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INTRODUCTION

Schizophrenia and bipolar disorder are devastating mental 
illnesses that can lead to deterioration in the social and occu-
pational functioning of affected individuals1,2 with a major cost 
to society.3,4 A wide range of studies suggest a genetic compo-
nent to the inheritance of both of these psychotic disorders.5 
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Although bipolar disorder and schizophrenia were histori-
cally considered distinct illnesses, a slew of recent studies 
suggest that these disorders are genetically overlapping.6-12 
Previous studies conducted in the Costa Rican population 
have shown evidence of linkage disequilibrium between mark-
ers within the 18q21 region and both of these psychiatric 
phenotypes, i.e. severe bipolar disorder and schizophrenia12,13 
Outside the Central Valley of Costa Rica (CVCR), three sep-
arate linkage studies have previously pointed to a gene pre-
disposition locus in this general region for schizophrenia (SC),14 
bipolar disorder (BP),15 and both BP and SC.16 Further analy-
ses revealed that psychotic symptomatology (hallucinations, 
delusions, disorganized thought, disorganized behavior) was 
the relevant phenotype associated with the 18q21 region, as 
both persons with and without a history of mania show evidence 
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of linkage disequilibrium in this region.12 Psychotic symp-
toms are a core feature of both schizophrenia and schizoaf-
fective disorders and are often seen in acute phases of bipolar 
disorder.

Many complex genetic effects including epigenetic effects 
presumably operate via mechanisms in gene-uterine interac-
tion. A popular design for the investigation of such effects, 
including effects of parent-of-origin (imprinting), maternal 
genotype, and maternal-fetal genotype interactions, is to col-
lect DNA from the affected offspring and their mothers (case/
mother duos) and to compare it with an appropriate control 
sample. An alternative design uses data from cases and both 
parents (case/parent trios), but does not require controls. 

The current era of genome-wide association studies has 
popularized the case/control design for the detection of ge-
netic variants predisposing to complex diseases. However, as 
recently indicated,17 associations detected in a case/control 
study can arise from genetic effects as well as alternative 
mechanisms that are statistically confounded with case geno-
type effects, such as maternal genotype effects, maternal-fetal 
interactions, and parent-of-origin effects. A variety of diseas-
es, particularly those related to pregnancy outcomes or com-
plications in utero, have been hypothesized to operate via 
such mechanisms. For example, both maternal and fetal genes, 
either individually or in combination, have been implicated 
in the risk of pre-eclampsia,18-20 low birthweight,21,22 spina bi-
fida,23 and schizophrenia.24 With data collected only on cases 
and controls, these different types of effects will be indistinguish-
able. For example, a strong maternal genotype effect may pres-
ent the same pattern of risks as a weak offspring (case) geno-
type effect, since cases and mothers of cases share an allele. 
However, with data from families rather than case/control data, 
specifically with genotype data for cases plus their mothers 
and/or fathers, it may be possible to distinguish between these 
different mechanisms.25-31

A popular design for the investigation of maternal effects 
and maternal-fetal interactions operating perhaps via gene-
uterine interactions is to collect DNA from offspring and their 
first-degree relatives.27 A comparison of the genotype relative 
risks in cases displaying some disease of interest vs. controls 
compared to the relative risks in mothers of cases vs. mothers 
of controls can allow investigation of the merits of different 
competing underlying models. For example, unusual risk pat-
terns were found when analyzing children affected with clini-
cal signs of congenital toxoplasmosis vs. controls, compared 
to when analyzing mothers of affected children vs. mothers 
of controls, a result that was interpreted as indicating the 
presence of a maternal genotype and/or imprinting effect.32

More formally, with genotype data from ‘‘duos’’ consisting 
of offspring together with their mothers, one could fit mod-

els that incorporate the effects of offspring genotype, mater-
nal genotype, maternal-fetal interactions, and imprinting.27,33-35

A number of authors have considered the alternative ap-
proach of using case/parent trios for estimating such effects. 
25,26,28-30,33 Case/parent trios are often used in genetic associa-
tion studies because of the robustness they can provide to pop-
ulation stratification, via the use of family-based tests that ex-
amine the transmission of high-risk alleles from parents to 
the affected offspring.36 However, the case/control design has 
recently obtained greater popularity owing to the larger sam-
ple size37 and development of alternative methods to deal with 
population stratification.38-40 With case/parent trios, we can 
test for association and estimate genotype and haplotype rel-
ative risks using conditional logistic regression41-43 or log-lin-
ear modeling.44 

More complex effects such as maternal genotype effects, 
maternal-fetal interactions, and parent-of-origin effects may 
be estimated through an extension of the conditional logistic 
regression approach25 or through log-linear modeling.28-30,45 
One of the merits of the case/parent trio design is the fact that 
it does not require control data: essentially, the untransmitted 
parental alleles or genotypes are used as ‘‘controls’’ for the 
transmitted alleles or genotypes.

We investigate the effects of estimating maternal, imprinting, 
and interaction effects using multimodal modeling in parents 
and their offspring with schizophrenia in a Korean population.

METHODS

Sample collection
All subjects were recruited in accordance with the princi-

ples of the Declaration of Helsinki and with approval from 
the Institutional Review Boards of Pusan National University 
Hospital in South Korea (IRB No. 0908-003-001), and gave 
informed consent. Probands were recruited independently 
from psychiatric hospitals and clinics in the Kyungnam Prov-
ince, South Korea. The Korean population in Kyungnam Prov-
ince is ideal for conducting family-based association studies 
as it is a “founder” population46 with characteristics that en-
hance the likelihood of finding linkage disequilibrium be-
tween disease-causing genes and specific markers.13,47 All pro-
bands showed disease onset by age 40, a history of at least 
one psychiatric hospitalization, a discharge diagnosis of schizo-
phrenia, Korean surnames, and a current residence in the re-
gion. These probands all had grandparents who had been born 
in the region, as documented by genealogical analyses. Par-
ents and first-degree relatives of the probands were also re-
cruited wherever possible, to permit determination of genetic 
phase and to allow for family-based linkage disequilibrium 
analyses; if additional relatives with psychotic disorders were 
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detected, efforts were made to recruit these relatives as well. 
We used linkage disequilibrium design for pedigree recruit-
ing. We recruited probands with their parents and siblings 
whenever possible. In our study, first degree relatives include 
siblings, parents, or grandparents. The EMIM program adopts 
possible probands and mothers or parents of their first-degree 
relatives for analyses.12 

As in previous linkage studies on bipolar disorder in a His-
panic population,46,48 each subject was interviewed by a trained 
psychiatrist who was blinded to the previous history of the 
subject, using the Korean version of the Diagnostic Interview 
for Genetic Studies (DIGS).49,50 Medical records were also ab-
stracted. An interview with a close relative, using a Korean 
version of the Family Interview for Genetic Studies (FIGS)50,51 
was also completed for each subject. Twenty seven probands 
and their available family members were analyzed in the cur-
rent study. All affected subjects within each family were diag-
nosed using a best estimate diagnostic process.12 The process 
arrives at a lifetime consensus diagnosis or diagnosis using 
the DSM-IV. The number of subjects and families analyzed 
in this study was as follows: 59 subjects from 27 families, with 
an average of 2.2 subjects genotyped per family. Of these 59 
subjects, all probands had Axis I disorders according to the 
consensus DSM-IV diagnoses with schizophrenia. The re-
maining 32 family members were classified as phenotype 
unknown for the purpose of statistical association analyses.

In total, 27 subjects had a history of psychosis, operation-
alized in this study as the presence of at least one of the fol-
lowing at some point during their lifetime: hallucinations, 
delusions, grossly disorganized thought processes, or grossly 
disorganized behavior. This definition of psychosis corre-
sponds to four of the five symptoms and signs listed under 
Criteria A of the DSM-IV definition of schizophrenia. We 
did not consider a history of negative symptoms, which are 
also listed under Criteria A of the DSM-IV definition of schizo-
phrenia, as sufficient for a diagnosis of psychosis. For each 
subject, the best estimators also diagnosed whether or not 
manic syndromes or episodes had been present during the 
course of the disorder (Table 1).

Genotyping
DNA from 59 people, 27 of which were affected with a psy-

chotic disorder, was first genotyped using 20 single nucleo-
tide polymorphisms from D18S450 to D18S484. Given the 
parallel finding from previous studies that the ME2 gene was 
a potential candidate gene in this region, we genotyped the 
entire sample using twenty SNPs covering the region spanning 
the ME2 gene (which lies between D18S473 and D18S474), at 
an average inter-marker distance of 71 kb (Table 2). Standard 
PCR was performed using the ABI 877 automated thermo-

cycler or the PE 9700 PCR instrument. Amplified fragments 
were analyzed on the 3100 Genetic Analyzer for microsatel-
lites and on the 7900HT Sequence Detection System for 
SNPs. Genotypes were assigned using GeneScan, Genotyper, 
and SDS software. Each genotype was scored separately by 
two individuals, who were blinded to the diagnosis of the sub-
jects. Genotype scores were compared using a software pro-
gram implemented in Microsoft Excel, discrepancies were 
discussed with a review of the original gels, and final geno-
types were agreed upon. Genotypes were checked for viola-
tions of Mendelian inheritance using the PEdigree Database 
SYStem (PEDSYS) program, INFERence (INFER). One fam-
ily was discarded from the statistical analyses due to recur-
rent Mendelian discrepancies. We used PBAT-tools for pow-
er calculations of binary traits in family-based studies.

Statistical analysis

Linkage disequilibrium analyses
To determine which SNPs within this region were in strong 

linkage disequilibrium with the ME2 gene, we calculated D’ 
using the Family Based Association Test (FBAT) program, 
HAPloFREQuency (HAPFREQ).52 We also utilized the Hap-
loview program to visualize LD blocks in this region.53

EMIM tests with the candidate genes
In the fine mapping stage where 17 single nucleotide poly-

morphism markers were tested, Estimation of Maternal, Im-
printing and interaction effects using Multinomial modelling 
(EMIM) was performed for the phenotypes of “schizophre-
nia”. All other subjects were classified as unknown for purpos-
es of EMIM analyses. For testing of association with the can-
didate genes, we performed EMIM analyses with seventeen 
individual SNPs within the candidate genes that were deter-
mined to be in strong linkage disequilibrium with the ME2 
SNPs, using the phenotypes of schizophrenia. EMIM is a 

Table 1. DSM-IV diagnoses for the subjects and the types of fami-
lies classified as recruited parents and siblings

Diagnosis
N (male/female, mean±standard 

deviation of age)
Probands with schizophrenia 27 (14/12, 36.5±10.7)
1st degree relatives 32 (17/15, 59.8±10.4)
Total of genotyped subjects 59
Type of family

One non-affected sibling 5
Two genotyped parents 3
One genotyped parent 18
One genotyped grandparent 1
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FORTRAN 77 program that compiles under Linux or Win-
dows (DOS) using a suitable compiler such as g77, gfortran, 
fort77, and f77. Compiling on any other system has not been 
attempted. However, there is no reason why the program should 
not compile provided an appropriate FORTRAN 77 compiler 
is available. Use of the command line interface (i.e. DOS com-
mand prompt) is required to run EMIM under Windows.54

RESULTS

Linkage disequilibrium analyses
Linkage disequilibrium analyses of all microsatellites and 

SNPs in this region, using the Arlequin software package, re-
vealed at least some evidence of linkage disequilibrium (p< 
0.05) across the entire region from D18S450 to D18S484. Re-
gions with strong linkage disequilibrium were less extensive 
as shown in Figure 1. Six SNPs selected in this study were in 
strong LD with each other. Since they are in LD, they do not 
actually provide any additional information on the associa-
tion of genes to the phenotype of psychosis. Therefore, we 
excluded overlapping SNPs in the subsequent association 
and haplotype analyses.

Single nucleotide polymorphism EMIM analyses
Table 2 displays the results of EMIM analyses for individu-

al single nucleotide polymorphism markers in the 18q21 re-
gion. Individual single nucleotide polymorphism markers 
showing an association to schizophrenia with global p values 
below 0.05 were contiguous markers, both at the same genet-
ic distance. These are nominal p values. Utilizing a standard 
Bonferroni correction for multiple testing would require a nom-
inal p value below 0.0025 for a significant evidence of associ-
ation. Such a correction may be overly stringent if markers are 
in linkage disequilibrium with each other. 

The ME2 gene lies between D18S473 and D18S474. Given 
the findings of under-expression of this gene in previous 
studies, we focused our subsequent analyses on the candidate 
genes around this gene. We genotyped and analyzed the re-
sults for 20 SNPs placed between D18S473 and D18S474, to 
determine the SNPs that were in strong linkage disequilibrium 
with the ME2 gene. Two of the SNPs were within the MBD1 
gene, six within the MAPK4 gene, five within the MRO gene, 
three within the ME2 gene, one within the ELAC1 gene, two 
within the SMAD4 gene, and the other one was on the MEX3C 
gene. Analysis of linkage disequilibrium between these SNPs 
revealed that two SNPS located within the MAPK4 gene, 

Table 2. EMIM analyses of selected 17 SNPs of 7 neuronal genes in chromosome 18 in fine mapping for schizophrenia

SNP name
Nearest 

gene

Position on 
chromosome 

18 (bp)

Location of 
SNP with 
relation to 

nearest gene

Allele
Allele 

frequency
CG MG CGMGvsCG CGMGvsMG

rs125555 MBD1 46054177 Coding ns 0.211 1.0000000000 1.000000000 1.000000000 1.0000000000
rs140686 MBD1 46057352 Coding A/G 0.083 0.8082975769 0.845755473 0.832801467 0.7959172944

rs1893490 MAPK4 46449799 Intron T/C 0.442 0.1385948985 0.397311369 0.380773717 0.1328253728
rs3892158 MAPK4 46454511 Intron T/C 0.108 0.9404799020 0.443186325 0.431619874 0.9159348878
rs3752088 MAPK4 46495259 Intron A/C 0.492 0.3116701070 0.356703634 0.279235435 0.2439846416
rs3794899 MAPK4 46500101 Intron T/C 0.125 0.1789131118 0.378840503 0.274731781 0.1297455570
rs3752087 MAPK4 46444438 Coding ns 0.458 1.0000000000 1.000000000 1.000000000 1.0000000000
rs2276186 MRO 46581813 Coding A/G 0.467 0.0225438044* 0.974515358 0.905416699 0.0209453210*
rs2255059 MRO 46582001 Intron T/C 0.483 0.7257207355 0.935709700 0.881041983 0.6833213720
rs2849233 MRO 46585551 Coding T/C 0.408 0.7204314574 0.509729544 0.540224762 0.7635398209
rs4940019 MRO 46587201 Coding C/G 0.492 0.0688217810 0.261160531 0.253713399 0.0668589569
rs2586770 MRO 46597648 Intron T/C 0.183 0.9649876265 0.920180898 0.919330124 0.9641002461

rs16952692 ME2 46693267 Coding C/C 0.017 1.0000000000 1.000000000 0.999280259 0.9985610363
rs685533 ME2 46699801 Intron A/G 0.400 0.7571529488 0.881134498 0.843917954 0.7251693973
rs620898 ELAC1 46763146 Intron A/T 0433 0.9412608243 0.806388212 0.787194437 0.9188521968

rs8096092 SMAD4 46835599 Intron A/C 0.417 0.9156738836 0.532221778 0.508667865 0.8751499814
rs8098933 MEX3C 46971268 Intron T/C 0.067 0.2254864975 0.586058890 0.705118081 0.2712945901

*p<0.05. CG: Child Genetic Effects, MG: Maternal Genetic Effects, CGMGvsCG: Maternal Genetic Effects allowing for Child Genetic Effects, 
CGMGvsMG: Child Genetic Effects allowing for Maternal Genetic Effects
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plus SNPs within the ME2, ELAC1, and SMAD4 genes were 
in strong linkage disequilibrium with each other (D’>0.60) 
(Figure 1). In order to test the hypothesis that candidate genes 
will be associated with the phenotypes of interest, subsequent 
analyses were performed for these twenty SNPs. The twenty 
SNP markers were first analyzed individually. Using Bonfer-
roni correction for testing these twenty SNPs and one phe-
notype would require a global P value below 0.0025 for sig-
nificant evidence of association. No SNP showed significant 
evidence of association to the schizophrenia phenotype. 

Of the 20 SNPs analyzed, a significant SNP (rs 2276186) 
was suggested in EMIM analysis for child genetic effects (p= 
0.0225438044) and child genetic effects allowing for mater-
nal genetic effects (p=0.0209453210) with very stringent mul-
tiple comparison Bonferroni’s correction. Additionally, anal-
ysis results for maternal genetic effects and maternal genetic 
effects allowing for child genetic effects was presented.

DISCUSSION

The present findings provide convergent evidence of fine 

EMIM mapping of a chromosomal locus associated with 
schizophrenia suggesting that MRO is a candidate gene caus-
ing a spectrum of the schizophrenia phenotype. This gene is 
specifically transcribed in males before and after differentia-
tion of the testis, and the encoded protein might play an im-
portant role in mammalian sex determination. Multiple tran-
script variants encoding different isoforms have been found 
for this gene. 

Previous studies conducted in the Central Valley of Costa 
Rica (CVCR) have independently shown evidence of linkage 
disequilibrium between these phenotypes and the 18q21 re-
gion,12,13 spanning a 2.41 cM region (2.7 Mb) from D18S450 
to D18S474. Outside of the CVCR, three separate linkage stud-
ies have previously pointed to a gene predisposition locus in 
this general region for SC,14 BP,15 or both BP and SC.16 A 
study obtained evidence of linkage in a combined sample of 
SC and BP at marker D18S472, which is at approximately the 
same position as marker D18S474 in the present study.16

The present study provided fine EMIM analyses for the 
18q21 locus in the Korean population. Previous analyses first 
narrowed the area of strongest association with the psychosis 

Figure 1. Linkage disequilibrium analyses of selected 20 positionally only relevant genes which was focused in 18q21 fine mapping re-
search. SNPs genotyped in our fine mapping for pedigrees with schizophrenia are also represented. Haplotype block pattern constructed 
by the Haploview program53 is shown. The number in each cell represents the LD parameter D’(×100), blank cells mean D’=1. Each cell is 
painted with graduated color relative to the strength of LD between markers, which is defined by both D’ value and confidence bounds on D′. 
SNPs are indicated by a SNP ID number (rs number). SNP: single nucleotide polymorphism, LD: linkage disequilibrium.
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phenotype to the region from 45.74 Mb (D18S473) to 46.94 
Mb (D18S474). There are 11 known genes that are located 
within this 1.20 Mb region: MYO5B (45.60 Mb–45.98 Mb), 
FLJ32743 (46.01 Mb–46.05 Mb), MBD1 (46.05 Mb–46.06 Mb), 
CXXC1 (46.06 Mb–46.07 Mb), C18orf24 (46.16 Mb–46.17 
Mb), LOC390853 (46.24 Mb–46.34 Mb), MAPK4 (46.44 Mb 
–46.51 Mb), MRO (46.58 Mb–46.60 Mb), ME2 (46.66 Mb–
46.73 Mb), ELAC1 (46.75 Mb–46.77 Mb), and SMAD4 (46.81 
Mb–46.86 Mb). Although the SNP association analyses pre-
sented here focuses on the MRO gene, three of the genes in 
this region (MBD1, ME2, and SMAD4) are of special interest 
due to their known functions and/or their relationship of asso-
ciation with neuropsychiatric disorders. MBD1 gene is known 
to be associated with Rett disorder and autistic disorders.55,56 
ME2 gene has shown evidence of association with idiopathic 
generalized epilepsy, and the strongest association is seen 
with variants in the promoter region of this gene.57 The SMAD4 
gene contains a single SNP showing the strong evidence of 
association with psychosis in the previous study and is there-
fore an interesting potential candidate gene for schizophrenia 
and bipolar disorder. It is a member of the SMAD family of 
transcription factors that are activated by transforming growth 
factor-β receptors,58 and is known to be involved in neuronal 
proliferation and differentiation.59 Genotyping evidence in 
the previous study shows direct association of haplotypes con-
taining SNPs within the MAPK4 gene and the schizophrenia 
phenotype. An individual SNP that is physically inside the 
MAPK4 gene, but in nominal value, also showed significant 
evidence of association with the phenotype of psychosis. 
Based on genotype analyses alone, the possibility remains 
that a gene variant or mutation within either of the genes in 
linkage disequilibrium with the ME2 gene (SMAD4 and 
ELAC1) might be responsible for the association detected in 
this study.60,61 Further studies including sequencing for possi-
ble novel mutations in the candidate genes will be necessary 
in these and other samples from Korean pedigrees to more 
definitively assess whether candidate genes in 18q21 contain 
specific variants that directly cause the spectrum of psychotic 
illnesses seen in the current sample. Further analyses of the 
region spanning D18S450 to D18S484 will be required to test 
other genes for evidence of association with schizophrenia. 

One limitation of the current study is the relatively low statis-
tical evidence of association, and therefore, this finding should 
be confirmed in a larger sample from the Korean or another 
population sample. Linkage analyses have obvious strength 
in localizing the susceptibility genes of common, complex 
diseases such as schizophrenia. Traditionally, linkage analy-
ses have suggested broad candidate regions for further fine 
mapping analyses and linkage disequilibrium analyses have 
mapped finely in suggestive candidate regions. Occasionally, 

both analyses have been used interchangeably for possible 
family designs that could be used regardless of the advantag-
es. We have used linkage disequilibrium analyses for fine map-
ping studies of chromosome 18q21 based on possible pedigree 
types because restrictive pedigree types such as affected sib-
pairs will be required for linkage analyses. The study has the 
limitation of small power that is insufficient to detect an as-
sociation of the modest effect sizes expected in a small sample 
size of 27 probands and 32 relatives in our study. However, de-
spite this limitation, this small scale study could contribute 
preliminary data to genome-wide association studies (GWAS) 
in general and particularly to the psychiatric GWAS consor-
tium to advance the knowledge of genetic linkages. 

Another limitation is that the individual SNP showing the 
strongest EMIM association with schizophrenia is technical-
ly within the MRO gene and not the ME2 gene, although they 
are positioned finely in chromosome 18q21. Finally, denser 
genotyping, sequencing, and functional studies will ultimate-
ly be needed to confirm whether the MRO gene, or another 
gene in tight linkage disequilibrium with the candidate gene 
(i.e. ME2), contains a causal variant underlying the pathogen-
esis of psychotic spectrum disorders in the Korean and other 
populations. This study is just a random selection of SNPs for 
genotyping. We plan to have a denser genotype map or to re-
duce the area of the chromosome to be covered in our up-
coming studies. In addition, a comprehensive study on the LD 
structure should be conducted before choosing the SNPs to 
be genotyped.

We have found few previous studies that have used EMIM 
analysis or reported MRO as a candidate gene in schizophre-
nia subjects. To our knowledge, this is the first trial epigene-
tic study for evaluating the effect of single nucleotide polymor-
phisms on gene-uterine interaction in schizophrenia. MRO 
(maestro) gene is specifically transcribed in males before and 
after differentiation of the testis, and the encoded protein may 
play an important role in a mammalian sex determination. 
Multiple transcript variants encoding different isoforms have 
been found for this gene. Although there are few studies on 
the association of this gene with schizophrenia, some studies 
have found that there could be some association of testicular 
tumors with psychotic symptoms.62-78

S-acylation (also known as palmitoylation) is a major post-
translational protein modification in all eukaryotic cells, in-
volving the attachment of fatty acids onto cysteine residues. 
A variety of structural and signaling proteins are modified in 
this manner, affecting their stability, membrane association, 
and intracellular targeting. The enzymes that mediate S-acyl-
ation are encoded by genes belonging to the large (>20 genes) 
ZDHHC family. The importance of these enzymes for nor-
mal physiological function is highlighted by their links to a 
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diverse range of disease states including neurological disor-
ders such as Huntington’s disease, schizophrenia and intel-
lectual disability, and diabetes and cancer. A recent study by 
Yeste-Velasco et al published in the Journal of Pathology high-
lights a novel tumor suppressor function for the ZDHHC 
family. Expression of ZDHHC14 is decreased in testicular 
germ cell tumors, prostate cancer, and a variety of other can-
cer types. This important finding further emphasizes the emerg-
ing clinical significance of the ZDHHC family of S-acylation 
enzymes.79 A recent report indicates that gonadectomy in-
creases neurogenesis in the male adolescent rhesus macaque 
hippocampus suggesting that testicular development could 
influence neuropsychiatric symptoms by mediating the sub-
cortical brain structures.80 Moreover, in a large Danish co-
hort of schizophrenic patients, the overall incidence of cancer 
was reduced particularly in males. The reduced cancer inci-
dence was particularly observed for genital cancers, particu-
larly testicular cancer, suggesting a hypothesis that antipsy-
chotic medications might decrease the occurrence of these 
neoplasms.81

Alternative methodologies in genetic research are required 
with many methodological limitations in approaches evalu-
ating the correlations between genotyping and phenotyping. 
Epigenetics and gene-environment interactions are represent-
ed with underlying statistical genetics. Our results are a pilot 
study for epigenetic studies on mental disorders and help to 
understand and use the EMIM statistical genetics analysis 
program, although with many limitations including small pedi-
gree numbers.
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