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Morphology of lymph nodal metastasis is critical for diagnosis and prognosis of cancer patients. However, accurate prediction of
lymph node type based on morphological information is rarely available due to lack of pathological validation. To obtain correct
morphological information, lymph nodes must be segmented from computed tomography (CT) image accurately. In this paper
we described a novel approach to segment and predict the status of lymph nodes from CT images and confirmed the diagnostic
performance by clinical pathological results. We firstly removed noise and preserved edge details using a revised nonlinear diffusion
equation, and secondly we used a repulsive-force-based snake method to segment the lymph nodes. Morphological measurements
for the characterization of the node status were obtained from the segmented node image. These measurements were further
selected to derive a highly representative set of node status, called feature vector. Finally, classical classification scheme based
on support vector machine model was employed to simulate the prediction of nodal status. Experiments on real clinical rectal
cancer data showed that the prediction performance with the proposed framework is highly consistent with pathological results.
Therefore, this novel algorithm is promising for status prediction of lymph nodes.

1. Introduction

Accurate quantitative measurement of lymph nodal is a
critical prognostic risk factor in managing rectal cancer,
nasopharyngeal carcinoma [1], and other types of cancer.
Morphologic characterization could serve as a quantitative
criterion in differentiating benign and malignant lymph
nodes [2–5]. Thus, precise segmentation of lymph node is
necessary for pathological studies of rectal cancer. However,
computed tomography (CT) images have some intrinsic
distortions, especially near the lymph nodal boundary,
thus making it difficult to evaluate the status of lymph
nodes. Standard noise removal techniques such as median
filtering or wavelet can be used to reduce the distortion.
Though easy to implement, these standard noise reduction
techniques tend to oversmooth the images and remove fine
details including edges and boundaries, thus increasing the
difficulty in evaluating subtle yet important information
about lymph nodes such as cancer metastasis. Another

challenge in using CT images to evaluate lymph nodes is the
poor discrimination of benign and malignant nodes. Over
the years many image processing algorithms have been devel-
oped to assist clinicians to automatically evaluate the status
of lymph nodes based on some predefined criteria such as the
size. However, due to the overlap in sizes between benign and
malignant lymph nodes, many studies have had suboptimal
performance for classifying different types of lymph nodes
[6, 7]. In clinical practice, both shape and internal structure
of a node are important in the differentiation between benign
and malignancy [2, 3]. For example, researchers have used
shape and internal structure such as smoothness and well
shaped versus irregular and ill shaped or four classifications
such as smooth, lobulated, spiculated, and indistinct for
nodal staging using magnetic resonance images [2, 3]. In
this paper we present a systematic approach to first segment
“suspicious” lymph nodes and then use quantitative mea-
surements to build an automatic classifier to discriminate
benign nodes from malignant ones. Our approach includes
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three steps, image preprocessing, segmentation, and node
classification. In order to obtain structural information of
each node, we develop a revised nonlinear diffusion process.
As a preprocessing step, this process adaptively weighs the
homogeneity of image background to achieve a fine balance
between noise removal and boundary preservation. After the
preprocessing, we apply a revised snake method to segment
lymph nodes. The snake model uses a repulsive force to
keep the evolution from deforming to incorrect objects, thus
overcoming a commonly problem with the classical models
of snakes that tend to evolve to incorrect boundaries when
there are neighboring objects. For each segmented node,
nineteen quantitative measurements are computed and seven
of them are selected to remove redundancy. Classical Support
Vector Machine (SVM) model [8] is borrowing to achieve the
take of nodal status classification.

This paper is organized as follows. In Section 2.1,
an adaptive nonlinear diffusion method for image quality
enhancement is introduced. It was followed by a semiau-
tomatic segmentation, called repulsive snake model, which
is described in Section 2.2. A new model for classification
and prediction of node status is given in Section 3, which
includes an recursive feature selection, classification model
setting, and results verification. Experimental results using
both real and simulated images are also shown in this section
to demonstrate the performance of the method. Discussion
and foregoing research direction are presented in Section 4.

2. Method

2.1. Nonlinear Diffusion

2.1.1. Nonlinear Diffusion in Image Processing. The basic idea
behind diffusion methods originated from the well-known
physical phenomenon of heat transfer, which equilibrates
concentration differences without creating or destroying
mass. This process can be modeled by partial differential
equations and their solutions describe the heat transfer at
any particular time and position. Let the image domain be
an open rectangle Ω = (0, a1) × (0, a2), let Γ ≡ ∂Ω be its
boundary, and let the observed image I(x) be represented by
a bounded function I : Ω → R. Then an evolving version
u(x, t) of I(x) with a scale time parameter t ≥ 0 is obtained
as the solution of the following diffusion equations:

ut = div ·(D(∇u)∇u),

u(x, 0) = I(x),

〈D(∇u)∇u,n〉 = 0,

(1)

where I is the initial condition at t = 0. For example, in the
classical total variation (TV) diffusion equation [9], one can
choose

D(∇u) = g(|∇u|) = 1
|∇u| , (2)

where |∇u| acts as a fuzzy edge detector since pixels that
have large |∇u| values likely belong to an edge. The role
of g(|∇u|) is to adaptively control the smoothing effect.

However, the diffusion coefficient g(·) for controlling the
smoothing is based on image gradient ∇u, which is sensitive
to the noise. Thus, the obtained image generally shows
undesired “staircase effect”. To alleviate this problem, various
techniques were reported [10]. Regularization by adding an
additional edge preservation term is shown to be an effective
solution. For example, the classical “Rudin-Osher-Fatemi”
algorithm is formulated as [9]

ut = div ·
( ∇u
|∇u|

)
− λ(u− I),

u(x, 0) = I(x),

(3)

where the parameter λ is a trade-off constant in balancing
image smoothing and preservation.

2.1.2. Edge-Enhanced Nonlinear Diffusion. Though powerful
in removing noise, the nonlinear diffusion described above
has the drawback to oversmoothing the images, making it
difficult to detect boundaries in the succeeding steps. To
overcome this drawback, we propose a revised nonlinear
diffusion method in this paper. The primary purpose of
this diffusion method is to preserve edge information while
removing noise in the image. We add an edge preserving term
to achieve a balance between edge preservation and noise
removal in an adaptive manner:

ut = μdiv ·(g(∣∣∇Gσ0 ∗ u
∣∣)∇u)− |∇u|

max|∇u| (u− I),

u
(
x, y, t = 0

) = I ,

(4)

where G is a 2D Gaussian kernel such that

Gσ0

(
x, y

) = Cσ−1
0 e−(x2+y2)/2σ2

0 (5)

and μ of (4) represents the trade-off between smoothing and
edge preservation. Our new formulation is different from
the classical Rudin-Osher-Fatemi algorithm in (3) in that
we use gradient magnitude |∇u| rather than a predefined
constant to control the smoothing processing adaptively.
This revised diffusion process achieves two objectives: (1)
when it is near an edge, the second term will dominate
the processing and thus adaptively preserve the edges from
smoothing, whereas the diffusion coefficient g(·) is also in
effect to reduce smoothness and enhance edges; (2) when it is
in a homogeneous region it will reduce the noise and smooth
the image.

To evaluate the performance of the above proposed
method, we used real CT images to compare our method
with some commonly used techniques such as the Perona-
Malik method [11], total variation (TV) method, standard
median filtering, and bilateral filtering [12]. Figure 1(a)
shows an original CT image that is corrupted by noise. We
then process the noisy image by the Perona-Malik method
(Figure 1(b)), TV method (Figure 1(c)), median filtering
(filter size = 3) (Figure 1(d)), bilateral filtering (Figure 1(e)),
and our method (Figure 1(f)). To demonstrate how the pro-
posed method preserves edges and boundaries, we next apply
the Canny operator on Figures 1(a)–1(f). The corresponding
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 1: Experiments of the revised nonlinear diffusion on noise removal and edge preservation. The green arrows point to lymph nodes.
(a) A real CT image, (b)–(f) smoothing results after the Perona-Malik method, TV, median filtering, bilateral filtering, and our method,
respectively. The color map is used for visual comparison. (g)–(l) Edges obtained by applying the Canny operator on (a)–(f), respectively.
We note that the classical methods leave “undesirable clusters” in (b)–(e), reducing the accuracy of edge detection. The proposed method
produces a clean result while preserving important edge information; for example, node 6 is well preserved without any cluster around it in
(f) and (l) after applying the proposed method.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 2: Second experiment on noise removal and edge preservation. (a) A real CT image, (b)–(f) Smoothing results after the Perona-
Malik method, TV, median filtering, bilateral filter, and our method, respectively; (g)–(l) Edges obtained by applying the Canny operator
on (a)–(f), respectively. The interested lymph node is labeled by green arrow. The proposed method outperformed its peers by preserving
important edge information of node 1 adaptively.

results are shown in the second row of Figure 1. The images
processed by the existing methods have various amounts
of undesirable clutters and incorrect boundary connections,
shown in Figures 1(g)–1(l). In comparison, edges obtained
from our method are clean and well separated (shown in
Figure 1(l)), especially around lymph nodes 3 and 6.

We applied the same procedure on a second image,
Figure 2. The interested node is labeled by green arrow and its
edge information was perfectly preserved, producing a clear-
cut image at Figure 2(j). In comparison, standard techniques
either tend to oversmooth (Figures 2(g)–2(i), and 2(l)) or
produce small clusters (Figure 2(k)). The current results
markedly show that the proposed method performs better
than the other three methods in terms of preserving edges
while removing noise.

We also apply our method to a synthetic image,
(Figure 3(a)), which is degraded by additive Gaussian noise
with a signal-to-noise ratio (SNR) of 9.46 dB. Because of
the noise, directly applying the Canny edge detector on the
image generates a suboptimal edge map, Figure 3(b). After
preprocessing the noisy image by our proposed diffusion,
TV, and Perona-Malik algorithms at first and then applying
the same Canny edge detector, we can obtain better results,
Figures 3(c)–3(e), respectively. By comparing the edge maps,
we find that our method has the best performance in terms
of preserving the edges while effectively reducing the noise,
Figure 3(c). The TV method creates false edges (Figure 3(d)),
whereas the Perona-Malik method removes some true edges
(Figure 3(e)). The differences between our edge enhanced
diffusion and the other two methods are fairly evident. After
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(a) (b) (c) (d) (e)

Figure 3: (a) A noisy image. (b) Its edge map given by Canny operator without any preprocessing. (c)–(e) are the edge maps of the given by
Canny operator on the diffused images after applying the proposed method, TV, and the Perona-Malik methods, respectively.

the preprocessing, we next use a modified snake model to
segment lymph nodes from the images.

2.2. Repulsive Force-Based Snake Model

2.2.1. Standard Snake Model. Snakes are deformable curves
that can move and change their shapes to conform to object
boundaries [13, 14]. The movement and deformation of
snakes are controlled by internal and external forces. The
aim of parametric snake or active contour, introduced by
Kass et al. [13], is to minimize an energy function E(C) of
a curve C = (x(s), y(s)) in a given image I . The snake is
parameterized by s ∈ [0, 1], with

E(C) =
∫ 1

0

(
1
2

[
α
∣∣C′(s)∣∣2 + β

∣∣C′′(s)∣∣2
])

ds + λEext, (6)

where α, β, and λ are positive coefficients and C′ and C′′

denote the first and second order derivative of C with respect
to s, respectively. Here Eext represents the external energy
which generally depends on the gradient magnitude of the
image.

A common limitation of the snake model is its ineffi-
ciency in sensing the external force, thus making it difficult
to evolve to the correct boundary if its initialization is far
from the legitimate object. To overcome this setback, Xu and
Prince [14] presented a new external force for parametric
snake model by diffusing gradient vectors of the original
image. This external force is a new vector field v = (u, v),
obtained from diffusion of the gradient vectors of a gray
level or binary edge map derived form the original image.
Variational minimization of such diffusion process results in
the following two Euler equations:

μ∇2u−
(
f 2
x + f 2

y

)(
u− fx

) = 0,

μ∇2v −
(
f 2
x + f 2

y

)(
v − fy

)
= 0,

(7)

where u and v are the “interpolated vectors” and f is the edge
force, usually set so that f = |∇I|2. It has been shown that
the revised gradient vector flow (GVF) model has a much
larger capture range than the original snake model and is
considerably less sensitive to initialization [15, 16]. It has
been confirmed to perform better than the standard snake
in detecting concave boundaries [14]. However, it fails to
correctly segment adjacent objects, especially when multiple
objects are adjacent to each other and GVF model creates
incorrect external force vectors [17, 18], thus limiting its wide

application. In CT images, lymph nodes are often adjacent
to nearby structures or organs. To solve such problem, we
describe a new snake model that is well suited to segment
adjacent objects.

2.2.2. Repulsive Force-Based GVF Model. In our model we
use a repulsive force to push the snakes towards their
legitimate boundaries. This repulsive force can be obtained
by reversing the gradient direction of neighboring objects
beyond an initial curve as follows:

v =
{

v, if v ∈ R;

−v, otherwise.
(8)

Here v denotes the external force derived by setting v =
∇Gσ0 (x, y) and R is the region specified in initialization.
The features of GVF diffusion method, (7), are adopted to
increase capture capabilities. This approach encourages the
snake to deform robustly in the correct direction, even when
the initial curve is placed close to other objects.

A simulation example is used to show the deformation
of the snake guided by GVF and our repulsive snake model.
Figure 4(a) shows a synthetic image (in black), in which
the initial curve is in red. The corresponding gradient
vector field is shown in Figure 4(b). Figure 4(c) shows the
segmentation results after the GVF snake model. Due the
close adjacency, the snake deforms to the nearby objects
even if the initialization has correctly encircled the object
of interest. The gradient flow of our repulsive snake model
is shown in Figure 4(d). The final segmentation results
correctly deform to the legitimate object (Figure 4(e)). The
repulsive force ensures that the deformation curve evolves to
the legitimate edge.

We apply the method to an real image dataset to test
its performance. Figure 5 shows the results of using our
method on a typical image of this dataset. In this example,
the lymph node of interest is labeled with an arrow sign,
Figure 5(a). The nonlinear diffusion preprocessing is applied
to remove noise and the edges are shown in Figure 5(b).
The initial curve in red line is drawn here for illustration.
Figure 5(c) shows the segmentation result after applying
the new snake model. We use green color to highlight
the final segmentation result. Due to the advantage of the
diffusion scheme, the edge map is rather clear. It is then
followed by repulsive force to obtain legitimate edge. We
note that the edge structure of lymph node is important
in pathology to discriminate benign lymph nodes from
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(a) (b) (c) (d) (e)

Figure 4: Snake deformation with repulsive force. (a) A synthetic image of multiple objects in black and initialization in red color. (b) Its
associated gradient flow. (c) An initial curve at a distance from the legitimate object will deform to a wrong object. (d) However, adding
external repulsive force in image (a) will revise the gradient flow and guarantee the initial curve deform to the correct object (e).

(a) (b) (c) (d)

Figure 5: Single lymph node segmentation. (a) Original image. (b) Edge map, we use red curve to denote the initial curve for snake evolution.
(c) Final segmentation result. For clarity, the interested area is zoomed out in (d).

malignant ones. Qualitative measurements, such as fractal
dimension, of accurate edge information are the key for
automatic characterization of node type.

A second example is shown in Figure 6(a) in which two
lymph nodes are labeled by a radiologist using arrows 7
and 8. The edge map after the diffusion model is shown in
Figure 6(b), in which the initiated curves are in different
colors (red and green). The final segmentation results are
displayed in Figure 6(c) and the interested area is zoomed
in (Figure 6(d)) for visual inspection. We should note that
although the initial curves are overlapped, the evolution can
still deform to the correct lymph nodes. After segmenting
the lymph nodes, we measure their quantitative features and
construct a classifier about the type of each node, discussed
in details below.

3. Lymph Nodal Classification Model

Classification of malignant and benign lymph nodes is set
up using a binary pattern classification model. We use
x ∈ Rn to denote the morphological measurement of a
segmented node. In this study, nineteen features of each
node are computed, aiming to characterize the status as
comprehensive as possible. We term these morphological
features as feature vectors and use a scalar d ∈ {−1, 1}
to denote their classification label where 1 refers to the
malignant node while −1 stands for the benign ones.

For such biomedical classification, three tasks are vital:
effective feature extraction, accurate classification, and vali-
dation based on ground truth. We address the first two tasks
by proposing a hierarchical classification model based on
highly representative features obtained by an iterative feature

elimination scheme. For validation, the results given by the
algorithms are compared with the pathological assessment
offered by expert clinicians. Each node enrolled in our study
has been pathologically verified to be benign or malignant.
First we search for a primary feature subset to characterize
each node. Secondly, an automatic classification model based
on the features is constructed to discriminate benign nodes
from malignant ones.

3.1. Backward and Forward Feature Selection. Feature selec-
tion is one of the key components in obtaining an efficient
classification model. We have included nineteen features
for classification (see the appendix for details). A common
problem in automatic classification is the interdependencies
among features and low correlation with ground truth.
To overcome such an “overfitting” problem and obtain a
highly accurate and robust classifier, feature dimensionality
should be reduced and an optimal features, subset, rather
than all possible features, should be selected from those
which are most representative for node status. We use an
iterative feature elimination technique to remove the least
significant features from the original feature vector and
retain a minimum subset of features that can yield the best
classification performance. To do so, we first obtain a training
set of data, denoted by experts, and split it into two parts.
We then train the classifier by using the first part to predict
the second part to preserve the most prominent features. For
the jth feature where j ∈ {1, 19}, we randomly permute
its values in the second part and then measure the accuracy
of the classifier. The difference between the two values can
indicate its importance. Each time the least significant feature
is removed until a final necessary feature set is obtained. We



6 Computational and Mathematical Methods in Medicine

(a) (b) (c) (d)

Figure 6: Multiple lymph nodes and their segmentation result. (a) An original CT image. (b) Edge map given by Canny method; two initial
curves for snake deformation are labeled in red and green color; (c) final segmentation result. The initial curves will deform to legitimate
nodes even though the initial curve is placed nearing to nearby organs. (d) The nodal area of interested is zoomed in for visual inspection.

call it “backward feature selection.” The obtained feature set
then undergoes an opposite step by adding feature iteratively
until the accuracy can no longer be increased, which is
called “forward feature selection.” The backward-forward
selection algorithm helps us to obtain a stable and high
representative feature set. Moreover, in order to achieve a
desirable sensitivity while maintaining sufficient accuracy, we
measure the performance of a classifier by the following loss
function:

Loss = ‖P(S1)− P(S2)‖ + 2‖Q(S1)−Q(S2)‖, (9)

where P(·) and Q(·) denote the overall accuracy and
sensitivity for set S, respectively. They are computed by

P(S) = # correctly predicted samples in set S
# total samples in set S

,

Q(S) = # True Positive in set S
# True Positive + # False Negative in S

.

(10)

The detailed backward and forward feature selection steps
are described in Algorithms 1 and 2, respectively. Seven
quantitative parameters including fractal dimension, hetero-
geneity, long- and short-axis diameter, nodal density, and
solidity are automatically chosen from the nineteen candi-
date features to compose a highly representative description
of node status after the iterative feature selection method.

3.2. Classification Model. We use a Support Vector Machine
(SVM) algorithm to classify lymph nodes [8]. SVM is
based on the statistical learning theory and the Vapnik-
Chervonenkis (VC) dimension. Its basic idea is to minimize
the bound on generalization error rather than traditional
mean square error [19–26]. SVM achieves wide applications
in many area attributing to its efficiency and rigorous math-
ematical background. Because of its efficiency and rigorous
mathematical background, SVM achieves wide applications
in various fields, such as microcalcification classification in
breast cancer [26–29], text classification [25, 27–29], and
voice recognition [30].

In this study the prediction of lymph nodal status is
considered as a binary classification problem. The features
obtained from each segmented nodal image are fed into
the SVM algorithm for selecting the most salient ones by

minimizing the cost function defined in (9). The whole
procedure is listed as follows.

In this paper N is the number of nodal images used
for training, M is the number of used features during
the procedure, and yi is the status of the ith node. The
above algorithm is performed between Algorithms 1 and
2 iteratively until convergence. During the training, we
evaluate the performance of SVM using leave-one-out cross-
validation (LOOCV) error. Then we select the feature subset
with the best cross-validation performance and record the
performance of the trained SVM classifier on testing samples.

3.3. Pathological Nodal Assessments and Nodal Matching to
Obtain Ground Truth. To obtain ground truth, we use expert
clinical evaluation to classify each lymph node. All visible
lymph nodes on the surgical specimen have been carefully
labeled and numbered by a radiologist and a surgeon. The
specimen was fixed in 10% formalin for 24–48 hours. All
visible lymph nodes were harvested, sliced, and stained with
hematoxylin and eosin (H&E) using standard protocols.
The characteristics evaluated include the nodal size and
spatial correlation from the anatomical landmarks. On CT
images each node has been numbered by a radiologist. The
node is identified as benign or malignant by pathologists,
corresponding to the serial number given on the CT images.
Therefore, the same lymph node can be identified on both
the CT (when visible) and surgical images, thus allowing
corroboration of the findings. Nodes on surgical specimens
that cannot be matched to CT findings are excluded from the
study.

3.4. Clinical Results. To evaluate the performance of our
algorithm, we tested it on real CT data of 228 patients with
newly diagnosed and biopsy-proven rectal cancer between
January 2007 and December 2008. Informed consents were
obtained from all the eligible patients and the study was
approved by the Ethical Committee of the Sun Yat-sen
University. The subjects were 140 men and 88 women
with an average age of 58 years old (ranging from 19
to 86 years old). These patients underwent enhanced CT
examination for preoperative staging diagnosis before their
total mesorectal excision. None of the patients received pre-
operative chemotherapy or radiation therapy before. Using
the proposed model, the prediction accuracy, sensitivity, and
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Figure 7: ROC curves for classification.

specificity were dramatically increased to 88%, 89%, and
82%, respectively, as compared with 78%, 79%, and 71% that
yielded by the standard SVM algorithm without iterative fea-
ture selection. The receiver operating characteristic (ROC)
curves for each feature (Figure 7) clearly illustrated that
prediction based on the combination of seven parameters
outperforms that using individual measure alone.

4. Discussion and Conclusions

Morphological information of lymph nodal metastasis is
critical for the diagnosis and prognosis of patients with rectal
cancer. Besides the size measurement which is widely used in
clinical application, researchers are also interested in higher
order measurements, such as heterogeneity, fractal dimen-
sion, and moments. To accurately evaluate these features,
an accurate segmentation of lymph nodes is needed at first.
CT images of lymph nodes are often corrupted by noises,
requiring preprocess of the images before morphological
analysis. Many standard techniques tend to smooth the
edges while removing noise, thus inadvertently destroying
structural information. This drawback significantly affects
the accuracy of differentiating lymph node status based on
its morphology. To address this challenge we propose to
use a revised diffusion process with the aims to remove
noises and simultaneously preserve boundaries of lymph
nodes. Subsequently, to segment objects of interest from
the background, methods such as snake models have been
proposed. However, the classical GVF snake model is known
to create undesired features. Therefore, we design a repulsive

force-based snake method to accomplish the segmentation.
The new snake method can accurately separate adjacent
lymph nodes as the repulsive force guides the snake evolution
to its legitimate object. With an accurate segmentation, a
set of nineteen morphological features about the lymph
node can be extracted. The next task is to extract pertinent
information from the abundant morphological features.
We develop a classifier to prune the nineteen features
selected. To avoid feature overfitting, a classification model
based on SVM is adopted in this work. Features that are
selected automatically are fed into the proposed classifier and
excellent performance results are obtained. The complete
algorithms are then tested with real clinical cases and the
assessment is compared with ground truth clinical diagnosis.
The current model results in significantly better prediction
accuracy, sensitivity, and specificity than the traditional
SVM algorithm. In conclusion, the present findings strongly
suggest that the morphological parameters and algorithms
used herein are effective for classifying lymph node status in
rectal cancer patients.

Appendix

To achieve representative characterization of a lymph node,
nineteen parameters are computed automatically based on
segmented image. The detailed definitions of the parameters
are listed below.

(1) Area: the area of the node.

(2) Major and minor axes lengths: the major and minor
axes of the ellipse that enclose the node with same
normalized second central moments.

(3) Eccentricity: the ratio of the distance between the foci
of the ellipse and its major axis length. The value is
used to measure the roundness of the node and is
lying between 0 and 1. In degenerate cases, an ellipse
whose eccentricity is 0 is actually a circle, while an
ellipse whose eccentricity is 1 is a line segment.

(4) Orientation: the angle between the x-axis and the
major axis of the ellipse.

(5) Convex area: the area of the smallest convex polygon
that contains the node.

(6) Filled area: the area of the smallest rectangle contain-
ing the node.

(7) Euler number: the number of node minus the
number of holes in the segmented nodal image. In
most cases it equals to 1.

(8) Equivalent diameter: the diameter of a circle with the
same area as the node.

(9) Solidity: the ratio of the area of the node and its
convex area.

(10) Extent: the ratio of the area of the node and its filled
area.

(11) Perimeter: the length of the nodal boundary.

(12) Maximum and minimum gray levels: maximum and
minimum gray values of the node.
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for each sample {xi, yi} ∈ RM × {−1, 1}, i = 1, . . . ,n do
Feature subset construction S = {xk, l | l /= i, i− 1, . . . , 1} by excluding the first ith feature

Train ith SVM using S;
Compute the lost function of Loss(i) using (9);
end for
Maximize the energy function of p = maxi Loss(i) to find a feature subset S∗

Algorithm 1: Backward selection.

for each sample {xi, yi} ∈ RM × {−1, 1}, i = 1, . . . ,n do
Feature subset construction S = {xk, l | l /= i, i− 1, . . . , 1} by including the first ith feature

Train ith SVM using S;
Compute the lost function of Loss(i)− Loss(i− 1) using (9);
end for
Maximize the energy function of p = maxi (Loss(i)− Loss(i− 1)) to find a feature subset S∗.

Algorithm 2: Forward selection.

(13) Difference of maximum and minimum gray level:
the difference in gray value of the maximum and
minimum gray levels.

(14) Median gray level: median gray value of a node.

(15) Density: the ratio between the summation of gray
value within the node and its area.

(16) Heterogeneity: fraction of pixels that deviate more
than a certain range (10% default) from the average
intensity.

(17) Fractal dimension: Minkowski dimension of the
boundary of the node, computed by box-counting
method.
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