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Abstract
Background: Recent findings have established an association between obesity and immune
dysfunction. However, most of the studies investigating the effects of obesity on immune function
have been carried out in genetically obese rodent models. Since human obesity is mostly due to
intake of a high fat diet and decreased energy expenditure, we asked whether immunological
defects also occur in diet-induced obesity. Specifically, we focused on the function of monocytes
and macrophages, as these cells are thought to be involved in the low-grade inflammation present
in obesity.

Methods: Male Sprague-Dawley rats were fed a high-fat or a standard chow diet for either 2 or
10 weeks. At the end of the intervention period animals were anaesthetised, blood collected for
determination of plasma mediator concentrations and lipopolysaccharide (LPS) stimulated
production of TNF-α by monocytes. LPS stimulated production of TNF-α in alveolar macrophages
was also determined.

Results: High-fat feeding for either 2 or 10 weeks resulted in significant increases in fat mass and
serum leptin. Although increased serum leptin has previously been linked to modulation of innate
immunity, we found no significant difference in the LPS stimulated production of TNF-α by either
blood monocytes or alveolar macrophages between the dietary groups. Furthermore, we failed to
find a significant increase in circulating TNF-α concentrations in obese animals, as reported for
genetically obese animals.

Conclusion: Our data suggest that defects in innate immune function observed in genetically
obese animals are not mimicked by dietary obesity, and may more likely reflect the gross
abnormality in leptin function of these models. Further work is required delineate the effects of
dietary obesity on inflammatory state and immune function.
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Background
Obesity is a very common chronic disease that poses sig-
nificant health risks such as diabetes, cardiovascular dis-
eases and hypertension. This pathological condition is
characterized by complex neuroendocrine changes in the
brain as well as in the periphery, involving mediators such
as neuropeptide Y (NPY) and leptin [1]. Additionally,
there have been several reports demonstrating that obesity
is associated with altered immune function and a chronic
low-grade inflammatory status [summarized by [2,3]].
Specifically it has been reported that obese individuals
have a higher incidence and severity of infectious diseases
[4]. These defects also include disturbances in macro-
phage mediated phagocytosis and pro-inflammatory
cytokine production [5] as well as increased sensitivity to
endotoxin-induced lethality [6]. To date, experimental
approaches to the investigation of this novel link between
obesity and immune function have been predominantly
carried out in genetic models of obesity that either lack
leptin (ob/ob mouse) or the long form of the leptin recep-
tor (db/db mouse). However, leptin mutations only
account for a small fraction of obesity in humans with the
majority of obesity linked to overnutrition and reduced
energy expenditure [7]. With leptin resembling several
aspects of a cytokine and exerting various immunological
functions [reviewed by [8]], it is unclear whether these
models examine the effects of obesity in general or rather
the effects of a defective leptin system on immune func-
tion. This question needs to be addressed by investigating
immune function in diet-induced models of obesity.

Monocytes and macrophages are major cellular compo-
nents of the innate branch of the immune system. With
their ability to produce cytokines, e.g. tumour necrosis
factor-α (TNF-α), in response to bacteria and bacterial
fragments, such as LPS, monocytes and macrophages are
essential to the first line of defence at contact sites
between the interior and the exterior, such as the mucosa
of the lungs or the gastrointestinal tract. Notably, increas-
ing evidence suggests that macrophages also play an
important role in the development of the low-grade
inflammation that is present in obesity. Recent work dem-
onstrates that macrophages infiltrate the adipose tissue
and that these cells are integral to the low grade-inflam-
mation [9]. However, many questions remain unan-
swered regarding the precise role of monocytes and
macrophages in the course of obesity. For example, it is of
great interest to examine whether the functional changes
described within the adipose tissue are intrinsic to the
macrophages, or whether these defects result from the
interaction with the local microenvironment in the adi-
pose tissue. If intrinsic macrophage defects are responsi-
ble for the described alterations in obesity, similar defects
should also be present in other macrophage compart-
ments. Therefore, the aim of the present study was to

investigate macrophage and monocyte function in com-
partments other than the adipose tissue of obese animals,
specifically the lungs and the blood.

In order to examine monocyte and macrophage function
in diet-induced obesity, we subjected male Sprague Daw-
ley rats to a cafeteria-style diet lasting either 2 weeks (short
term) or 10 weeks (long term). In this way we could exam-
ine the effects of diet per se and of established obesity. Lit-
ter mates received normal rodent chow diet. Upon
completion of the dietary intervention, blood monocytes
and alveolar macrophages were collected and stimulated
with LPS in vitro. Under these conditions LPS induces
strong production of the pro-inflammatory mediator
TNF-α [10]. As leptin and sympathetic activation impact
on immune function [11,12], plasma concentrations of
NPY, a marker for sympathetic nervous system activity
[13,14], and leptin, as well as TNF-α were also
determined.

Materials and methods
Animals
Male Sprague-Dawley rats were kept under controlled
light (06.00–18.00 h) and temperature (20 ± 2°C) condi-
tions with ad libitum access to water. Five week old rats (n
= 18) were randomly divided into two groups. The control
group ("controls", n = 9) was fed standard laboratory
chow (12.5% calories as fat) and the second group ("high-
fat diet", n = 9) was presented with a highly-palatable
high-fat cafeteria-style diet (35% calories as fat), consist-
ing of meat and pastry pies, pasta and cake and supple-
mented chow. Two different sets of experiments were
conducted. The first series ("long term diet") was main-
tained for 10 weeks, whereas a second series ("short term
diet") was only fed for 2 weeks. Both experimental sets
consisted of control animals and diet-induced obese ani-
mals that were assigned to groups of similar starting
weights. Body weight and caloric intake of all rats was
monitored weekly. All procedures were approved by the
Animal Experimentation Ethics Committee of the Univer-
sity of Melbourne.

Collection of tissues
At the completion of the dietary period, the animals were
anaesthetized with pentobarbital (Nembutal, 100 mg/kg,
Merial Australia Pty Ltd, Australia). Cardiac puncture (3
ml) was performed using a heparinised syringe to collect
blood for full blood stimulation, and to allow preparation
of plasma for determination of plasma mediator concen-
trations. Retroperitoneal white adipose tissues and the
spleen were removed and weighed.

Bronchoalveolar lavage
To obtain alveolar macrophages, anaesthetized rats were
subjected to bronchoalveolar lavage (BAL). The lungs
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were rinsed with 10 ml of cold, sterile PBS via a cannula
placed into the trachea. The lungs were washed twice and
total cell counts and viabilities were determined by ethid-
ium bromide/acridine orange (Molecular Probes, Oregon,
USA) fluorescent viability stains using a Neubauer hemo-
cytometer. Cytocentrifuge preparations (Shandon Cyt-
ospin 3) using 100 µl of BAL were differentiated according
to standard morphological criteria counting at least 500
cells (DiffQuik, Zeiss, Germany). BAL fluid contained
between 97–99% alveolar macrophages. Alveolar macro-
phages were adjusted to 500,000 cells/250 µl and stimu-
lated for 3 h at 37°C in the presence of various
concentrations of LPS (0.001–10 µg/ml, E. Coli Serotype
026:B6, Sigma). Supernatants were collected and stored at
-80°C for measurement of TNF-α.

Full Blood stimulation
Various concentrations of LPS (0.01–10 µg/ml) were
added to 250 µl full blood and incubated for 3 h at 37°C.
Upon completion of the incubation, samples were centri-
fuged and supernatants were stored at -80°C for measure-
ment of TNF-α.

Detection of TNF-α, NPY and Leptin
All reagents were endotoxin-free to ensure that TNF-α was
not artifactually induced, except where LPS was deliber-
ately used. The concentration of TNF-α in the superna-
tants and plasma samples was determined by a
commercially available ELISA kit (Pharmingen, Merck-
ville, Australia) with standard concentrations ranging
from 4–1000 pg/ml. Plasma leptin concentrations were
measured using a commercially available radioimmu-
noassay kit (Linco, Missouri, USA) while NPY was meas-
ured using an in house assay utilising a rabbit antibody
and 125I-NPY (2000 Ci/mmol, Amersham, Australia) as
previously described [13].

Statistics
Student's unpaired t-test was used to determine significant
differences for organ masses and concentrations of NPY,

leptin and TNF-α. Data from BAL and full blood stimula-
tion was analysed using one-way ANOVA and body
weight data was subjected to ANOVA for repeated meas-
ures with subsequent LSD if p-values were below p < 0.05.
Differences where p-values were <0.05 are considered sig-
nificant. Statistics were performed using GraphPadPrism
3.0 for Windows.

Results
Effect of high-fat diet on caloric intake, body weight and 
organ mass
Exposure of animals to the high-fat diet led to significant
increases in caloric intake (p < 0.05; Table 1) and body
weight from 3 weeks (p < 0.05; Fig. 1). Animals on the
high-fat diet continued to gain weight and at the comple-
tion of the 10 week dietary intervention weighed 23%
more than their respective controls. Even though body
weight was not different, retroperitoneal white adipose
tissue was already significantly increased after 2 weeks on
the diet (p < 0.05; Table. 1). Continued exposure to the
high-fat diet lead to progressive increases in caloric intake,
and adipose tissue mass, which was 2.8 fold higher than
the control animals at 10 weeks of diet (Table 1). Net
spleen weight was significantly depressed (p < 0.05) after
2 weeks of high-fat diet. Although there was a tendency for
reduced spleen mass after 10 weeks of dietary interven-
tion, this did not reach statistical significance (Table 1).

Diet-induced effects on plasma leptin, NPY and TNF-α
Consumption of a high fat diet was associated with signif-
icant increases in plasma leptin concentrations (p < 0.05;
Fig. 2). Even after 2 weeks on diet, leptin concentrations
had more than doubled, at a time when body weight was
not significantly elevated (Table 1). The chow fed rats also
showed an increase in leptin concentrations from 2 to 10
weeks (Fig. 2), reflecting their increase in body weight and
fat mass over time (Table 1). When plasma NPY concen-
trations were compared, consumption of the high-fat diet
led to a significant increase (p < 0.05) in the short-term,
whereas no change was observed after 10 weeks on diet

Table 1: Parameters of the model of diet-induced obesity.

Short term diet (2 weeks) Long term diet (10 weeks)

Chow High Fat Chow High Fat

Caloric intake (cal/day) 95.6 ± 3.0 178.6 ± 19.1* 97.6 ± 11.3 229.9 ± 8.9*
Body weight (g) 287.5 ± 2.2 302.3 ± 5.0 515.6 ± 9.1 635.3 ± 12.3
White adipose tissue (g) 1.4 ± 0.1 2.7 ± 0.2 * 4.5 ± 0.4 12.4 ± 1.5*
Spleen (g) 0.88 ± 0.03 0.79 ± 0.02* 0.97 ± 0.04 0.89 ± 0.05
TNF-α (pg/ml) 5.9 ± 0.3 7.2 ± 0.9 ND ND

* p < 0.05 (high fat vs. chow fed); n = 9 for all groups
ND = not detectable; detection limit 5.6 pg/ml
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(Fig. 2). There was no age-related change in plasma NPY
concentrations in chow fed animals, indicating the
absence of age-related effects on plasma NPY concentra-
tions over this time period.

Despite other reports of increased plasma TNF-α concen-
trations in obesity [15], under the conditions used in this
study, we failed to detect a significant difference between
the chow and high-fat fed animals. In the older age group
TNF-α levels were below the detection limit of the assay.

LPS induced TNF-α production in full blood preparations
To examine whether the high-fat diet modulates the abil-
ity of blood monocytes to produce TNF-α in response to
LPS, full blood preparations from both chow and high-fat
fed animals were compared. Ex vivo LPS-stimulation of
full blood preparations resulted in a dose-dependent
increase in the production of TNF-α (Fig. 3). However, the
response to LPS did not differ significantly between ani-
mals fed chow and the high-fat diet at both time points
examined (short term and long term diet, Fig. 3A and 3B).

Stimulation of alveolar macrophages with LPS
In order to examine whether the dietary intervention had
any effect on functional parameters of tissue-borne mac-
rophages, alveolar macrophages were stimulated with LPS
in vitro. Increasing concentrations of LPS resulted in a
dose-dependent, significant increase of the production of
TNF-α by alveolar macrophages (Figure 4). There was no
significant difference in the degree of stimulation by LPS
in animals fed the high-fat diet for 2 or 10 weeks. Even
though the basal production of TNF-α under these cir-
cumstances was not significantly different, high fat fed
animals tended to have higher basal TNF-α levels, thus the
proportional increase in the high-fat animals, expressed as
percent change from basal, is suppressed in comparison to
chow fed animals, particularly after long-term high fat
feeding (13,747% versus 19,589% at 10 µg/ml LPS in fat
and chow fed rats respectively).

Body weight (g) of diet-induced obese (grey squares) and control (black squares) Sprague-Dawley rats following expo-sure to a cafeteria-style high fat diet or standard laboratory chowFigure 1
Body weight (g) of diet-induced obese (grey squares) and 
control (black squares) Sprague-Dawley rats following expo-
sure to a cafeteria-style high fat diet or standard laboratory 
chow. Results are expressed as mean ± SEM (n = 9 diet-
induced obese rats, n = 9 control rats). Data were analysed 
by ANOVA for repeated measures and significant differences 
(p < 0.05) are indicated by asterisks.
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Discussion
We have previously extensively characterised the model of
dietary obesity used in the current study [16,17]. Animals
increase caloric intake on presentation of the diet, and
show significant weight gain within 3 weeks. Reproduci-
ble increases in adiposity and plasma leptin concentra-
tions occur within 2 weeks of high fat feeding, as
demonstrated in the present study.

The majority of studies seeking to investigate the link
between obesity and the immune system have carried out
in genetic models of obesity. For example, defects in
specific immunity, such as reduced lymphocyte numbers
in spleen, thymus and the peripheral blood have been
reported in ob/ob or db/db mice, and Zucker rats [2]. Fur-

thermore, innate immune function seems also to be
affected in genetic animal models of obesity. Specifically,
it has been reported that macrophages from genetically
obese animals have a reduced ability to eliminate Cand-
ida albicans and to produce proinflammatory cytokines
[18]. While few studies have investigated immune func-
tion in diet-induced obesity, some changes in cellular and
humoral immunity have been shown [19,20], however

Stimulation of full blood preparations obtained from high-fat fed rats (grey bars) and control animals (black bars) after 2 weeks (short term) and 10 weeks on diet (long term) with increasing concentrations of LPSFigure 3
Stimulation of full blood preparations obtained from high-fat 
fed rats (grey bars) and control animals (black bars) after 2 
weeks (short term) and 10 weeks on diet (long term) with 
increasing concentrations of LPS. Results are expressed as 
mean ± SEM (n = 9 diet-induced obese rats, n = 9 control 
rats).
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LPS stimulation of isolated alveolar macrophages after 2 
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fat fed rats (grey bars) and control animals (black bars). 
Results are expressed as mean ± SEM (n = 9 diet-induced 
obese rats, n = 9 control rats).
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there is still no information on inflammatory immune
function.

Leptin has also been demonstrated to modulate several
functional immune parameters [6,8], and a recent study
in humans demonstrated that leptin activates neutrophils
indirectly by stimulating monocytes to release TNF-α[21].
We therefore asked whether diet-induced obesity, which is
associated with significantly increased leptin levels and
more closely resembles the most common form of human
obesity than genetically modified models [22], would
have an impact on innate immune functions. However, in
the current study we found no alteration in the ability of
macrophages and monocytes to release TNF-α to an LPS
challenge.

We focused on blood monocytes and lung alveolar mac-
rophages, as these cells are primary components of the
innate branch of the immune system. Furthermore, with
the current suggestion of a role for macrophages in driving
the low-grade inflammation present in the adipose tissue
[9], this approach also allowed us to evaluate whether
intrinsic macrophage defects are present in obesity, as
such defects would also occur in tissues other than the adi-
pose tissue. Macrophages and monocytes produce TNF-α
in response to innate immune stimuli such as LPS, which
is essential for host defence against bacterial and other
pathogens [23]. Our results demonstrate no obvious
changes in the production of TNF-α by blood monocytes
after 2 or 10 weeks of dietary intervention. It is possible
that even though obesity had no influence on blood
monocyte function, that the complex changes associated
with obesity exert a functional influence on mature tissue-
borne macrophages. However, using BAL-derived alveolar
macrophages, we found no statistical difference in the net
TNF-α response of alveolar macrophages upon LPS stim-
ulation when comparing obese and control animals.
Interestingly, when we analysed the percentile increase
above basal TNF-α production at 10 weeks of diet, the
high-fat fed animals appeared to have a blunted response
to LPS, suggesting that alveolar macrophages from high-
fat fed animals cannot be stimulated as strongly as the
cells from the control animals.

More recently, obesity itself has been viewed as an inflam-
matory process [3,24,25] and studies in humans have
demonstrated that weight loss can reduce inflammatory
markers [26]. Thus recent attention has been focused on
cytokines such as TNF-α and IL-6 [27]. TNF-α, formerly
known as cachexin [28], has been studied in both animal
models and human obesity. Some studies have shown
that in humans increasing concentrations of leptin are
correlated with soluble TNF-α receptors, suggesting the
development of a pro-inflammatory state as body weight
increases [29]. Adipose tissue itself is capable of

producing TNF-α, and increased TNF-α concentrations in
elderly subjects are correlated with truncal fat mass [30].
Several investigators have also reported increased plasma
levels of TNF-α in genetic models of obesity. For example,
plasma TNF-α concentrations were doubled in mice that
were obese due to a defect in the growth hormone gene
[15]. In our hands plasma TNF-α was not dramatically
affected by the high fat diet, however this may be partly
due to the fact that the values were very close to the detec-
tion limit of the assay. It is also probable that this discrep-
ancy may highlight species differences, but it could also
indicate that genetic obesity and diet-induced obesity
impact differently on the regulation of TNF-α levels.
Changes in TNF-α may be more consistent when there is
a predominant genetic basis to the obesity where the level
of obesity is usually more extreme [28]. Alteration in TNF-
α may be tissue specific as shown by a recent study that
proposes macrophage-related inflammatory activities in
adipose tissue play a role in obesity-related insulin resist-
ance [31].

Interestingly, we also found a significant increase in the
concentration of circulating NPY after 2 weeks of dietary
intervention. As peripheral NPY is predominantly derived
from sympathetic nerve terminals, plasma NPY concen-
trations can be considered a marker of sympathetic nerv-
ous activity [13,14]. Thus, based on the present findings
and previous reports of postprandial sympathetic activa-
tion [32], we propose that short term dietary excess
increases sympathetic nervous activity. Increased sympa-
thetic activity increases energy expenditure [33], and
might therefore represent an endogenous mechanism to
counteract weight gain. However, the question arises as to
why plasma NPY levels are not different after 10 weeks of
diet. Previous studies have shown that the changes in sym-
pathetic nervous activity may be bed specific [34], with a
higher renal and lower cardiac noradrenaline spillover in
obese individuals [34]. Overall whole body sympathetic
nervous activity in obese subjects was normal, which may
explain why we do not see a change in plasma NPY levels
after long-term diet exposure.

Conclusion
Since specific gene defects only account for a small pro-
portion of obesity in humans [7,35], this study was
designed to investigate whether the functional defects in
the monocyte/macrophage system described in geneti-
cally obese animal models are also present in an animal
model of diet-induced obesity, that more closely resem-
bles human obesity. The absence of any significant effects
of diet-induced obesity on critical functional parameters
of the monocyte/macrophage system used here raises the
important question as to whether the changes in the pro-
duction of pro-inflammatory cytokines observed in genet-
ically obese animals actually result from the complex
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pathophysiology of obesity or are rather a consequence of
the leptin defect present in these models. Our results
favour the latter notion since our animals exhibit all the
characteristics of obesity, yet do not display a comparable
defect in the monocyte/macrophage system. Our results
also show that monocyte and macrophage function in
extra-adipose compartments is normal, suggesting that
the chronic inflammatory state present in the adipose tis-
sue during obesity is not a consequence of functional
defects in the monocyte/macrophage system. One
remaining possibility for our finding is that the period of
overnutrition used does not reflect the changes observed
in more chronic obesity.

While our results do not support a major effect of obesity
on the markers of innate immune function used here, it
does not rule out effects in other immune competent tis-
sues, such as the endothelium. Clearly further work is
required to delineate the possible effects of obesity on
immune function, in light of the escalating burden of this
disease.
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