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ABSTRACT

Computational RNA secondary structure prediction
is rather well established. However, such prediction
algorithms always depend on a large number of
experimentally measured parameters. Here, we study
how sensitive structure prediction algorithms are to
changes in these parameters. We found already that
for changes corresponding to the actual experi-
mental error to which these parameters have been
determined, 30% of the structure are falsely pre-
dicted whereas the ground state structure is pre-
served under parameter perturbation in only 5% of
all the cases. We establish that base-pairing probab-
ilities calculated in a thermal ensemble are viable
although not a perfect measure for the reliability
of the prediction of individual structure elements.
Here, a new measure of stability using parameter
perturbation is proposed, and its limitations are
discussed.

INTRODUCTION

In an endeavor to understand the functions of an organism, one
cannot ignore the importance of RNA (1). RNA molecules
transmit genetic information through the cell. They are also
intimately involved in many important biological processes,
such as translation, regulation and splicing. In addition to its
importance for organisms of the present time, RNA is also an
interesting molecule to study owing to its probable role as a
major player during the origin of life (2).

The function of a given RNA is determined by its physical
structure. This structure is encoded in the sequence of four
nucleotides (or bases), A, U, G and C, from which each RNA
molecule is composed. Determining the structure of RNA in
the laboratory is a laborious, and often unsuccessful, task.
Thus, it has become an interdisciplinary task to determine
these structures from the sequences alone.

The encoding of a structure in the sequence is realized by
specific interactions between the bases. To date, most import-
ant of these interactions is the formation of A–U and G–C base
pairs, also known as Watson–Crick pairs. With the formation
of each base pair, the Gibbs free energy of the structure is
lowered, and thus, the stability of the structure is increased.
Since the sequence of bases that defines the RNA is finite, the
number of possible structures into which a given RNA can fold
is also finite. The most thermodynamically probable structure
to be formed is the structure with the lowest free energy known
as the minimum-free-energy (mfe) structure.

Although the number of possible structures for a given
sequence is enormous, computer algorithms, such as the
Vienna Package (3) or MFOLD (4), can find the mfe structure
or the full partition function of the ensemble of all structures
given a sequence in a time that is proportional to the third
power of the sequence length due to a recursive relationship
(5–7). The problem with these algorithms lies in the calcula-
tion of the free energies of the structures. The contribution to
the free energy attributed to a base pairing or the formation of
various substructures, such as various kinds of loops, is meas-
ured experimentally and used as parameters in the RNA fold-
ing algorithm. For various reasons, these parameters contain
errors. Several effects, such as steric interactions between
different regions of the structure, pseudo-knots, base triplets
or even interactions with proteins or other RNA molecules, are
not reflected at all in the underlying free-energy model. All
these effects result in systematic errors in the free-energy
parameters. On the other hand, there are ordinary, non-
systematic errors of measurement associated with these para-
meters as well. Thus, while the algorithm guarantees to find
the minimum energy structure within the energy model
provided by the experimentally determined parameters, this
structure need not be the true (and thus biologically realized)
mfe structure.

The goal of this paper is not to discuss the causes of these
errors, but to investigate the consequences these errors have
regarding structure prediction. Our approach is to randomly
modify the measured free-energy parameters within a range
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comparable with the experimental errors and to record how
much the predicted mfe structures change. We found that
�30% of the structures are changed when the free-energy
parameters are varied within the experimental error. Although
this is a rather sobering result, we at least were able to found
that base-pairing probabilities evaluated in a thermal ensemble
are very good priors to estimate which parts of the structure
prediction are reliable and which are not.

MATERIALS AND METHODS

In this section, we will discuss how RNA structure prediction
algorithms work and how we model experimental error in the
free-energy parameters. This will provide the necessary
background for our study.

RNA secondary structure

The strongest interaction between the bases of an RNA mole-
cule is the formation of Watson–Crick base pairs. Therefore,
one distinguishes two levels of structure, namely secondary
and tertiary structure (with the primary structure just being
another name for the sequence of the molecule). A secondary
structure is defined as the collection of all base pairs that have
been formed without regard to any spatial organization of
the backbone. Subsequently, the tertiary structure includes
the actual spatial organization and elements formed by less
stable interactions than base pairing, such as base triplets and
backbone contacts mediated by divalent ions. Since base pair-
ing is energetically more important than the other interactions,
it is meaningful to talk about the secondary structure of an
RNA molecule without considering the tertiary structure (8).
Here, this point of view of the algorithms has been studied;
therefore, we will only discuss the secondary structure in the
remainder of this paper.

In order to make secondary structure prediction computa-
tionally feasible, it is necessary to exclude the so-called pseu-
doknots from the allowed secondary structures. Such a
pseudoknot exists if bases i and j form a base pair and
bases k and l form a base pair and these two base pairs are
nested as i < k < j < l or k < i < l < j. Although these pseudoknots
do appear in the biological structures, they are found to be
short due to kinetic constraints. Thus, they can be omitted in
the secondary structure prediction (8) and be considered as a
part of the tertiary structure of a molecule.

Energy model

A secondary structure as defined above can be drawn as shown
in Figure 1. It can be decomposed into a large number of loops,
such as stacking loops, bulges, interior loops, hairpins and
multiloops, as shown in the figure. The main assumption of
the generally accepted free-energy model is that the total free
energy of a secondary structure is the sum of independent
contributions from all of its loops. These loop contributions
depend on the identity of the bases in a loop and on the length
of the loop. For example, the free energy of a stacking loop
depends on the identity of all four bases that form the 2 bp. A
stacking loop is formed by leading to (after taking into account
symmetry) 21 different free-energy parameters for stacking
loops (if in addition to G–C, and A–U also the wobble base
pair G–U is allowed). For short bulges and interior loops, the

number of parameters increases by a factor of four for every
unpaired base in the loop. Longer loops are typically only
characterized by their length and by the identity of the
unpaired bases immediately next to the base pairs defining
the loop in order to avoid an explosion of parameters.
Nevertheless, a complete free-energy model is described in
the order of thousand parameters that are determined experi-
mentally (9). Since all these parameters are true free energies,
i.e. differences of energetic contributions, such as chemical
binding energy and bending energy, and entropic contributions
from the integrated out spatial degrees of freedom of the
backbone and the surrounding water, where each parameter
depends on the temperature. In our study, we keep the
temperature constant at the physiological 37�C.

Perturbations of the energy model

In order to study the sensitivity of structure prediction to
thermodynamic parameters, one must perturb the parameters.
For simplicity, we assume that the error in the parameters is
roughly Gaussian distributed. We model these errors by the
addition of a Gaussian random variable to every single
free-energy parameter with mean zero and standard deviation,
E, i.e. with a probability density function

r xð Þ = 1
ffiffiffiffiffiffi

2p
p

E
e�x2=2E2

: 1

In doing so, we take great care to preserve the inherent sym-
metry in the parameters (e.g. the energy of a stacking loop
obtained from a GC-pair and an AU-pair (–GA– paired with –
UC–) being equal to the energy of a stacking loop obtained
from an UA-pair and a CG-pair, i.e. –UC– paired with –GA–).
The parameter, E, serves as a measure of the magnitude of the
experimental error inherent in the parameters.

We will explore a whole range of different values for the
parameter, E, to understand the sensitivity of predicted struc-
tures to perturbations of the free-energy parameters. To get
an idea what the experimental errors on the free-energy

h

s

i

b

h

h

ms

s
s

s
s

s

s

s
s

s s

Figure 1. Schematic representation of an RNA secondary structure. The solid
line represents the backbone of the molecule while the dashed lines symbolize
base pairs. Each such structure can be decomposed into stacking loops (s),
bulges (b), interior loops (i), hairpin loops (h) and multi-loops (m) as indicated.
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parameters are in reality, it is most illustrative to look at the
stacking energies as stacking energies have been measured in
many different laboratories. In the case of most-studied DNA
stacking energies, seven independent measurements have been
systematically compared (10). In addition, this study reports
the free-energy parameters, which details the stacking energies
averaged over the different types of stacking for each of the
seven independent experiments. If we consider the average of
these averages, we find it to be �1.4 – 0.3 kcal/mol. Since the
experimental procedure for the determination of RNA free-
energy parameters is the same as for DNA free-energy para-
meters, we conclude that a good estimate for the experimental
error is 0.3 kcal/mol. Another indication that this is the order of
magnitude for the experimental error of the stacking free en-
ergies is that the additive free-energy model itself is experi-
mentally known to break down at this level of precision (11).
This implies that these uncertainties are not due to the lack of
experimental techniques of higher precision (which could in
principle be overcome by new experimental developments),
but these uncertainties are unavoidable on principle grounds.
As we do not possess very good estimates of the experimental
error of the other free-energy parameters, we uniformly apply
the same error estimate to all free-energy parameters. Since we
expect the experimental error to be larger for the other free-
energy parameters, our results are thus a conservative estimate
of the error in structure prediction resulting from the uncer-
tainty in the free-energy parameters.

RESULTS

If the predicted mfe structure, also referred to as the ground
state, has a far lower free energy than any alternative structure,
the ground state is said to be thermodynamically stable.
For our study, we are interested in another type of stability.
We will call a structure unstable with respect to parameter
perturbation if the predicted mfe structure requires a strict
adherence to one or more thermodynamic parameters in
order to remain as the predicted mfe structure. We will
quantify this stability in two different ways.

Distance of structures

In the first way, we study this instability by looking at what
fraction of a structure is still predicted correctly once the
parameters are perturbed. To this end, we need some quant-
itative method of comparison for the structures. In this study,
we will use the normalized tree distance (3) to quantify the
amount by which mfe structures at different free-energy para-
meter choices differ. We convinced ourselves that other solely
structure-based measures, such as the string distance (3), led to
results similar to the ones presented here. The tree distance is
based on a metric that views a secondary structure as being
defined by a tree diagram where the leaves of the tree are the
bases and the topology of the tree represents the structure in an
intuitive way. The tree distance is then defined as the number
of elementary operations on the tree such as cutting a branch
and attaching it at a different place in the tree [for a more
detailed description of this difference measure see (12)]. Since
the tree distance is a number between zero (for identical struc-
tures) and the length of the sequence, we rescale the tree
distance by the length of the sequence. This scaling allows

us to compare the stability of sequences of different lengths
and permits a more intuitive interpretation of the data. For
example, a scaled distance of 0.2 stands for a 20% difference
in the structure.

For our study, we chose a series of natural sequences
(namely group I introns) with length varying between 227
and 685, that is, RNA sequences that have been observed
in biological systems. For each of these sequences, the mfe
structure is predicted by the computer algorithm from the
Vienna package (3) using the accepted experimentally meas-
ured parameters (9). In addition, we determine the mfe struc-
tures of the same sequences for 100 sets of randomly perturbed
energy parameters for each uncertainty E. We calculate the
scaled tree distance between each mfe structure calculated
with perturbed parameters and the corresponding mfe structure
obtained with unperturbed parameters (i.e. the experimentally
measured values without alteration) and average these
distances over 100 realizations for each sequence and each E.

Figure 2 shows these averaged distances as a function of the
perturbation parameter, E. One should note the overall instab-
ility of the structure prediction of these natural sequences. As
shown in Figure 2, there is already a significant deviation of
�30% from the ground state structure at E � 0.3 kcal/mol that
roughly corresponds to the actual experimental error of the
parameters (10). For E � 1 kcal/mol, already half of the
structure can no longer be predicted.

Ground state probability

An alternative, and as it turns out even more sensitive, measure
of stability is the probability that the ground state structure will
be the predicted structure at a given perturbation E. To estimate
this quantity, we determine the mfe structure of our sequences
for 1000 sets of randomly perturbed parameters for each
perturbation strength, E, and classify the parameter sets
according to the mfe structures. Since we catalog the
parameter sets that produce each structure, the frequency
at which the ‘correct’ (i.e. calculated with the accepted
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Figure 2. The average scaled tree distances of various natural sequences for
different perturbations of the parameter E. The error bars denote the statistical
error after averaging over 100 different realizations of perturbed free-energy
parameter sets. The solid line shows the average over all sequences. It becomes
obvious that already at the experimental uncertainty of E� 0.3 kcal/mol �30%
of the structure is predicted unreliably.
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free-energy parameters) structure occurs can be determined,
as well as the number of alternative structures possible at a
given E.

As can be seen in Table 1, the ground state structure is most
probably not the true structure for one sequence of E as small as
0.02, and for all sequences of E = 0.22. At the experimental
error rate, i.e. E� 0.32, only 5% of the parameter perturbations
reproduce the same ground state. For this part of the study, we
also include the data on randomly generated sequences of
varying length in addition to the data on the group I introns
used. Table 1 shows that the ground state stability for these
sequences is even worse than the group I introns. From these
data, one can see that the current error in the thermodynamic
parameters casts serious doubt upon the structural predictions
made by folding algorithms. Since this error is at least to a
good part owing to fundamental limitations in the energy
model and thus cannot be significantly reduced just by better
measurements, predictions from folding algorithms should
never be taken at face value but always be subjected to critical
crosschecking.

Reliability estimation

Given that we obviously have to accept the fact that 30% of a
secondary structure will be incorrectly predicted just because
of the uncertainties in the free-energy parameters, the question
comes up whether it is at least possible to find out which parts
of the structure are the reliable ones and which are the unre-
liable ones. If the RNA secondary structure prediction algo-
rithm is used to calculate the full partition function for a given
sequence instead of the mfe structure only, it can assign to
every pair (i,j) of bases a probability pi,j that these two bases
are paired within a thermal ensemble (7). Since these
probabilities can be calculated in the same time as the mfe
structure, these probabilities are a convenient measure for the
reliability of the prediction of an individual base pair.
However, it is not a priori clear if a high probability in the
thermal ensemble corresponds to stability with respect to
uncertainties in the free-energy parameters.

To study if the thermal probabilities have any meaning for
the stability of a base pair with respect to parameter changes,
we compare the thermal ensemble directly to an ensemble of
mfe structures calculated with the perturbed parameters.
To this end, we calculate the mfe structure for a given
sequence for 1000 different sets of perturbed free-energy

parameters. We catalog the resulting base pairs, and
determine the frequency with which they occur. Then, we
compare this frequency to the thermal ensemble probability
pi,j calculated for each individual base pair at the accepted
parameters.

The comparison of base pair frequencies versus the thermal
ensemble probabilities is shown in Figure 3 for a represent-
ative sequence (we convinced ourselves that the results are
qualitatively similar for all sequences). We observe that at
small E, since few or no alternative structures are predicted,
the plot appears to be very much a step function; base pairs
which the thermal ensemble predicts to have a significant
probability (�40% or more) occur while less likely base
pairs do not. As E is increased, more alternative structures
begin to appear, and one can see the edges of the step
begin to smooth. When E = 0.32 kcal/mol, a strong correlation
is apparent even though there is a clear spread. If E increased
beyond 0.32 kcal/mol, the correlation between the base pair
frequency and the thermal ensemble probability differs in
no significant qualitative way. From these correlations, we
deduce that as the level of parameter perturbations reaches
the value of E = 0.32 kcal/mol, the pool of alternative second-
ary structures minimizing perturbed energy parameters and the
pool of suboptimal structures probed in the thermal ensemble
become similar. This is in a way surprising since the thermal
energy itself is �0.6 kcal/mol, and thus much smaller than the
perturbation of the total-free energy of a structure obtained by
perturbing every free-energy parameter by 0.32 kcal/mol. It
might imply that the base pair probability of an individual base
pair is only sensitive to perturbations of a few key free-energy
parameters that delineate different low-free-energy structures
from each other. Whatever the reason for the observed cor-
relation, we can conclude that the easily calculable thermal
probabilities are a good estimate for the sensitivity of a given
base pair to parameter perturbations.

DISCUSSION

We studied the sensitivity of RNA secondary structure pre-
diction to perturbations of the free-energy parameters. The
main result is that if the free-energy parameters are perturbed
within a range that is supposed to be the experimental uncer-
tainty with which these parameters have been determined,
�30% of the structure turns out to be unreliable and the chance

Table 1. Frequency at which the ground state is predicted (right) and the number of alternate structures predicted (left) as a function of the parameter perturbation E

Accession no. Length E = 0.02
kcal/mol

E = 0.12
kcal/mol

E = 0.22
kcal/mol

E = 0.32
kcal/mol

E = 0.42
kcal/mol

E = 0.52
kcal/mol

Random 190 0 100.0% 147 10.5% 314 7.4% 576 7.3% 829 1.1% 983 0.5%
Random 210 1 95.7% 291 2.3% 541 2.2% 846 1.0% 977 0.6% 989 0.1%
AJ228695 227 0 100.0% 20 46.8% 128 15.8% 350 5.9% 619 2.1% 829 1.1%
Random 230 15 34.0% 195 5.5% 445 3.5% 855 1.6% 994 0.1% 991 0.2%
AJ228705 248 0 100.0% 38 58.1% 223 18.4% 574 6.4% 873 1.8% 965 0.6%
U83261 243 4 98.0% 49 23.1% 241 8.8% 591 3.4% 880 1.0% 976 0.2%
Y13474 256 0 100.0% 23 86.1% 167 32.7% 491 6.0% 794 1.2% 940 0.3%
Random 270 4 76.2% 353 3.4% 681 1.3% 926 0.2% 993 0.2% 999 0.1%
Random 290 1 99.9% 134 23.1% 513 1.7% 908 0.2% 996 0.1% 995 0.1%
M38691 376 6 61.5% 516 2.6% 941 0.2% 996 0.1% 1000 0.1% 1000 0.1%
V01416 426 7 40.4% 219 9.4% 749 1.7% 977 0.4% 999 0.2% 1000 0.1%

Entries labeled ‘Random’ are randomly generated sequences. All others are group I introns.
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of predicting the same ground state as with the unperturbed
parameters is only 5% even for moderately sized sequences
with lengths up to 426. Given this imprecision, we found that
at least base-pairing probabilities calculated in a thermal
ensemble are reasonably well correlated with the probabilities
that a base pair will be unaffected by uncertainties in the free-
energy parameters. These results support the commonly
employed method of using thermal ensemble probabilities
to sort out which parts of the structure can be trusted and
which cannot. However, although calculation of the thermal
ensemble (13,14) is expedient, it offers only knowledge of
how base pairings will behave on a individual basis, and
not how they will behave in concert. The ground state
probability method not only gives a probabilistic measure
of the accuracy of the prediction, but also provide all the
probable alternative structures and some gauge of their like-
lihood of being the true structure. If the user has computer then
he/she should always check the ground state and individual
base pair probabilities using the method outlined in this paper.
Doing so is imperative if the thermal ensemble suggests a
dubious structure prediction. The amount of time sacrificed
for the additional information is dependent upon how accurate
one wishes the probabilities to be. With advances in computer

chip technology, the extra factor of 100–1000 in computation
time involved in using the ground state probability as opposed
to using the thermal ensemble may soon become a more
practical investment in cases where it is of big importance
to know in addition to the predicted structure which parts of
the structure are likely to be correctly predicted and which
should be discarded as simple artifacts of the imprecisions of
the free-energy model.
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