship between oxidative
stress and PAR.

Indeed, in response to high glucose exposure in vitro or
diabetes and hyperglycemia in vivo, ROS generation occurs
and promotes the formation of large amount of DNA single-
strand breakages which trigger rapid over-activation of PARP1
and lead to inflammation, apoptotic and necrotic cell death
(Ansley D M et al., 2012). PARP1 in turn depletes the
intracellular concentration of its substrate, NAD+, slowing the
rate of glycolysis, electron transport, and ATP formation. In
addition to the direct cytotoxic pathway regulated by DNA injury
and PARP1 activation, PARP1 also appears to modulate the
course of inflammation by regulating the activation of NF-κB
(Du et al., 2003). PARP1 overexpression was also shown to be
involved in heart failure (Xiao et al., 2005).It had been reported
that heart dysfunction was associated with an increase in poly
(ADP-ribosyl)ation in mouse and rat models of diabetes (Pacher
et al., 2002). Genetic deletion or pharmacological PARP1
inhibition was shown to protect diabetic heart and ameliorates
metabolic dysfunction (Pacher et al., 2002; Qin et al., 2016;
Zakaria et al., 2016). For example, INO1001, a highly potent
PARP1 inhibitor, could prevent oxidative stress and improve
nephropathy in diabetic mice (Szabo et al., 2006) and relieve
aging-associated cardiac and vascular dysfunction (Radovits
et al., 2007). In current study, H2O2 treatment boosted super
activation of PARP1 with robust accumulation of ROS while that
in PARP1 inhibitors-treated embryos (MiH+H2O2) recovered to
normal level (Figure 5D). Moreover, blastocyst formation
efficiencies of H2O2-treated zygotes were all much lower than
those of non-treated groups (Figures 4B,D) at 85 h, while that of
H2O2+MiH group recovered to the similar level of control group
at 100 h (Figures 4B,E). These were in line with the
aforementioned reports (Szabo et al., 2006; Radovits et al.,
2007), indicating that PARP1 inhibitors could protect
preimplantation embryos from oxidative stress through
preventing PARP1 overexpression. Studies have shown that

high level of ROS has adverse effects on the quality of oocyte
and embryo growth. Besides, embryos are highly sensitive to
environmental variables or oxidant levels. As mentioned in a
number of reports, under different stress conditions, massive
DNA damage can lead to excessive activation of PARP1
(Rodriguez-Vargas et al., 2012; Cieslik et al., 2013), which has
been previously proposed being crucial to neuronal death
through mechanisms linked to NAD depletion and release of
apoptosis inducing factor from the mitochondria (Alano et al.,
2006). PARP1 activity rapidly increases, thus leading to the
formation of long-chain poly (ADP-ribose) (PAR) (Schreiber
et al., 2006). In our experiments, we found that bothMiH and Ola
could significantly reduce the fluorescence intensity of PAR in
H2O2 treated blastocysts (Figures 5A,B). Furthermore, TUNEL
results showed that MiH, as well as Ola, could reduce apoptosis of
blastocysts after H2O2 exposure (Figure 5E). All the results
suggested PARP1 inhibitors, including MiH and Ola, which
might act as an antioxidant property, attenuates oxidative
damage by directly inhibiting PARP1 activity. These results
suggest a mechanism by which MiH might improve efficiency
of IVF techniques.

Several works have proven that supplementation of various
antioxidants in culture medium can release ROS accumulation.
Enzymatic and synthetic antioxidants are the main defense
factors against ROS (Sikka et al., 1995). The former includes
catalase (CAT), glutathione peroxidase (GPx), glutathione
reductase (GSR), superoxide dismutase (SOD) and
peroxiredoxins, while the latter, which is also known as
natural dietary supplements and widely distributed in food,
consisting of vitamins and minerals (Agarwal et al., 2005b; Xu
et al., 2017; Lu et al., 2018). Although numerous studies have
reported the effects of individual antioxidants on embryo
development (Fujitani et al., 1997; Ali et al., 2003; Kitagawa
et al., 2004; Choe et al., 2010; Silva et al., 2015), it seems that none
of the available ones can fully mimic the physiological conditions
of the female tract (Aviles et al., 2010). This study was the first to
propose PARP1 inhibitors as novel anti-oxidative
supplementations for culture of preimplantation embryos.

In mouse embryos cultured under normal physical
condition, PARP1 is transiently upregulated by fertilization.
Though decreases at late 1-cell stage, it maintains until
blastocyst stage. Meanwhile, PAR polymer is present in all
stages of pre-implantation development (Imamura et al.,
2004). Previous reports have shown that PJ-34 and 5-AIQ,
two PARP inhibitors, could block first cell cycle of mouse
embryos while the dose were as high as 30 uM and 20 uM
separately (Osada et al., 2010). However, these were inconsistent
with a study using 3-ABA, another commonly used enzymatic
inhibitor, in which 5 mM 3-ABA accelerated pronuclear
formation but arrested embryonic development before
compaction, meanwhile only 64% of untreated ones reached
blastocyst stage (Imamura et al., 2004). In current study, all of
the three inhibitors we used here were much specific against
PARP1 and did not impair the final blastocyst formation
potential (Figure 1D, Figure 2D), which was inconsistent
with former reports. This perhaps could be attributed to
inappropriate does and different side effects among
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inhibitors. The data that mice carrying a double Parp-1/Parp-2
mutation die at the onset of gastrulation (Menissier de Murcia
et al., 2003) supports that specific inhibitor of PARP1 would not
disrupt development of mouse preimplantation embryos.

Collectively, the supplementation of low concentrations of
PARP1 inhibitors plays dual roles in mouse embryonic
development process. When embryos were cultured in normal
physical condition, they only slowed down developmental
kinetics of embryos during cleavage stage without disturbing
their final ending. Noteworthy, PARP1 inhibitors would
improve mouse zygotes developmental potential against
suboptimal environment, paving the way for more in-depth
studies on deciphering the multiple molecular mechanisms
behind embryonic development that could be useful in assisted
reproductive technology.
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