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The ecology of Madagascar’s grasslands is under-investigated and the
dearth of ecological understanding of how disturbance by fire and grazing
shapes these grasslands stems from a perception that disturbance shaped
Malagasy grasslands only after human arrival. However, worldwide, fire
and grazing shape tropical grasslands over ecological and evolutionary
timescales, and it is curious Madagascar should be a global anomaly. We
examined the functional and community ecology of Madagascar’s grass-
lands across 71 communities in the Central Highlands. Combining
multivariate abundance models of community composition and clustering
of grass functional traits, we identified distinct grass assemblages each
shaped by fire or grazing. The fire-maintained assemblage is primarily com-
posed of tall caespitose species with narrow leaves and low bulk density. By
contrast, the grazer-maintained assemblage is characterized by mat-forming,
high bulk density grasses with wide leaves. Within each assemblage, levels
of endemism, diversity and grass ages support these as ancient assemblages.
Grazer-dependent grasses can only have co-evolved with a now-extinct
megafauna. Ironically, the human introduction of cattle probably introduced
a megafaunal substitute facilitating modern day persistence of a grazer-
maintained grass assemblage in an otherwise defaunated landscape,
where these landscapes now support the livelihoods of millions of people.
1. Introduction
The grasslands of Madagascar have long been considered degraded wastelands
(e.g. [1–3]). Consequently, little effort has been made to investigate their ecology,
yet these grasslands cover over half the island [4]. Recently, endemic grass
lineages have been found to have evolved in Madagascar many millions of
years before human arrival [5,6]. It has been suggested that modern grasslands
expanded significantly via people introducing cattle and bringing fire [7]. Sec-
ondary grassy ecosystems, the result of forest degradation and agricultural
conversion do exist across the island [8] but their distinction from ancient grass-
lands remains confusing. However, modern fire regimes in Malagasy grasslands
have been identified where humans have limited influence, with fire return inter-
vals of one to three years [9], similar to fire regimes of African grasslands with
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similar climates and where grasslands are considered ancient
[10–14]. Humans arrived around 10 500 BP and anthropogenic
landscape modification ca. 2300 BP led to megafaunal extinc-
tion alongside the introduction of cattle, where both
overlapped by around 1500 years [15–17]. Despite being of
fundamental relevance to supporting livelihoods, conservation
and resolving contentions over ancient Malagasy ecosystems
(e.g. [18,19]), there has been sparse examination of the ecology
of grasses (e.g. [20]).

In the past, a diverse vertebrate herbivore assemblage of
now-extinct primates, hippopotamuses, elephant birds and
giant tortoises inhabited the island [21] which were
suggested to have used grasslands [7]. Hippopotamuses
and giant tortoises are prime grazer candidates [18,19] but
carbon isotope data exist for only a few specimens from the
grassy centre of the island and evidence to support a grazer
assemblage is limited [19]. Existing isotopic data show that
hippopotamuses and tortoises consumed primarily C3

plants with a variable C4 plant component [19], although
emerging evidence supports a more mixed C3–C4 diet [22].
Understanding links between grasslands and the extinct
fauna is crucial to determining the pre-settlement extent of
the C4-dominated grassy biomes.

Tropical grasslands the world over are structured by fire
and grazing interacting with climate and soils [14,23]. As
top-down controls, fire and grazing transform organic
materials tomodify community structure and act as evolution-
ary agents [24]. However, each process has different
requirements. Grazing mammals require nutritious nitrogen-
rich moist forage while fire consumes senesced carbon-rich
plant material [25]. Thus, frequent fire versus frequent grazing
leads to divergences in community composition [25,26]. Fire-
associated grasses have traits promoting flammability and
fire tolerance, while grazing lawn grasses have functional
traits enabling proliferation under intense grazing but only
where grazing is regular and concentrated. That is, the compe-
titiveness and tolerance of grass life-history strategies to each
consumer control initiates positive feedbacks between plant
functional traits and consumer controls [25].

The main argument for the anthropogenic assembly of
Malagasy grasslands is low diversity [1,3] and a lack of geo-
graphical structure [27]. However, the diversity of the
Malagasy grass flora is in line with most other islands of a
similar size while endemicity is higher, at approximately
40% [5], and the geography of Malagasy grasslands has been
little investigated [28]. Given that similar expanses of grass-
lands occur in a similar range of rainfall across Africa,
Australia and the Americas where grasslands are recognized
as natural and ancient [10–14], it is puzzling Madagascar
should be an anomaly in biome distributions. On the African
continent, compositional differentiation among grasslands can
be linked to grazing and fire regimes that promote functionally
divergent grassy ecosystems (e.g. [25,26,29]). Here, we develop
an overdue new understanding of the functional ecology and
biogeography of grasslands across central Madagascar.
2. Material and methods
(a) Study sites
We sampled the grass community at 71 sites across the central
ecoregion of Madagascar among the regions of Ibity, Itremo,
Isalo, Ankazobe and Antsirabe ([30]; electronic supplementary
material, figure S1). Data from 21 sites were from Solofondrano-
hatra et al. [31]. The vegetation across the central ecoregion is
predominantly extensive grassland and savannah woodland
with some closed forest [4]. Mean annual rainfall ranges between
1200 mm and 1700 mm (Worldclim Global Climate Data version
2; [32]; see the electronic supplementary material, figure S2) with
a five- to seven-month dry season [33]. Soils are primarily
ferralitic on sandstone and basement gneiss [4].

(b) Data collection
(i) Grass species community composition
Grass species sampled at one site define a community in our ana-
lyses. In the field, community composition was quantified using
the sampling method described in Vorontsova et al. [5], to cap-
ture grass species diversity and relative frequency in a uniform
vegetation area with a minimum area of 60 m × 60 m. All grass
species within a centre circle plot of 1 m diameter were recorded
and, from this centre point, four 25 m transects, each following a
random direction (based on a compass bearing) from the point
of origin were laid out. Along each transect, circular plots of 1 m
diameter were sampled at 5 m intervals, representing grass
species composition over 16.5 m2. Species lists and their occur-
rences are presented in the electronic supplementary material,
table S1.

(ii) Species rarity
Species were defined as rare based on two criteria: (i) the maxi-
mum frequency of a species within a community was less than
five of 21 circular plots, and (ii) the species occurred in five or
fewer of the 71 grass communities assessed. Analyses involving
grass functional traits were undertaken on species that were
not rare. Based on this assessment, grass functional traits of 41
common grass species were collected. While a further 26 species
were recorded, their functional traits were not assessed owing to
rarity.

(iii) Grass functional traits related to fire and grazing
Functional traits capture dimensions of life-history strategies via
quantifying morphology and architecture. We measured five
grass functional traits related to flammability, palatability and
tolerance to fire and grazing: (i) plant height, defined as leaf
table height (the height measured and visually estimated to cor-
respond to the ca. 80th quantile of leaf biomass), has
consequences for light competition with taller grasses effective
at competing for light [34], and flammability as taller grasses
are generally high in biomass [35]; (ii) leaf thickness influences
palatability with thick tough leaves being less digestible [36],
and flammability as leaves with higher C : N ratios are more
flammable; (iii) ratio of leaf width to leaf length reflects leaf
shape with wide short leaves preferred by grazers as palatable
and long narrow leaves igniting easily and burning intensely
[37]; (iv) bulk density defined as mass per unit volume, relates
to palatability and flammability. High bulk density grasses pro-
vide more forage per bite whereas low bulk density grasses
provide aerated fuel beds [25]; and (v) architectural growth
form of a grass can define the location of meristematic tissues
to resist grazing and fire [38]. Full details on functional traits
and collection methods are provided in the electronic
supplementary material, table S2.

(iv) Environmental variables
Environmental data for Madagascar is of poor quality with few
reliable weather stations, necessitating the use of global and
modelled products. We calculated four environmental variables
to examine the geography of grass communities: (i) mean
annual precipitation (MAP) was obtained from Worldclim
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Global Climate Data [32] as proxy for productivity [39]; (ii) per
cent sand in the top 10 cm of soil (sand per cent) was obtained
from Harmonized World Soils Database [40] that reflects soil
water holding capacity where sandy soils have low water hold-
ing capacity, thus partly capturing patterns of landscape water
availability; (iii) the presence/ absence of fire was scored for
each site based on interviews with local communities and land
managers; and (iv) distance to road was a proxy for grazing
pressure and quantified using the national roads layer for Mada-
gascar [41] with three levels of road (tarred, untarred and track).
Cattle are the dominant grazers across Madagascar, associated
with human communities that are generally close to roads.
Some main roads through the Central Highlands also follow
river valleys and can also reflect landscape water availability
and soil properties that is also important to shaping potential
cattle densities. Values of these environmental variables across
our 71 studied sites are given in the electronic supplementary
material, figure S2.

(c) Analyses
(i) Modelling grass species assemblages
Generalized latent variable models were used to determine
whether distinct grass assemblages could be identified across
sites based on the patterns of species co-occurrences [42] across
71 communities. Rare species as defined above were omitted
from the analysis because they typically contribute little interpre-
tive value while adding noise to the statistical solution [43].
Accordingly, 41 of 67 species were used in our assemblage
analyses.

Relative species frequencies of each species in each commu-
nity was the response variable. Candidate models comprised
the full set of additive permutations of four environmental vari-
ables in addition to a single unobserved predictor (latent
variable). All environmental variables were scaled prior to analy-
sis, with MAP and distance to road being base-10 log
transformed to meet model assumptions. Models were fitted in
R (R version 3.0.2 [44]; using the gllvm package [45]), specifying
a negative binomial error distribution and accounting for spatial
autocorrelation by including site latitude and longitude as
variables.

(ii) Identifying grass species assemblages and environmental
associations

Model comparisons were based on the Akaike information cri-
terion (AIC; [46,47]). Using the most supported model, species
assemblages were identified based on the matrix of residual corre-
lations along with histograms of residual correlations for each
species to identify natural breaks in residual correlation values
(electronic supplementary material, figure S3). Residual corre-
lation values range from −1 to +1. Based on the histograms,
species grouped naturally into two assemblages where values
were (i) greater than 0.1 and (ii) less than or equal to 0.1. Species
with residual correlations ranging from −0.1 to +0.1 represent a
lack of any association and species were not classified into either
assemblage as theymay be equally likely and unlikely to co-occur.

Rare species not incorporated into the gllvm analyses were
assigned a post-hoc assemblage group, made possible by the
very strong species co-occurrence patterns. To classify these 21
species, each community was assigned an assemblage group
based on the dominant proportion of species in each assemblage
group. Assemblage assignments for the 21 rare species enabled
us to undertake analyses of phylogenetic conservatism described
later. Finally, the relationship between each environmental corre-
late and species assemblage was assessed by plotting model
coefficients of environmental correlate values for each
assemblage group using boxplots.
(iii) Identifying grass functional types
We sought to identify syndromes of functional traits that rep-
resent functionally similar species. These functional groups
could then be cross-referenced with assemblage groups. Func-
tionally similar species were identified using hierarchical
clustering on principal components of the five functional traits
described above for the 41 common grass species. Clustering
used the Ward method based on Euclidian distance. The final
number of clusters was determined using the sum of within-clus-
ter inertia [48] where the final number of clusters corresponded
with the highest relative loss of inertia. Functional trait values
were then plotted for each cluster using violin plots and clusters
were compared using analysis of variance (ANOVA).

(iv) Species evolutionary history
To explore phylogenetic patterns of grass species relative to
assemblage groups and functional traits, we extracted the Baye-
sian time-calibrated phylogenetic tree of the species from a large
analysis of Malagasy grasses [6]. Digitaria thouaresiana, Eragrostis
atrovirens and Schizachyrium exile had no DNA sequences available
and were not included. Paspalum scrobiculatumwas replaced by the
only species within the Paspaleae tribe (Hildaea pallens) in Hackel
et al. [6], and Axonopus compressus was inserted based on its
estimated divergence from Paspalum in Christin et al. [49].

Three species level attributes were plotted against the phylo-
genetic tree of 64 species, these were: (i) assemblage group;
(ii) functional group; and (iii) endemicity (obtained from the [50]).

Four analyses were then undertaken to test: (i) differences in
species richness [51] and phylogenetic diversity [52] between the
two assemblage groups; (ii) differences in endemicity between
the two assemblage groups; (iii) distribution of species functional
traits along the phylogeny between the two assemblage groups;
and (iv) phylogenetic conservatism of functional traits. Each test
respectively used: (i) a generalized linear model with a Poisson
distribution and log link function; (ii) a two-proportions z-test;
(iii) a phylogenetic ANOVA using ‘phytools’ package [53]; and
(iv) an estimation of Blomberg’s K [54] with the ‘phylosig’
function using 999 numbers of tree shuffling randomization.
3. Results
(a) Assemblage groups
Residual correlations very clearly identified two species
groups (figure 1). The most supported model generating
these groups included MAP, distance to road and the pres-
ence/absence of fire as environmental correlates (AIC =
4904.07, ΔAIC to second-best model = 2.18, figure 1; electronic
supplementary material, table S3). Group 1 (top of the
correlation matrix) was composed of species highly likely to
co-occur with significant positive correlations (figure 1).
Species from group 1 were highly unlikely to co-occur with
any species in group 2, all of which are characterized by sig-
nificant negative correlations (figure 1). Six species had
residual correlation values ranging from −0.1 to +0.1 (figure 1;
electronic supplementary material, figure S3) and were not
classified into either assemblage. Assemblage groups corre-
sponding to each analysed species are presented in the
electronic supplementary material, table S1.

(b) Linking assemblage groups with environment
MAP and the presence of fire had largely negative associ-
ations with assemblage group 1, and positive associations
with assemblage group 2 (figure 2). Two species had very
large coefficients related to rainfall. These were Brachiaria
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Figure 1. Residual correlation values between pairs of 41 grass species based on 71 grassland communities. Values indicate the likelihood of pairwise species co-
occurrence that identified two major grassland assemblages: ‘group 1’ (top of the matrix) and ‘group 2’ (bottom right of the matrix). group 1 species are highly
likely to co-occur but not with species in group 2. Significant ( p < 0.05) positive correlations are represented by blue cells, and significant negative associations
correspond to red cells. Non-significant associations are blank. Correlation values are estimated from a generalized linear latent variable model incorporating mean
annual precipitation, the presence/absence of fire, distance to road and a single latent variable. (Online version in colour.)
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Figure 2. Model coefficients of environmental correlates compared between grass assemblage groups. Coefficients are related to (a) mean annual precipitation
(mm yr−1), (b) distance to road (m) and (c) the presence or absence of fire.
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subrostrata and Pennisetum pseudotriticoides with coefficients,
respectively, of −1030 and 690. By contrast, Brachiaria subros-
trata had a strongly negative coefficient related to fire
presence (−148). Extreme coefficients relate to the absence
of these species from many communities with the model
for mean frequency appropriately fitted on a log scale. Dis-
tance to road has variable relationship with assemblage 1
and mainly positive relationships with assemblage 2
(figure 2).

(c) Syndromes of grass functional traits
Hierarchical clustering identified three functional groups of
species associated with grazing and fire alongside an inter-
mediate group (harbouring traits between the two groups)
(figure 3a). Significant differences were found between all
numerical mean trait values of the three groups ( p < 0.001,
figure 3b). The grazing group of 14 species, more than half
of which are mat forming (57.1% of the group) and with all
sampled mat-forming species within this group are short
grasses with high bulk densities, and short wide thin
leaves. Leaf width to length ratio and bulk density were simi-
lar between grazing and intermediate groups (all p > 0.05) but
far higher than the fire group (all p < 0.001). The fire group
comprises 23 species, all of which are tall caespitose grasses
with thicker leaves, low bulk density and low leaf width to
length ratios compared to the grazing group (all p < 0.001).
Species in the intermediate group have similar bulk
densities to species in the fire group ( p > 0.05).
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Figure 3. Three clusters of grass species representing significant differences among groups in three functional traits. (a) Dendrogram produced via hierarchical
clustering on principal component (HCPC) of 41 grass species based on growth form, leaf width to length ratio, leaf thickness, bulk density and leaf table
height. Three functional groups are supported and interpreted as related to: grazing; intermediate (traits enabling tolerance of some level of both grazing and
fire) and fire. Black silhouettes represent typical grazing (Paspalum conjugatum) and fire (Loudetia filifolia) grass morphologies. (b) Violin plots of four functional
traits per functional group from the HCPC dendrogram. There are significant differences in all the traits between the functional clusters ( p < 0.001 for each). (Online
version in colour.)
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Table 1. Number of grass species in assemblage and functional groups. (Number of endemics per group are given in brackets.)

assemblage
group 1 (grazing)

assemblage
group 2 (fire)

total species per functional group (including species
which were not part of either assemblage groups)

grazing group 13 0 14 (4 endemics)

intermediate group 1 1 4 (0 endemic)

fire group 8 12 23 (7 endemics)

total per assemblage group 22 (5 endemics) 13 (5 endemics)
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(d) Linking assemblage and functional groups
We found high correspondence between the assemblage and
functional analyses (table 1). Thirteen of 14 species in the graz-
ing functional group (92.85%) are found in assemblage 1. Of
the 22 species within assemblage 1 (59.1%) were clustered in
grazing group. By contrast, assemblage 2 is strongly associated
with the fire functional group with 12 of the 13 species in
assemblage 2 found in the fire grass functional group. Chi-
square test result showed that functional and residual groups
have a significant relationship (p = 0.001). Among the 41
species for which there are functional data, there are 11 ende-
mic species, of which five each are, respectively, found in
assemblages 1 and 2. Four endemic species are found in the
grazing-adapted functional group, seven in the fire-adapted
functional group and none in the intermediate group. Based
on the evidence, assemblage 1 represents a suite of grazer-
maintained communities while assemblage 2 represents a
suite of fire-maintained communities.

(e) Species evolutionary history
The two assemblages are phylogenetically over-dispersed
(electronic supplementary material, figure S4). Of the 67
sampled species, 31% are endemic. Twelve endemic species
are associated with the fire-maintained assemblage and
eight with the grazing-maintained assemblage (figure 4).
One endemic species (Andropogon trichozygus) has residual
correlation values ranging from −0.1 to +0.1 and is among
the species not classified into either assemblage. There are
no significant differences between the proportion of endemics
in the two assemblages ( p > 0.05) while accounting for phylo-
geny. However, a phylogenetic ANOVA found that variances
within assemblages are associated with grass leaf table height
( p = 0.008, F = 4.26) and bulk density (p = 0.04, F = 2.59) but
not leaf size or thickness. The species richness is similar
between the two assemblage groups, and phylogenetic
diversity within the grazing-maintained assemblage is sig-
nificantly higher than the fire-maintained assemblage
(electronic supplementary material, figure S4). No signifi-
cant phylogenetic signal was found for any of the
functional traits, indicating that these are evolutionarily
labile (all p > 0.05 for the four numerical traits).
4. Discussion
In Madagascar, grasslands are far from a homogenous land-
scape but, much like in continental Africa, are shaped by the
contrasting processes of fire and grazing that promote differ-
entiation in community composition where constituent
species have diverging syndromes of functional traits. In
our research, Malagasy grass assemblages shaped by grazing
and fire each have approximately 30–40% endemism (table 1,
figure 4). These endemic grazer and fire specific species pre-
date human arrival (ca. 10 500 B.P., [16,17]) by millions of
years, with a divergence age range of 1–7 million years [6],
suggesting that grazing animals and fire shaped community
assembly in a functionally comparable way to grassland
ecosystems in Africa well before human arrival.

TheMalagasy grazing lawn assemblage (assemblage 1 and
grazing functional group; figures 1, 3 and 5) is characterized by
short, mat-forming, high bulk density grasses with short wide
thin leaves. Grazing lawns can only spread and persist under
consistent concentrated grazing that limits light competition
from other grass species [55,56] but also requires that grass
species keep meristematic tissue at or below the soil surface,
and thus inaccessible tograzers, to tolerate such consistent graz-
ing. The fire grass assemblage (assemblage 2 and fire functional
group; figures 1, 3 and5) is characterizedbysimilar species rich-
ness and lower phylogenetic diversity relative to the grazing
lawn assemblage (electronic supplementary material, figure
S4) with tall caespitose grasses with low bulk density and
longer, narrower and thicker leaves. Tall grasses, usually with
a high aboveground biomass quantity and low bulk density
(i.e. sparse architecture), are highly flammable and promote
fire [35]. The presence of endemic fire grass species strengthens
the evidence that some extent of fire-maintained grasslands is
an ancient part of the region.

Despite the congruence identified between assemblages
and functional groups, a small suite of species did not
match between analyses. We interpret these species as
being potentially able to persist in communities shaped
either by fire or grazing through tolerating both consumers
to some degree. These species, such as Hyparrhenia rufa,
Heteropogon contortus and Sporobolus pyramidalis, also have
pan-African or even cosmopolitan range sizes as would be
expected if a species can tolerate a wide range of disturbance
conditions [57]. In our dataset, these species were functionally
clustered within the fire grasses, but possibly as a product of
traits being sampled where species were first encountered in
our surveys, i.e. in frequently burnt communities, while
these species were also found elsewhere.

Madagascar’s extinct megafauna, including hippopota-
muses, giant tortoises, elephant birds and giant lemurs
survived well into the Holocene [7,58], and their extirpation
ca. 1200 BP was well after anthropogenic landscape modifi-
cation is noted in the palaeo-record [16,17]. Malagasy
hippopotamuses, members of the derived genus Hippopota-
mus arrived in Madagascar in the Quaternary [59,60]. A
recent isotope record suggest that hippopotamuses in central
Madagascar consumed a mixed diet of C3 and C4 plants in an
open ecosystem [22] although previous isotope data
suggested a primarily C3 diet where the majority of grasses
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in the Central Highlands are C4 [19]. In Africa, hippopota-
muses are short grass grazing specialists that play a crucial
role in initiating and maintaining grazing lawns in areas of
high rainfall [56,61] similar in rainfall to our study sites.
Although hippopotamuses isotopic values in Africa are
higher ([62] (δ13C =−3.6‰), [63] (δ13C =−3.5‰)) compared
to Malagasy hippopotamuses ([22] (δ13C =−15.9‰)), it does
suggest some level of a mixed C3 and C4 diet. Samonds
et al. [22] suggest that Malagasy hippopotamuses may be eco-
logically comparable to the African pygmy hippopotamus,
Choeropsis liberiensis. A mixed diet would also be supported
by the abundance of C3 forbs common to grazing lawns
that can be highly palatable [64]. In Madagascar, tortoises
were also known to consume some proportion of C4 and/
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Figure 5. Examples of typical grasslands in the Madagascar Central Highlands: (a) a grazing lawn in Ibity, containing 18 species and dominated by Cynodon dactylon
(NE), Panicum umbellatum (E) and Digitaria longiflora (NE); and (b) fire-maintained grassland in Isalo containing eight species and dominated by Loudetia simplex
(NE) and Loudetia filifolia (NE). NE = not endemic, a grass species with a distribution that spans Africa and Madagascar. E = endemic, a grass species restricted to
Madagascar and Mascarene Islands. (Online version in colour.)
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or CAM plant material [19,65] and both C3 and C4 plants on
the Mascarene islands [66]. A high density of tortoises can
effectively keep grass short and unable to carry fire (e.g.
[67]). It should be noted that isotope records in Madagascar
are not complete in the Central Highlands possibly as preser-
vational environments are limited and areas of possible
preservation have long been suited to agriculture. We suggest
the ecology of the grasses examined here demonstrates that in
the early Pliocene megagrazers, most likely hippopotamuses
and giant tortoises, were instrumental in the evolution and
assembly of the Malagasy Central Highlands obligate grazing
lawn flora (figure 4), and that cross-disciplinary efforts to
reconcile palaeo and ecological data are much needed.

The geography of grazing lawns and fire grasslands is not
random but related to rainfall, distance to roads and the pres-
ence of fire (figure 2) that also represent a legacy of human
colonization and patterns of modern land use. Sites with
higher rainfall were more likely to experience fire, while
sites with lower rainfall were more likely associated with
grazing. Across the rainfall gradient, sites located near
roads are more likely subject to intensive concentrated graz-
ing. Undoubtedly, the modern dynamics of grazing lawns
in Madagascar are shaped by cattle raised close to roads (or
waterways), where people live and can manage them rela-
tively easily in terms of forage and safety. However, the
associations of species dependent upon grazing are probably
ancient, evidenced by the species diversity and endemicity.
Cattle, hippopotamuses and grazing tortoises share key func-
tional similarities, they prefer highly palatable grasses with
high bulk density to maximize intake of nutritious food per
bite. McCauley et al. [68] showed that a mixture of herbivores
(including cattle and hippopotamuses) and removal of hippo-
potamuses on grazing lawns in East Africa similarly
impacted grassland diversity and structure, suggesting
some functional equivalence between hippopotamuses and
livestock. The replacement of one grazer with another is unli-
kely to have substantially reshaped diversity where an
obligate grazing flora already existed. While grazing lawns
in Africa are maintained by a diversity of wild mammal gra-
zers, cattle increasingly maintain grazing lawns owing to the
vast and extensive displacement of native grazers with live-
stock. In Africa, grazing lawns also support a diversity of
grass species [56] with diversity in Malagasy grazing lawns
similar or greater [69,70]. The current decline and extinction
of African megafauna may well be an analogy of the historic
megafaunal extinctions in Madagascar, where productive
landscapes now used for cattle rearing are fundamentally
underpinned by an ancient obligate grazing adapted flora,
a product of millions of years of grazer and grass coevolution.

Examination of the impacts of megafaunal extinction gen-
erally focuses on woody plants rather than grasses. While
grasses can be long lived, it would be possible for grazing
grasses in particular to be rapidly lost from ecosystems
when over-topped by taller grasses or woody plants.
Indeed, the temporal overlap between the megafaunal extinc-
tion and arrival of cattle may have been the salvation of the
grazing adapted grass flora while also facilitating human
colonization of the island. It will be crucial to understand
the impacts of environmental change on these ancient grass
assemblages with droughts increasing in frequency and
severity. However, also much needed is identification of the
limits of ancient and modern grassland ecosystems requiring
collaboration across disciplines. In Madagascar, grasslands
are dismissed as wastelands in need of forest restoration.
Hence, grasslands are now the subject of extensive tree plant-
ing programmes, adopted as environmental policy for forest
restoration, carbon sequestration and fuelwood production.
The most commonly planted trees are exotic Eucalyptus,
Acacia and Pinus species, species known as invasive else-
where in the world. Food security in Madagascar is highly
precarious and agriculture in the Central Highlands is depen-
dent on abundant stream flow for rice production. If
grasslands are an extensive ancient component of these Cen-
tral Highlands landscapes, which is likely given the patterns
of diversity, geography and endemism observed here, not
only is planting of exotic tree species damaging, but at
scale will probably reduce stream flow [71] with unforeseen
environmental consequences in a changing climate. Malagasy
grasslands require new science to help delimit pre-human
versus modern limits linked to the assemblages identified
here. There is a clear need for science to engage with regions
hitherto dismissed as being of no value for the sake of future
conservation, land management and livelihoods.
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