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Monoclonal antibody therapies against SARS-CoV-2 
Daniele Focosi, Scott McConnell, Arturo Casadevall, Emiliano Cappello, Giulia Valdiserra, Marco Tuccori

Monoclonal antibodies (mAbs) targeting the spike protein of SARS-CoV-2 have been widely used in the ongoing 
COVID-19 pandemic. In this paper, we review the properties of mAbs and their effect as therapeutics in the pandemic, 
including structural classification, outcomes in clinical trials that led to the authorisation of mAbs, and baseline and 
treatment-emergent immune escape. We show how the omicron (B.1.1.529) variant of concern has reset treatment 
strategies so far, discuss future developments that could lead to improved outcomes, and report the intrinsic 
limitations of using mAbs as therapeutic agents.

Introduction 
The first monoclonal antibody (mAb) for clinical use 
(muromonab-CD3) was approved by the US Food and 
Drug Administration (FDA) in 1986.1 Since then, about 
ten new mAbs have been approved each year 
(mostly IgG1), with an estimated global yearly sale of 
US$75 billion in 2021.2 Most of these mAbs have been 
licensed for non-infectious disease indications. However, 
successful efforts have been made in the COVID-19 
pandemic to research and develop mAbs against 
SARS-CoV-2. At the beginning of the COVID-19 
pandemic, IgG mAbs against the spike protein of 
SARS-CoV-2, either as single agents or mAb cocktails (ie, 
a combination of two or more mAbs), were announced 
and advertised by many authorities as the most effective 
antibody therapeutic solution for COVID-19.3 As of 
March 4, 2022, the Coronavirus Antibody Database 
(CoV-AbDab) contains 5210 antibodies and nanobodies 
against SARS-CoV, MERS-CoV, and SARS-CoV-2. 

Many randomised clinical trials of mAb therapy and 
prophylaxis have been launched, initially for patients 
being treated in hospital and then for outpatients, all 
showing overall moderate efficacy and good safety 
(tables 1, 2). Many classifications of anti-spike mAbs 
according to the targeted epitopes have been suggested 
(table 3). In this paper, we review the information available 
for mAbs against SARS-CoV-2 (panel 1) to identify the 
strengths and weaknesses of this therapeutic strategy, 
which are apparent from 2 years of clinical experience.

Efficacy in randomised clinical trials 
Efficacy of mAbs was measured as reduction of infection 
rates when mAbs were used in pre-exposure or post-
exposure prophylaxis, reduction in hospital admissions 
when mAbs were administered as treatment for 
outpatients, or reduction in disease progression or 
mortality when mAbs were used as treatment for 
inpatients. Similar to therapies based on neutralising 
antibodies, such as the cheaper COVID-19 convalescent 
plasma, therapeutic efficacy was exclusively shown in 
seronegative and early inpatients. Reductions of the 
measured variables ranged between 30% and 40%, which 
was enough to meet statistical significance, but the effect 
was not sufficiently large for these mAbs to be considered 
an effective therapy, since a substantial proportion of 
patients treated with mAbs did not appear to benefit. 

Better results were observed for prophylactic indications 
and in outpatients, especially when patients at high risk 
of disease progression were recruited to increase the 
cost-effectiveness of the procedure.

Specifically, a randomised clinical trial that led to the 
authorisation of bamlanivimab (Eli Lilly, Indianapolis, 
IN, USA) showed that the efficacy of bamlanivimab 
administered alone was not significant: the proportion of 
patients who recovered in, or were discharged from, 
hospital ranged from 82% to 88% for the bamlanivimab 
group versus 79% to 90% for the placebo group.5 
REGN-COV2 (a cocktail of two mAbs, casirivimab and 
imdevimab; Regeneron and Roche, New York, NY, USA) 
use led to an 84–92% relative risk reduction in developing 
symptomatic COVID-19 infections, and a significant 
reduction in mortality in patients treated in hospital at 
day 28 from baseline.7 Sotrovimab (GSK, Brentford, UK) 
use led to a relative risk reduction of 85% in progression 
of the infection leading to admission to hospital or death. 

FDA EMA

Bamlanivimab EUA Nov 9, 2020, for early therapy in 
outpatients at high risk of disease 
progression; revoked on April 15, 2021

Not authorised

Bamlanivimab and 
etesevimab

EUA Feb 9, 2021, for early therapy in 
outpatients at high risk of disease 
progression; restricted on Jan 24, 2022

Marketing authorisation granted on 
March 11, 2021, for early therapy in 
outpatients at risk of disease progression; 
withdrawn by Eli Lilly on Oct 29, 2021

Casirivimab and 
imdevimab

EUA Nov 21, 2021, for early therapy in 
outpatients at high risk of disease 
progression; restricted on Jan 24, 2022

Marketing authorisation granted on 
Nov 12, 2021, for early therapy in 
outpatients at risk of disease progression 
and post-exposure prophylaxis

Tixagevimab and 
cilgavimab

EUA Dec 8, 2021, for pre-exposure 
prophylaxis

In rolling review

Sotrovimab EUA May 26, 2021, for early therapy in 
outpatients at high risk of disease 
progression; withdrawn on April 5, 2022

Marketing authorisation granted on 
Dec 17, 2021, for early therapy in 
outpatients at risk of disease progression

Regdanvimab Not approved yet Marketing authorisation granted on 
Nov 12, 2021, for early therapy in 
outpatients at risk of disease progression

Bebtelovimab EUA Feb 11, 2022, for early therapy in 
outpatients at high risk of disease 
progression

Not authorised

Damubarvimab 
and romlusevimab

Not authorised Not authorised

EMA=European Medicines Agency. EUA=emergency use authorisation. FDA=US Food and Drug Administration.

Table 1: Authorisation status for selected monoclonal antibodies by the FDA and EMA  

http://opig.stats.ox.ac.uk/webapps/covabdab/
http://crossmark.crossref.org/dialog/?doi=10.1016/S1473-3099(22)00311-5&domain=pdf
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Location Date of recruitment Treatment group (n) Control group (n) Main efficacy outcomes

Bamlanivimab

Gottlieb et al (2021)4 USA and Puerto Rico June 17–
Aug 21, 2020

Three groups with 
different doses: 700 mg 
(n=101), 2800 mg 
(n=107), and 7000 mg 
(n=101)

Placebo (n=156) (1) The change from baseline to day 29 in viral load AUC was 
significant for the 2800 mg dose group (difference –9·50 [95% CI 
–16·32 to –2·68]; p=0·006) compared with the placebo group; 
(2) the change in symptom improvement from baseline to day 11 
was significant for the 700 mg dose group (difference 16·0% 
[95% CI 3·6–28·4]; p=0·02) and the 7000 mg dose group (15·0% 
[2·6–27·4]; p=0·02) compared with the placebo group; (3) the 
change from baseline to day 29 in the proportion of patients with 
COVID-19-related hospitalisation or emergency department 
admission was not significant for any treatment group compared 
with the placebo group; and (4) no deaths during the study

ACTIV-3/TICO LY-
CoV555 Study Group 
et al (2021)5

USA, Argentina, Denmark, 
Georgia, Greece, India, 
Mexico, Mozambique, 
Nigeria, Poland, 
Singapore, Spain, 
Switzerland, Ukraine, and 
UK

Aug 5–Oct 13, 2020 n=163 Placebo (n=151) (1) 82% of the patients in the treatment group had a sustained 
recovery vs 79% in the placebo group; (2) 88% of the patients in 
the treatment group had a hospital discharge vs 90% in the 
placebo group; and (3) nine patients in the treatment group died 
vs five in the placebo group; of these 14 deaths, 12 were attributed 
to worsening of COVID-19 and two to cardiopulmonary arrest

Bamlanivimab and etesevimab

Gottlieb et al (2021)4 USA and Puerto Rico Aug 22–Sept 3, 2020 n=112 Placebo (n=156) (1) The change from baseline to day 11 in viral load AUC was 
significant for the treatment group (difference –0·57 [95% CI 
–1·00 to –0·14]; p=0·01) compared with the placebo group; (2) the 
change from baseline to day 29 in viral load AUC was significant 
for the treatment group (difference –17·91 [95% CI –25·25 to 
–10·58]; p<0·001) compared with the placebo group; (3) the 
change in symptom improvement from baseline to day 11 was not 
significant compared with the placebo group; (4) the proportion 
of patients with COVID-19-related hospitalisation or emergency 
department admission at day 29 was 0·9% in the treatment group 
vs 5·8% in the placebo group, with the difference between groups 
being significant (difference –4·9% [95% CI –8·9 to –0·8]; 
p=0·049); and (5) no deaths during the study

Casirivimab and imdevimab

Weinreich et al (2021)6 USA, Mexico, and 
Romania

June 16–
Aug 13, 2020

Three groups with 
different doses: 
1200 mg (n=736), 
2400 mg (n=1355), and 
8000 mg (n=625)

Placebo (n=1341) (1) In the full analysis set, 3% of patients in the treatment groups 
reported at least one medically attended visit, compared with 6% 
in the placebo group; (2) in the serum antibody-negative 
subgroup, 15% of patients had a medically attended visit, 
compared with 6% in the placebo group; and (3) mean difference 
in viral load from baseline to day 7 was −0·71 log₁₀ copies per mL 
(95% CI −0·90 to −0·53) for the 1200 mg dose group and 
−0·86 log₁₀ copies per mL (−1·00 to −0·72) for the 2400 mg dose 
group compared with the placebo group

Isa et al (2021)7 USA Not reported n=729 Placebo (n=240) (1) 92·4% reduction in relative risk of developing symptomatic 
COVID-19 and 100% risk reduction for SARS-CoV-2 seroconversion 
(anti-nucleocapsid IgG) in the treatment group compared with the 
placebo group; (2) no patient in the treatment subgroup of 
seronegative patients at baseline (n=617) was seropositive at the 
end of the study vs 20 patients in the placebo seronegative 
subgroup (n=208); and (3) no deaths during the study

O’Brien et al (2021)8 USA, Moldova, and 
Romania

Not reported n=753 Placebo (n=752) (1) 84% reduction in relative risk of developing symptomatic 
COVID-19 in the treatment group compared with the placebo 
group; (2) in the overall population, the mAb cocktail prevented 
symptomatic and asymptomatic infections; and (3) the median 
time to resolution of symptoms and the duration of a high viral 
load was 2 weeks shorter in the treatment group than in the 
placebo group

RECOVERY 
Collaborative Group 
(2022)9

UK Sept 18, 2020–
May 22, 2021

n=4839 Best standard of 
care (n=4946)

(1) Significant reduction in mortality at day 28 (relative risk 0·80 
[95% CI 0·70–0·91]) for COVID-19 hospitalised patients 
(seronegative for SARS-CoV-2 on admission to hospital) treated 
with the mAb cocktail; and (2) in the subgroup of patients who 
were seronegative for SARS-CoV-2 and not on ventilation at 
baseline, patients in the treatment group had a less frequent 
progression to use of ventilation than patients in the control 
group, although this finding was not observed in the overall 
population

(Table 2 continues on next page)



www.thelancet.com/infection   Published online July 5, 2022   https://doi.org/10.1016/S1473-3099(22)00311-5	 3

Review

Correspondence to: 
Dr Marco Tuccori, Unit of Adverse 
Drug Reactions Monitoring, Pisa 
University Hospital, Pisa 56126, 
Italy 
marco.tuccori@gmail.com

For more on CoV-AbDab see 
http://opig.stats.ox.ac.uk/
webapps/covabdab/

Regdanvimab (Celltrion, Incheon, South Korea) use 
reduced the risk of admission to hospital or death by 
72% in patients at high risk of progression to severe 
COVID-19, and only few patients with symptomatic 
infection required admission to hospital or oxygen 
therapy, or died.13 Bebtelovimab (Eli Lilly, Indianapolis, 
IN, USA) was approved in patients with mild-to-moderate 

COVID-19 at high and low risk of disease progression, 
either administered alone or together with bamlanivimab 
and etesevimab (Eli Lilly, Indianapolis, IN, USA). In the 
overall population treated with bebtelovimab alone or the 
mAb cocktail, a small proportion of patients (1·7–4·0%) 
required admission to hospital or died.56 AZD7442 (a 
cocktail of tixagevimab and cilgavimab; AstraZeneca, 

Location Date of recruitment Treatment group (n) Control group (n) Main efficacy outcomes

(Continued from previous page)

Tixagevimab and cilgavimab

Levin et al (2022)10 USA, Belgium, France, 
Spain, and UK

Nov 21, 2020–
March 22, 2021

n=3460 Placebo (n=1737) In the primary efficacy analysis, patients treated with the mAb 
cocktail had a 76·7% reduction (95% CI 46·0–90·0; p<0·001) in 
relative risk of developing symptomatic COVID-19 compared with 
the placebo group; the risk reduction was 82·8% at 6 months 
(65·8–91·4; p value not available)

AstraZeneca (2021)11 USA and UK Not reported n=749 Placebo (n=372) (1) No significant reduction in the risk of developing symptomatic 
COVID-19 in the overall population; (2) in the pre-planned 
subgroup analysis, risk of developing symptomatic COVID-19 was 
reduced by 73% (95% CI 27–90) in the treatment subgroup of 
patients who were PCR-negative at time of dosing compared with 
the placebo group; and (3) in the post-hoc subgroup analysis, risk 
of developing symptomatic COVID-19 was reduced by 92% 
(32–99) in the treatment subgroup of patients who were PCR-
negative at baseline with follow-up for >7 days after dosing 
compared with the placebo group

AstraZeneca (2021)12 USA, Argentina, Brazil, 
Czech Republic, Germany, 
Hungary, Italy, Japan, 
Mexico, Peru, Poland, 
Russia, Ukraine, Spain, and 
UK

Not reported n=407 Placebo (n=415) (1) Risk of progression to severe COVID-19 or death was 4·4% in 
the treatment group (outpatients within 8 days from symptom 
onset) at day 29 compared with 8·9% in the placebo group 
(ie, 50% relative risk reduction); and (2) risk of progression to 
severe COVID-19 or death was 3·5% in the treatment subgroup of 
patients who received treatment within 5 days from symptom 
onset compared with 10·7% in the placebo group

Sotrovimab

Gupta et al (2021)13 USA, Austria, Brazil, 
Canada, Peru, Spain, and 
UK

Jan 19–Feb 17, 2021 n=291 Placebo (n=292) (1) 1% of patients in the treatment group, compared with 7% in 
the placebo group, had disease progression leading to admission 
to hospital for any cause, or death (relative risk reduction 85% 
[97·24% CI 44–96]; p=0·002); and (2) one patient in the placebo 
group died

Regdanvimab

Kim et al (2021)14 South Korea Dec 16, 2020–
March 1, 2021

Phase 1; four groups 
with different doses in 
study 1.1: 10 mg/kg 
(n=6); 20 mg/kg (n=6), 
40 mg/kg (n=6), and 
80 mg/kg (n=6); three 
groups with different 
doses in study 1.2: 
20 mg/kg (n=5), 
40 mg/kg (n=5), and 
80 mg/kg (n=5)

Placebo (n=8 in 
study 1.1; n=3 in 
study 1.2)

(1) The mean reduction in viral titres in nasopharyngeal swabs 
from baseline to day 14 was greater for patients in the treatment 
groups compared with patients in the placebo group; and (2) all 
patients (except one in the placebo group) recovered from 
COVID-19 at day 14 with a shorter mean time to recovery 
(3·39 days for patients in the treatment groups vs 5·25 days in the 
placebo group)

Eom et al (2021)15 South Korea Oct 7–Dec 18, 2020 Phase 2; two groups 
with different doses: 
40 mg/kg (n=105) and 
80 mg/kg (n=111)

Placebo (n=111) (1) Median time from receiving a positive RT-qPCR test result to a 
negative one was 12·75 days for patients in the 40 mg/kg dose 
group and 11·89 days in the 80 mg/kg dose group, compared with 
12·94 days in the placebo group; (2) 4·0% of patients in the 
40 mg/kg dose group and 4·9% in the 80 mg/kg dose group 
required admission to hospital or oxygen therapy from baseline to 
day 28, compared with 8·7% in the placebo group; and (3) no 
deaths during the study

Celltrion Healthcare 
(2021)16

South Korea Not reported Phase 3 (n=undisclosed) Placebo 
(n=undisclosed)

(1) Total of 1315 patients at risk for severe COVID-19—at day 28, 
patients in the treatment group had a 72% reduction in risk of 
hospitalisation or death compared with the placebo group 
(3·1% vs 11·1%; p<0·0001); and (2) no deaths during the study

(Table 2 continues on next page)
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Cambridge, UK) is the only combination approved by the 
FDA for pre-exposure prophylaxis: among patients who 
had a negative SARS-CoV-2 PCR test at baseline, 
tixagevimab and cilgavimab reduced the risk of 
developing symptomatic COVID-19 by 73–92%, and the 
risk of disease progression or death ranged from 3·5% 
to 4·4%.11

Unfortunately, no randomised clinical trial was done 
by a pharmaceutical company after vaccine coverage was 
high, and thus mAbs continued to be administered to 
individuals with vaccine-induced seropositivity, without 
any conclusive evidence supporting their efficacy in these 
settings. Such lack of reappraisal by public investigators 
is a serious concern for reliability of current evidence on 
mAbs. However, mAb efficacy in individuals with 
vaccine-induced seropositivity is likely to be much lower 
than in individuals who are not vaccinated: novel 
randomised clinical trials are hence needed to support 
the assessment of cost versus efficacy of the intervention 
in this group of individuals, who represent most people 
nowadays.

Notably, when poor results were observed for patients 
who were treated in hospital, pharmaceutical research 
moved to establishing efficacy of, and using, mAbs in 
outpatients, for whom mAbs were more likely to be 
effective on the basis of previous experience with antiviral 
mAbs. These mAb trials had an advantage compared with 
randomised clinical trials of COVID-19 convalescent 
plasma because they were sponsored by pharmaceutical 

companies; trials of COVID-19 convalescent plasma, in 
which efficacy was likely to be low and there were not as 
many outpatients, were instead supported by physicians 
and the medical community to assist patients with 
advanced disease.57

The rapid development of the pandemic highlighted 
some predictable limitations in the development of mAb 
therapies: of a very broad pipeline,58 only a few candidates 
were initially approved by regulatory authorities in 
sufficient time to be used. The initial success of some 
mAbs, such as casirivimab and imdevimab, discouraged 
small companies from pursuing other research and 
development efforts, because of the assumption that the 
mAbs that had reached the market first would have 
been adequate and sufficient therapeutics. With the 
emergence of the delta (B.1.617.2) and omicron (B.1.1.529) 
variants of SARS-CoV-2, the mAbs that were used early 
in the pandemic against the wild-type and alpha (B.1.1.7) 
variants lost their neutralising activity. Therefore, when 
other mAbs were needed, manufacturing bottlenecks 
largely hindered large-scale deployment.59 However, 
even if additional mAbs had been widely available, their 
cost would have probably remained prohibitive even for 
high-income countries. Notably, when mAbs were 
ultimately made available, many did not show to be 
effective against SARS-CoV-2 within a short time after 
their introduction, because the virus rapidly escaped 
their narrow specificity with the generation of 
mAb-resistant variants.60

Location Date of recruitment Treatment group (n) Control group (n) Main efficacy outcomes

(Continued from previous page)

Bebtelovimab

Dougan et al (2022)17 USA, Argentina, and 
Puerto Rico

Not reported Bebtelovimab (n=125); 
bebtelovimab plus 
bamlanivimab and 
etesevimab (n=127)

Placebo (n=128) (1) Low-risk patients (based on the Centers for Disease Control and 
Prevention guidance18): 14% of patients receiving treatment with 
bebtelovimab and 13% of patients receiving treatment with the 
combination of mAbs had a persistently high viral load at day 7; 
and (2) median time to symptom resolution ranged from 6 to 
7 days for patients in the treatment group vs 8 days in the placebo 
group

Dougan et al (2022)17 As above As above Bebtelovimab (n=100); 
bebtelovimab plus 
bamlanivimab and 
etesevimab (n=50)

As above High-risk patients (based on the Centers for Disease Control and 
Prevention guidance18): 3% of patients receiving treatment with 
bebtelovimab were hospitalised or died because of COVID-19, 
compared with 4% of patients receiving treatment with the 
combination of mAbs

Dougan et al (2022)17 As above As above Bebtelovimab plus 
bamlanivimab and 
etesevimab (n=176)

As above (1) High-risk patients (based on the Centers for Disease Control 
and Prevention guidance18): COVID-19-related hospitalisations 
were reported for 1·7% of patients; and (2) no deaths during the 
study

Damubarvimab and romlusevimab

ACTIV-3/TICO Study 
Group (2022)19

USA, Argentina, Denmark, 
Georgia, Greece, India, 
Mexico, Mozambique, 
Nigeria, Poland, 
Singapore, Spain, 
Switzerland, Ukraine, and 
UK

Dec 16, 2020–
March 1, 2021

n=176 Placebo (n=178) (1) 45% of patients in the treatment group and 51% in the placebo 
group had an improvement in the seven-category pulmonary 
ordinal scale from baseline to day 5; and (2) the adjusted odds 
ratio (active treatment vs placebo) for patients being in a more 
favourable category on the pulmonary scale on day 5 was 0·98 
(95% CI 0·67–1·43)

AUC=area under the receiver operating characteristic curve. mAb=monoclonal antibody. TICO=Therapeutics for Inpatients with COVID-19.

Table 2: Efficacy of anti-spike mAbs approved so far for clinical use in randomised clinical trials
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Safety in randomised clinical trials 
The safety of mAbs was measured as the number of 
adverse events and serious adverse events occurring after 
their administration. Generally, adverse events were non-
severe (eg, diarrhoea and nausea) and self-limiting. The 
most common adverse events were injection-site reactions, 
headache, chills, and bronchospasm.4,6,8–10,12,19 Serious 
adverse events occurred very rarely,4,6,8–10,12,19 and those 
affecting the respiratory tract (eg, shortness of breath) were 
probably related to the progression of COVID-19. Death 
occurred only in few patients, especially those clinically at 
high risk of disease progression or treated in hospital. 
More than 95% of patients completed the infusion of 
mAbs. The incidence of antidrug antibodies was assessed 
only in the regdanvimab trial,61 in which they were not 
detected. Nevertheless, repeated exposure to mAbs, such 
as in pre-exposure prophylaxis, comes with concerns, such 
as a growing incidence of treatment-emergent resistance.

Resistance to mAbs
As for any other therapeutic, resistance to mAbs binding 
the spike protein can be either initial (ie, pre-existing 
before treatment) or treatment-emergent (ie, positive 
selection of immune-escape variants after treatment). 
Both types of resistance can be predicted in vitro, using 
gene sequencing efforts for initial resistance, or viral 
serial passage in the presence of the mAb for treatment-
emergent resistance. However, the implications of these 
types of resistance are different. Initial resistance 
discourages regulatory bodies from introducing a mAb 
into therapeutic guidelines, when the prevalence of the 
mutations that confer initial resistance to the mAb in the 
circulating strains is high. By contrast, a high incidence 
of treatment-emergent resistance could trigger a mandate 
follow-up order to promptly detect immune escape and 
treatment failure. With regard to viral fitness, although 
widespread circulation of a resistant strain invariably 
indicates enhanced fitness, typically only a few mutations 
associated with treatment-emergent resistance are 
sufficiently fit to spread within communities. This 
reduced viral fitness is clearly shown by the relative 
scarcity of SARS-CoV-2 lineages with E406 mutations 
that are resistant to REGN-COV2 in the Global Initiative 
on Sharing All Influenza Data (GISAID). In addition to 
REGN-COV2, the spike E406W mutation abrogates 
neutralisation mediated by cilgavimab. E406W results in 
allosteric changes to the ACE2-binding site, thereby 
reducing receptor recognition by these three mAbs.62 On 
the other hand, sudden emergence of the Q493R 
mutation in the omicron variant of concern, which is 
resistant to bamlanivimab, cannot be imputed as 
immune escape, since the omicron variant emerged 
many months after the use of bamlanivimab was 
discontinued worldwide.63

The in-vitro studies that have investigated spike 
mutations in variants of interest and variants of concern 
conferring resistance to mAbs are summarised in 

Protein Data Bank 
identification 
code

Finkelstein et al 
(2021)20 
classification

Barnes et al 
(2020)21 
classification

Yuan et al 
(2021)22 
classification

4A8 7c2l NTD binding ·· ··

CC12.3 6xc4 RBM class I Class 1 RBS-A

C105 6xcm RBM class I Class 1 RBS-A

P2G323 7qtg (held for 
release)

·· ·· ··

553-4924 7wog (held for 
release)

·· ·· ··

B38 7bz5 RBM class I Class 1 RBS-A

C102 7k8m RBM class I Class 1 ··

COVA2-39 7jmp RBM class I Class 2 RBS-B

CC12.1 6xc2 RBM class I ·· RBS-A

Casirivimab 6xdg RBM class I ·· ··

CV30 6xe1 RBM class I ·· RBS-A

CV07-250 6xkq RBM class I ·· RBS-B

BD-604 7ch4 RBM class I ·· RBS-A

BD-629 7ch5 RBM class I ·· RBS-A

BD-236 7chb RBM class I ·· RBS-A

COVA2-04 7jmo RBM class I ·· RBS-A

Etesevimab 7c01 RBM class I ·· RBS-A

S2H1425 7jx3 RBM class I ·· ··

S2E1226 7k4n RBM class I ·· ··

Amubarvimab 7cdi RBM class I* ·· ··

COR-101 or STE90-C1127 7b3o RBM class I* ·· ··

87G728 7r40 RBM class I* ·· ··

CV07-28729 7s5p, 7S5q, or 7s5r 
(held for 
publication)

RBM class I* ·· ··

P5C330 7p40 or 7phg RBM class I* ·· ··

S2K14631 7tas or 7tat RBM class I* ·· ··

CV07-270 6xkp RBM class II ·· RBS-C

P2B-2F6 7bwj RBM class II Class 2 RBS-C

C002 7k8s RBM class II Class 2 ··

C104 7k8u RBM class II Class 2 ··

C119 7k8w RBM class II Class 2 ··

C121 7k8x RBM class II Class 2 ··

H11-D4 6yz5 RBM class II ·· ··

H11-H4 6zhd RBM class II ·· ··

Sb23 7a29 RBM class II ·· ··

BD-368-2 7che or 7chc RBM class II ·· RBS-C

S2H1325 7jv2 RBM class II ·· ··

Ty1 6zxn RBM class II ·· ··

5A6 7m71 RBM class II* ·· ··

Cilgavimab 7l7e RBM class II* ·· ··

P1732 7cwo RBM class II* ·· ··

Ab2-4 6xey RBM class III Class 2 RBS-B

BD-23 7byr RBM class III Class 2 RBS-B

C144 7k90 RBM class III Class 2 ··

Nb20 7jwb RBM class III ·· ··

S2M1126 7k43 RBM class III ·· ··

Nb6 7kkk RBM class III ·· ··

Bamlanivimab 7kmg RBM class III* ·· ··

(Table 3 continues on next page)

https://www.gisaid.org/epiflu-applications/covsurver-mutations-app/
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panel 2. Caution should be used when drawing 
conclusions on these complex variants: for example, the 
delta variant of concern consists of more than 
200 sublineages, many of which harbour spike mutations 

that could affect mAb sensitivity of individual 
sublineages.74 The reduction of mAb neutralising activity 
by different circulating variants of interest and variants 
of concern of SARS-CoV-2 is shown in table 4.

We previously reviewed immune escape to therapeutics 
based on neutralising antibodies, including mAbs,63 and 
we provide an update of our previous research as of 
Feb 15, 2022, in the appendix (pp 1–6).

The omicron hurricane 
In November, 2021, omicron emerged, a new variant of 
concern that led to an unexpected change in the pandemic, 
due to its high reproduction number and ability to cause 
breakthrough infections in vaccinated individuals. 
Because of omicron’s high number of spike mutations 
and deletions compared with previous variants of concern, 
most clinically approved mAbs suddenly lost their efficacy 
against SARS-CoV-2 (appendix pp 1–6).114 The FDA was 
among the first regulatory authority to issue updated 
guidance documents on mAbs; on Jan 24, 2022, the FDA 
revised the authorisations for two mAb treatments—
REGN-COV2, and a cocktail of bamlanivimab and 
etesevimab—to limit their use to patients who are likely to 
have been infected with, or exposed to, a variant that is 
susceptible to these treatments.115 Attributing infection to 
a specific variant requires sequencing efforts, which are 
expensive and poorly scalable, and the long turnaround 
time is not compatible with early administration of mAbs 
to seronegative patients. When omicron emerged, only 
sotrovimab retained in-vitro efficacy; however, because 
sotrovimab is a single mAb rather than a cocktail, it is 
susceptible to the emergence of immune-escape variants, 
such as the E340K mutation, which has been reported in 
up to 10% of recipients of sotrovimab.116,117 After new 
omicron sublineages emerged, resistance of the BA.2 
sublineage, which is nowadays dominant, was 
reported:77,78,89,90,106,118 the FDA first restricted the use of 
sotrovimab on Feb 25, 2022, and withdrew authorisation 
on April 5, 2022. Despite losses in neutralisation in vitro, 
S309 (the parent mAb of sotrovimab) or AZD7442 
treatments reduced BA.1, BA.1.1, and BA.2 lung infection 
in susceptible mice that expressed human ACE2 
(K18-hACE2);119 however, animal models are clearly not 
enough.

To improve preparedness, the FDA approved 
bebtelovimab for outpatients on Feb 11, 2022, on the 
basis of only a phase 2 clinical trial;120 however, similar 
to sotrovimab, because bebtelovimab is a single mAb, it 
is susceptible to the emergence of immune-escape 
variants. Consequently, in the trial, bebtelovimab was 
co-administered with etesevimab plus bamlanivimab, 
representing the first cocktail of three mAbs against 
SARS-CoV-2.

We previously reviewed the limitations of the 
bamlanivimab plus etesevimab,121 and the casirivimab 
plus imdevimab122 cocktails, and especially their loss of 
neutralising activity against the omicron variant of 

Protein Data Bank 
identification 
code

Finkelstein et al 
(2021)20 
classification

Barnes et al 
(2020)21 
classification

Yuan et al 
(2021)22 
classification

(Continued from previous page)

Tixagevimab 7l7d RBM class III* ·· ··

S2D10633 7r7n RBM class III* ·· ··

Regdanvimab 7cm4 RBM class III* ·· ··

MW33 or MW0534 7dk0 RBM class II* ·· ··

S309 and the LS-modified 
sotrovimab25,35

6wps RBD core cluster I Class 3 S309 epitope

Imdevimab 6xdg RBD core cluster I Class 3 ··

C110 7k8v RBD core cluster I Class 3 ··

C135 7k8z RBD core cluster I Class 3 ··

47D1136 7akd RBD core cluster I* ·· ··

BG10-1937 7m6e RBD core cluster I* ·· ··

Bebtelovimab 7mmo RBD core cluster I* ·· ··

CR3022 6w41 RBD core cluster II Class 4 CR3022 
epitope

EY6A 6zcz RBD core cluster II Class 4 CR3022 
epitope

ADG-238 and its half-life 
engineered version 
adintrevimab39

No structure 
found on SAbDab

·· ·· CR3022 
epitope*

S2A4 7jvc RBD core cluster II Class 4 ··

S30425,35 7jw0 RBD core cluster II Class 4 ··

VHH-72 6waq RBD core cluster II ·· ··

H01432 7cah RBD core cluster II ·· ··

VHH72 6waq RBD core cluster II ·· ··

DH1047 7sg4 RBD core cluster II* ·· ··

S2X25940 7m7w RBD core cluster II* ·· ··

MW0634 7dpm RBD core cluster II* ·· ··

S2H9733 7m7w RBD core cluster II* ·· ··

COVA1-16 7jmw ·· Class 4 CR3022 epitope

7D641 7eam Novel RBD core 
binding epitope*

·· ··

6D641 7ean Novel RBD core 
binding epitope*

·· ··

CC40.842 7sjs S2 stem-helix 
epitope*

·· ··

S2P643 7rnj S2 stem-helix 
epitope*

·· ··

1249A844 ·· S2 stem-helix 
epitope*

·· ··

The classification into clusters by Brouwer and colleagues45 is not included here because the authors only deposited 
electron microscopy data to the EMDB (https://www.ebi.ac.uk/emdb/), but did not deposit structural information to 
the Protein Data Bank (https://www.rcsb.org/). Monoclonal antibodies without a solved structure (ie, with no Protein 
Data Bank entry) are: 8G3,46 upanovimab (SCTA01),47 4-19,48 2-17,48 910-30,49 S2X58,33 1-20,48 4-18,48 5-7,48 5-24,48 
2-7,48 P2C-1A3,50 2-15,48 ABP-310,51 VacW-209,52 STI-9167,53 10-40,54 and TY027 (NCT04649515; terminated due to low 
recruitment rate). An EMDB entry is available for S2X35,25 2-36,48 2-43,48 and 4-8.48 EMDB=Electron Microscopy Data 
Bank. RBD=receptor-binding domain. RBM=receptor-binding motif. SAbDab=Structural Antibody Database. 
*Antibodies were not included in the original authors’ classification, but binned into Finkelstein categories 
retrospectively by matching epitopes and approach angles to members of the original clusters.   

Table 3: Competition clusters for anti-SARS-CoV-2 spike monoclonal antibodies according to 
three different classification schemes

For more on GISAID see 
https://www.gisaid.org/epiflu-

applications/covsurver-
mutations-app/
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concern, which is currently the dominant variant 
worldwide.

Fortunately, all the currently available small molecule 
antivirals—remdesivir, molnupiravir, and nirmatrelvir—
have remained effective in vitro against omicron.123 
However, these antivirals are expensive, moderately 
effective in vivo,124 and sometimes come with safety 
concerns, such as the mutagenicity of molnupiravir to 
host RNA.125 Because of the scarcity of antiviral agents, 
both the FDA126 and the International Swaps and 
Derivatives Association127 also reassessed COVID-19 
convalescent plasma for outpatients at risk of progression, 
because its polyclonal nature makes it less susceptible to 
immune escape by variants.

Perspectives 
Despite the widespread use of mAbs in medicine, 
relatively few have been developed against viral diseases: 
among them, palivizumab (AstraZeneca, Cambridge, 
UK) has been approved for pre-exposure prophylaxis of 
respiratory syncytial virus in infants at high risk,128 RAB-1 
(Serum Institute of India, Pune, India) for post-exposure 
prophylaxis of rabies, and the REGN-EB3 cocktail 
(Regeneron, New York, NY, USA), which is a combination 
of atoltivimab, maftivimab, and odesivimab, for the 
treatment of Ebola virus disease.

In contrast to the respiratory viruses that cause systemic 
infections, such as measles, rubella, varicella, and 
smallpox (which was declared eradicated by WHO 
in 1980), the endemic coronaviruses, influenza viruses, 
respiratory syncytial viruses, parainfluenza viruses, and 
SARS-CoV-2 primarily infect epithelial cells on mucosal 
surfaces and generate a reduced systemic immune 
response, at least initially and in patients who have mild 
disease. Furthermore, because replication of these viruses 
occurs in the nostrils, systemic humoral immunity is low 
such that antibodies specific for viral antigens are not able 
to always prevent infection. These antibodies thus elicit 
incomplete and transient protective immunity leading to 
reinfections. Additionally, systemically administered 
vaccines elicit systemic responses that are effective at 
moderating the severity of disease but do not prevent 
infection.

The coronaviruses pose major challenges because they 
combine high infectivity and genomic variability that 
translates into frequent protein changes, resulting in high 
antigenic variation. Consequently, coronaviruses are hard 
to eradicate; yet, pandemic preparedness plans include the 
development of universal vaccines129 and mAbs targeting 
shared epitopes among coronaviruses. Furthermore, 
modern recombinant mAb technology introduces several 
modifications to the primary sequence to improve or ablate 
effector functions and increase circulation half-life.130

Extending mAb half-life 
The fragment crystallisable (Fc) region of immunoglobulin 
is responsible for its isotype and serum half-life, and for 

engaging the cellular Fc receptors to promote phagocytosis, 
complement activation, and antibody-dependent cell 
cytotoxicity. Hence, the Fc region has received considerable 
attention in efforts to alter the properties of mAbs to 
improve pharmacokinetic and effector functions of 
immunoglobulins. Fc-modified mAbs with the amino acid 
substitution M252Y/S254T/T256E (YTE; a modification 
associated with a serum half-life two to four times longer 
than the unmodified mAbs) were developed for the 
prophylaxis of respiratory syncytial viruses in infants 
(eg, nirsevimab [AstraZeneca, Cambridge, UK and Sanofi, 
Paris, France]131,132). Additionally, the same technology was 
used in the development of AZD7442, the anti-SARS-CoV-2 
mAb cocktail containing tixagevimab and cilgavimab 
approved for pre-exposure prophylaxis. mAb half-life can 
also be expanded with the LS mutation (Met428Leu/
Asn434Ser), which does not affect antibody-dependent cell 

Panel 1: List of main anti-spike mAbs and mAb cocktails 
authorised or in advanced development stages 

Adagio Therapeutics
•	 Adintrevimab (ADG20)

AstraZeneca 
•	 AZD7442 long-acting antibody (combination of 

tixagevimab [AZD8895 or COV2-2196] and cilgavimab 
[AZD1061 or COV2-2130])

Beigene 
•	 BGB-DXP604
•	 BGB-DXP593

BMS 
•	 C135 (C135-LS if with LS mutation55)
•	 C144 (C144-LS if with LS mutation55)

Brii Biosciences 
•	 Amubarvimab (BRII-196)
•	 Romlusevimab (BRII-198)

Celltrion 
•	 Regdanvimab (CT-P59)

Eli Lilly (AbCellera and Junshi [ie, original manufacturers 
before commercial agreements])
•	 Etesevimab (LyCoV016, CB6, JS016, or LY3832479)
•	 Bamlanivimab (LY-CoV555 or LY3819253)
•	 Bebtelovimab (LY-CoV1404 or LY3853113)

Regeneron and Roche 
•	 REGN-COV2 (combination of imdevimab [REGN10987] 

and casirivimab [REGN10933])

GSK (Vir Biotechnology) 
•	 Sotrovimab (VIR-7831 or GSK-4182136; derived from 

S309)
•	 VIR-7832 or GSK-4182137 (derived from S309)

mAb=monoclonal antibody.

See Online for appendix
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cytotoxicity function.55,133 This modification was used in the 
anti-spike mAbs sotrovimab and adintrevimab (Adagio 
Therapeutics, Waltham, MA, USA),134 and the C135-LS and 
C144-LS cocktail (BMS, New York, NY, USA).55

Ablation of effector functions  
The immunoglobulin Fc region can also be modified to 
reduce effector functions. Such modifications are 
desirable in clinical situations in which stimulation of 
other components of the immune system, such as 
complement activation or engaging Fc receptors, can 
trigger side-effects. To reduce the risk of both antibody-
dependent enhancement and antibody-dependent cell 
cytotoxicity, IgG1 Fc regions can be modified to eliminate 
binding to the Fcγ receptors FcγRI, FcγRIIa, and 
FcγRIIIa by changing two amino acids in the CH2 
domain (L234A/L235A [LALA]). For IgG4, FcγR binding 
can be abrogated by changing Ser228 to Pro in the hinge 
region and Leu235 to Glu (SPLE or PE mutations).135 
Changing Pro329 to Glu abolishes the interaction of 
IgG4 with both FcγR and C1q, by disrupting the 
formation of a proline sandwich motif with the FcγRs, 
while leaving intact FcRn–IgG4 interactions and Fc 
stability.136 Although FcRn polymorphism is known to 
affect IgG half-life,137 no data are available specifically for 
anti-spike mAbs.

VIR-7832 (GSK, Brentford, UK) is a modification of 
sotrovimab with the addition of three amino acids 
(G236A/A330L/I332E, known as GAALIE) to the Fc 
domain, which enhance binding to FcγRIIa and FcγRIIIa, 
decrease affinity for FcγRIIb in vitro, and evoke protective 
CD8+ T lymphocytes in vivo.138,139 Although, to date, 

ablation of the Fc effector function has not been clinically 
used in mAbs against SARS-CoV-2, as we learn more 
about the pathogenesis of the virus and the mechanisms 
of antibody-mediated clearance, some of these alterations 
could find utility in future designs.

Expanding antigen specificity 
Broadly neutralising antibodies targeting cross-reactive 
epitopes found in all or most variants are sought after 
when designing therapies for antigenically variable 
viruses, such as HIV-1 and SARS-CoV-2.140 Within the 
genus Betacoronavirus, broadly neutralising antibodies 
have neutralising activity across all sarbecoviruses 
(appendix p 7).141 Pan-sarbecovirus antibodies are elicited 
by BNT162b2 vaccination in SARS-CoV survivors.142 
Candidate pan-sarbecovirus mAbs targeting the spike 
protein have been variously referred to as cluster VII, 
class IV, or receptor binding domain (RBD) core cluster II 
(table 3, figure): examples of these mAbs include S2X25940 
and DH1047.143 Other pan-sarbecovirus mAbs belong to 
the class I cluster I receptor-binding motif (RBM; 
eg, S2K14631) or class 3 (eg, sotrovimab), or bind to the 
base of the stem-helix at the HR2 boundary in the 
S2 subunit (eg, CV3-25,144 1249A8,44 and the CC series145). 
Each of the S2 broadly neutralising antibodies have lower 
half-maximal inhibitory concentrations than anti-RBD 
antibodies, which could make the translation into 
clinically useful doses difficult; however, experiments in 
animal models suggest protection at low doses,42,43 
probably due to additional effector functions. Notably, 
each of these pan-sarbecovirus mAbs retains activity 
against omicron.146

Panel 2: Spike mutations associated with resistance in vitro to clinically approved monoclonal antibodies 

Bamlanivimab64–66 

L452R (>100-fold reduction); E484D/K/Q (>100-fold 
reduction); G485P; F490S/L (100-fold reduction); Q493R/K 
(100-fold reduction); and S494P/R (100-fold reduction)

Bebtelovimab67 
K444Q (>83-fold reduction) and V445A (>83-fold reduction)

Casirivimab64 
E406W/D (50–93-fold reduction); K417E/N/R/T (25–100-fold 
reduction); V455T (>100-fold reduction); Y453F (>100-fold 
reduction); L455F (80-fold reduction); A475R (44-fold 
reduction); E484K/Q (20–55-fold reduction); F486x; F486K/L/
R/S/V (>100-fold reduction); N487R (>100-fold reduction); 
and Q493E/K/R (25–100-fold reduction)

Cilgavimab66,68–70 
E484K (3·2-fold reduction)

Etesevimab64–66 
K417N/T (100-fold reduction); D420N (100-fold reduction); 
F456R/A/K (100-fold reduction); N460K/S/T/Y (50–100-fold 
reduction); I472D; A475R/V (20–100-fold reduction); E484K; 

N487R (100-fold reduction); G485P; and Q493R/K (100-fold 
reduction)

Imdevimab64 
E406W (>100-fold reduction); N439K (25–100-fold 
reduction); N440K (28–96-fold reduction); K444L/M/N/Q/T 
(>100-fold reduction); V445A (>100-fold reduction); G446V 
(>100-fold reduction); N450D (9–32-fold reduction); Q498H 
(17-fold reduction); P499S (>100-fold reduction); and E484K 
(16-fold reduction)

Regdanvimab71 
L452R (35-fold reduction); E484K (8·7-fold reduction); 
and N501Y (5·5-fold reduction)

Sotrovimab72,73 
P337R/L/H/T (180–276-fold reduction) and E340K/A/G 
(27–300-fold reduction)

Tixagevimab66,68–70 
E484K (4–11-fold reduction) and S982A (3·2-fold reduction)

Data are sourced via the Stanford University Coronavirus Antiviral and Resistance Database 
(accessed online on March 4, 2021, at https://covdb.stanford.edu/search-drdb).
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Cocktails and bispecific antibodies 
The experience with SARS-CoV-2 has shown that use of 
single mAbs is susceptible to losing their neutralising 
activity as new variants emerge, because of viral evolution 
or antibody selection of immune-escape mutants. Because 
of the large development costs associated with any antibody 
therapy, losing an existing therapy as a consequence of 
viral changes is a substantial loss with regard to clinical 
therapeutic options and monetary investment. Con
sequently, there is great interest in identifying epitopes 
that cannot be altered easily or generating mAb cocktails 
that reduce the likelihood of viral immune escape, by 
targeting the virus at more than one epitope (overlapping 
or not). In essence, combining mAbs creates a polyclonal 
product. Cocktails have been used against SARS-CoV-2 
(table 1), Ebola virus, and rabies (CL184—a cocktail of 
two mAbs, CR57 and CR4098; Johnson & Johnson, New 
Brunswick, NJ, USA). Apart from protecting the product 
against viral evolution, cocktails also have the potential for 
triggering additive or synergistic effects through the action 
of two or more mAbs; however, cocktails with two or more 
mAbs are associated with substantially increased costs. 
Another alternative would be to create bispecific antibodies 
(eg, 14-H-06147), by combining two fragment antigen-
binding regions that bind to different epitopes. Bispecific 
antibodies might be a cost-effective alternative to mAb 
cocktails and are a promising strategy to improve antibody 
potency and breadth.

Routes of administration  
Immunoglobulins are large protein molecules, and only 
systemic routes have been investigated so far in clinical 
use. The initial approach of mAb therapy for COVID-19 
used intravenous infusion, which was suitable for 
treating patients in hospital. After data suggested that 
mAb use in patients who were SARS-CoV-2 seropositive 
and being treated in hospital had no or marginal benefit, 
most subsequent clinical developments focused on 
individuals who were SARS-CoV-2 seronegative, 
involving primarily outpatients. The need to provide 
mAbs systemically to outpatients generally proved 
difficult since their administration required the existence 
of infusion facilities suitable for treating patients who 
were infectious. This issue led to alternative dosing 
routes of mAbs, such as subcutaneous (REGN-COV2) or 
intramuscular (AZD7442, sotrovimab, and adintrevimab) 
administration, which have been eventually authorised 
by different regulatory authorities since February, 2021.

The need for systemic administration is a problem for a 
therapy targeting a virus that replicates in the nasal 
epithelium, because only a proportion of serum IgG 
penetrates mucosal surfaces. Pharmacokinetic modelling 
suggests that, because of poor affinity to the polymeric Ig 
receptor, only one of 1000 IgG molecules infused 
intravenously reaches the respiratory mucosae.148–150 
Consequently, the most effective route of mAb delivery 
against a respiratory pathogen would be one that delivered 
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the mAb directly to the mucosa, such as intranasal or 
intratracheal administration. In parallel with mucosal 
vaccines,151 passive immunotherapies are also being 
developed by taking advantage of mucosal immunity. 
Previous research suggested that fully human mAbs 
aggregated and lost activity after jet and ultrasonic 
nebulisation,152–156 but did not when delivered with vibrating 
mesh nebulisers.157–160 In particular, IN-006 is a muco-
trapping formulation of regdanvimab that, when delivered 
via vibrating mesh nebuliser instead of being dosed 
intravenously, has resulted in 100 times higher mAb 
concentration levels in the lungs of rats than in serum.161 
Several investigators have proposed edible162 or intranasal163 
egg-derived IgY for passive immunotherapy, and 
expression of viral antigens in the leaves of edible plants 
(eg, lettuce) is also being investigated to induce immunity.164 
Similarly, an inhalable, bispecific, single-domain antibody 
has been shown to neutralise omicron in a mouse model.165

Conclusions 
The rapid deployment of multiple mAb therapies during 
the pandemic has been a remarkable human accom
plishment. mAb therapies have undoubtedly saved 
thousands of lives by preventing progression of early 
disease to life-threatening conditions that would have 
otherwise required treatment in hospital. However, the 
experience of the past 2 years has also shown limitations 
of this approach, which could have been foreseen from 
what was known about antibody action and the antigenic 
variability of SARS-CoV-2. Although a few regulatory 
authorities promptly issued recommendations to avoid 
the inappropriate use of mAbs against resistant variants 
of concern as soon as they became locally dominant 

Figure: Three-dimensional representation of spike epitopes targeted by 
mAbs approved to date according to different classifications

For each spike glycoprotein epitope classification scheme, structural coordinates 
of anti-spike mAbs in complex with spike were collected and binned into classes 

described in each reference. Composite complexes were generated by aligning 
corresponding RBD monomers in each respective complex. Members of each 

class are listed in table 3. (A) Structures of anti-spike mAb classes adapted from 
Finkelstein and colleagues20 are overlaid in complex with a single spike monomer 
(PDB 7C2L), with NTD and RBD domains. NTD binding, RBD core clusters I and II, 

and RBM classes I–III are displayed as mesh space-filling representation. 
(B) Structures of anti-spike mAb classes adapted from Barnes and colleagues21 

are overlaid in complex with a single RBD domain (PDB 7K8M). Antibody 
binding classes 1–4 are displayed as mesh space-filling. (C) Structures of anti-

spike mAb classes adapted from Yuan and colleagues22 are overlaid in complex 
with a single RBD domain (PDB 6XEY). Antibody binding classes RBS-A, RBS-B, 

RBS-C, CR3022, and S309 are displayed in spheres representation. (D) Classes 
RBS-A, RBS-B, and RBS-C adapted from Yuan and colleagues22 are displayed in 

complex with the full spike trimer in the RBD open configuration (top, PDB 
6VYB) and RBD closed configuration (bottom, PDB 6VXX) to show the 

accessibility of each epitope with respect to spike protein configuration. 
(E) Summary of anti-spike mAb classes, as described by Finkelstein and 

colleagues,20 Barnes and colleagues,21 and Yuan and colleagues.22 Each 
classification was binned into six unifying categories for the purposes of this 

Review, on the basis of the descriptions and structural alignment of members of 
each class with available mAb-spike complex coordinates. mAb=monoclonal 

antibody. NTD=N-terminal domain. RBD=receptor-binding domain. 
RBM=receptor-binding motif. RBS=receptor-binding site.
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(NCT04501978),115 the use of ineffective and costly 
treatments has often continued for months, thus wasting 
economical resources and increasing the incidence of 
unnecessary side-effects.166 Such unjustified use of 
therapeutics is unacceptable in modern, evidence-based 
medicine, and can have serious consequences during a 
pandemic.

The clinical efficacy of mAbs has remained limited to 
patients with early and mild disease stages, as would be 
expected for a therapy that works primarily as an antiviral 
agent. Their high cost means that they are unlikely to 
become prominent treatment options in low-income 
and middle-income countries that cannot afford them. 
Scaling up of manufacturing is also a bottleneck for 
high-income economies, which often have had 
difficulties at procurement. Several lessons were learnt 
from the pandemic, such as the need for combining 
different (ideally non-overlapping) mAbs to minimise 
immune escape. Recombinant technology has been 
deployed to increase half-life and minimise off-target 
toxicity.

Overall, mAbs remain an important achievement of 
modern science, but their feasibility and economical 
sustainability against pathogens are likely to be maximal 
in small outbreaks and localised epidemics, rather than 
under pandemic settings. During a pandemic, an 
enormous number of affordable doses would be needed 
to have a positive impact on a global scale. In such 
instance, alternatives that are more robust and scalable 
than mAbs are preferred, such as convalescent plasma, 
or oral or intravenous small-chemical antivirals;167 
however, small-chemical antivirals are expensive 
and often associated with pharmacokinetic contraindi
cations.
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