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The traditional particle swarm optimization (PSO) path planning algorithm represents

each particle as a path and evolves the particles to find an optimal path. However, there

are problems in premature convergence, poor global search ability, and to the ease in

which particles fall into the local optimum, which could lead to the failure of fast optimal

path obtainment. In order to solve these problems, this paper proposes an improved PSO

combined gray wolf optimization (IPSO-GWO) algorithm with chaos and a new adaptive

inertial weight. The gray wolf optimizer can sort the particles during evolution to find the

particles with optimal fitness value, and lead other particles to search for the position of

the particle with the optimal fitness value, which gives the PSO algorithm higher global

search capability. The chaos can be used to initialize the speed and position of the

particles, which can reduce the prematurity and increase the diversity of the particles.

The new adaptive inertial weight is designed to improve the global search capability

and convergence speed. In addition, when the algorithm falls into a local optimum,

the position of the particle with the historical best fitness can be found through the

chaotic sequence, which can randomly replace a particle to make it jump out of the local

optimum. The proposed IPSO-GWO algorithm is first tested by function optimization

using ten benchmark functions and then applied for optimal robot path planning in a

simulated environment. Simulation results show that the proposed IPSO-GWO is able to

find an optimal path much faster than traditional PSO-GWO based methods.

Keywords: path planning, improved particle swarm optimization, robot, gray wolf algorithm, adaptive inertia

weight, chaos

INTRODUCTION

Along with the development of automation technology and robotics, path planning is important
in robot task execution when searching for an optimal path from the starting position to the target
position with obstacle avoidance based on certain criteria.

There have been many achievements in robot path planning. The current path planning
algorithms mainly include the colony algorithms (Liu et al., 2019; Ye et al., 2020; Zhang et al., 2020;
Zhu et al., 2020), PSO (Krell et al., 2019; Wang Y. B. et al., 2019; Liu X. H. et al., 2021; Song et al.,
2021), A∗ algorithms (Xiong et al., 2020; Liu Z. H. et al., 2021; Tang et al., 2021; Tullu et al., 2021),
artificial potential field methods (Wang P. W. et al., 2019; Azmi and Ito, 2020; Song et al., 2020; Yao
et al., 2020), genetic algorithms (Hao et al., 2020; Li K. R. et al., 2021;Wen et al., 2021), fuzzy control
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algorithms (Guo et al., 2020; Zhi and Jiang, 2020), fast marching
algorithms (Sun et al., 2021; Wang et al., 2021; Xu et al., 2021),
and deep reinforcement learning algorithms (Li L. Y. et al.,
2021; Lin et al., 2021; Xie et al., 2021). PSO is an evolutionary
computation algorithm that can be used to find the optimal
solution through collaboration and information sharing between
individuals in the group, as in path planning, the optimal solution
is to find the shortest path. The PSO algorithm is easy to
implement and has fewer adjustable parameters, however, it still
has problems such as being easy to fall into the local optimum
and slow convergence.

In response to these problems, researchers have extensively
studied PSO improvement in recent years. Das and Jena
(2020) used a genetic algorithm that inherits multiple crossover
operators and bee colony operators as two evolutionary operators
to improve the optimization ability of the PSO. Shao et al. (2020)
designed the constant acceleration coefficient and the maximum
speed as the adaptive linear variation to adapt to the optimization
process. Further, a particle mutation strategy has been proposed
to enhance the convergence speed of the algorithm. Li and Chou
(2018) applied different strategies to realize the adaptive learning
of the PSO; they turned the problem of path planning into a
minimizing multi-objective optimization problem and proposed
a new adaptive learning mechanism to improve the search ability
of the PSO algorithm.

Although the performance of the PSO algorithm has been
improved greatly, there are still some shortcomings when it
is applied for complex problems (Phung and Ha, 2021), i.e.,
premature convergence, poor global search capability, and slow
convergence speed. To this end, an improved particle swarm
optimization combined gray wolf optimization (IPSO-GWO)
is proposed in this paper. The GWO can sort the particles
during iteration to find the particles with the optimal fitness
value and lead other particles to search for the position of
the particles with the optimal fitness value, which can greatly
improve the search ability of the PSO algorithm in the global
searching space. The chaos is further adopted to initialize
the speed and position of the swarm particles and a new
adaptive inertia weight is designed to improve the global search
capability and convergence speed of the IPSO-GWO. When the
algorithm falls into the local optimum, chaos can make the
algorithm quickly jump out of the local optimum. Experiments
on benchmark functions optimization test and the robot path
planning simulation tests demonstrate that the IPSO-GWO
algorithm has faster convergence speed.

The remainder of the paper is organized as follows. The
Proposed Method section describes the proposed algorithm
including environment settings, IPSO-GWO, chaos based and
new inertial weight design. Experiments and result analysis
are explained in third section. The conclusion is given in
fourth section.

THE PROPOSED METHOD

Environment Modeling
The working environment of the robot is established through
a grid model, which can be divided into N × N squares, as

seen in Figure 1. The black grid represents obstacles which are
impassable, and the white grids represent feasible passing free
areas, denoted as 0 and 1, respectively. The five-pointed star
indicates the starting point and the green point is the target point.
Then the grid model is placed in the coordinate system so as to
establish the robot working environment.

It can be seen from Figure 1 that the model is easy to
construct, represent, and store data for processing and it is
convenient for computer processing.

PSO Algorithm
The PSO algorithm is an intelligent optimization algorithm
proposed by Kennedy and Eberhart (1995) based on the study
of the living habits of animal flocks (Tang et al., 2020). Suppose
the optimal solution of a certain problem exists inD dimensional
space for a swarm with size m, and the population can be
expressed as, Swarm = {x1, x2, . . . , xm} where xi (i = 1, · · · ,m)

is the particle without mass, k represents the total number of
the required iterations, and the position information of the ith
particle in the kth iteration can be represented by a d-dimensional

vector xki =
(

xki1, x
k
i2, . . . , x

k
id

)

, i = 1, 2, . . .m, the velocity of each

particle can be represented as vki =
(

vki1, v
k
i2, · · · , v

k
id

)

, i = 1, 2, · ·

·,m. In each iteration, the position and velocity of the particles are
dynamically adjusted according to the historical optimal fitness
values of each particle and the population. The calculation for the
(k+ 1)th iterations of the ith particle in d-dimensional space can
be written as,

vk+1
id

= vkid + c1 ∗ rand() ∗
(

pkid − xkid

)

+ c2 ∗ rand()

∗

(

pkgd − xkid

)

(1)

x
(k+1)
id

= x
(k)
id

+ v
(k+1)
id

(2)

where c1 and c2 represent the learning factors. c1 and c2 are the
control variables to control the step lengths of the individual
particle flying toward the local optimal value and the swarm
optimal value, respectively. pk

id
is the historical optimal fitness

value of each particle in the optimization process, pk
gd

is the

optimal fitness value reached by all particles, that is, the optimal
fitness value of the population; the rand() function is to generate
a random number between (0,1) to differentiate particles. The
subscript d(1 ≤ d ≤ D) represents the dimension of the
searching space. In the above Equation (1) and (2), the speed
of the PSO is composed of the local and global three parts:
vk
id

represents the speed of the particle at the kth iteration,
{

c1 ∗ rand() ∗
(

pk
id
− xk

id

) }

represents the information of the

particle itself, and
{

c2 ∗ rand() ∗
(

pk
gd
− xk

id

)}

represents the

part of the particle in the population for collaboration and
information sharing.

PSO-GWO Algorithm
The PSO-GWO algorithm is an improved PSO version incentive
inspired by gray wolf predation (Narinder and Singh, 2017; Teng
et al., 2019; Gul et al., 2021). Different from bird flocks, the gray
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FIGURE 1 | Environment modeling.

FIGURE 2 | Grey wolf social hierarchy.

wolf pack is quite a strict socially hierarchical organization; its
hierarchical arrangement is illustrated in Figure 2.

The first layer α in Figure 2 represents the leader in the
population, where the leader α is the core of the wolf pack, being
mainly responsible for leading and assigning tasks.

The second layer β in Figure 2 represents the think tank team,
which is used to assist the leader inmanagement, i.e., when leader
α is vacant, β will quickly take over the position of α. In the entire
wolf pack, the status of β is only lower than that of α. If α is
occupied, β is an advisor to α and discipliner for the group.

The third layer δ follows the command and management of
leader α and think tank, and are mainly responsible for care
and supervision.

The function of the fourth layer, ω, is to balance the
membership within the population.

The essence of the GWO is that the particle with the highest
fitness is taken as the leader α to manage other particles. The
specific steps of the GWO are summarized as follows:

Step 1: To initialize particles of one population in the
searching space;
Step 2: To rank the particles according to the historical best
fitness values;
Step 3: Taking three particles with the highest fitness values set
as α, β and δ, the other particles are arranged in sequence. If
an individual with a higher fitness value appears in the iterative
process, it is set as the new leader α and pgd is updated with its
individual fitness. xi = (xi1, xi2, ..., xiN) represents the position
of the ith particle, and vi = (vi1, vi2, ..., viN) is the speed of
the ith particle. In the k + 1 iteration, the positions of the
three particles with the best fitness values in the population are
updated via Equation (3), and the positions of the rest particles
are updated via Equations (4) and (5):

−→
d α =

∣

∣

−→c 1 ·
−→x α − w ∗

−→x
∣

∣

−→
d β =

∣

∣

−→c 2 ·
−→x β − w ∗

−→x
∣

∣

−→
d δ =

∣

∣

−→c 2 ·
−→x δ − w ∗

−→x
∣

∣ (3)

vk+1
i = w ∗ (vki + c1rand()

(

x1 − xki

)

+ c2rand()
(

x2 − xki

)

+ c3rand()
(

x3 − xki

))

(4)
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xk+1
i = xki + vk+1

i (5)

As seen in Equations (3)–(5), the dimension of the spatial
solution is d, and the current number of the iteration is k. c1,
c2, and c3 represent the learning factors, rand() is a random
number between (0, 1), and w represents the inertia weight
coefficient. The larger w makes the algorithm better in global
search, in contrast, the smaller w is more suitable for local
search. The core idea of the PSO-GWO is to arrange the particles
according to their fitness values during each iteration, and set the
three particles with the best fitness values to α, β , and δ, while
these three particles can predict the approximate range of the
location where the optimal solution may exist, and the remaining
particles can search the optimal solution within the predicted
range. In such a way, the particles can find the optimal solution
more quickly and effectively with the improved convergence
performance, so the path planning ability of the PSO algorithm
can be improved accordingly.

IPSO-GWO Algorithm
In the previous section, GWO was added to PSO to form
the PSO-GWO algorithm, and the search ability of the PSO
algorithm can be enhanced to improve its path planning ability,
but the PSO algorithm still has the problem of premature
convergence, and its convergence speed and global search ability
can be further strengthened. Hence chaos and a new adaptive
inertia weight are added to provide solutions for these problems.

PSO With Chaos
The PSO can randomly distribute particles while the optimal
solution is highly related to the particle initialization. The more
uniform the initial particle distribution, the richer the diversity of
the group, and the faster the optimal solution can be obtained.

Chaos (Demir et al., 2020; Lian et al., 2020; Lu et al.,
2020; Wu et al., 2020; Guo et al., 2021; Ouertani et al., 2021)
refers to a nonlinear motion that can traverse all situations
within a specified range. A chaotic sequence can represent all
states in a prescribed space, which is commonly generated by
mapping. Many researchers have found that chaotic mapping
has unpredictable characteristics when studying chaotic mapping
relations. Although it is somewhat unpredictable, certain laws
can still be used in the mapping process. The most commonly
used form of chaotic mapping is logistic mapping, as shown in
Equation (6):

Zi+1 = µZi (1− Zi) i = 0, 1, 2, ...; µ ∈ (0, 4] (6)

In Equation (6), 0 ≤ Z0 ≤ 1, Zi is the value obtained by i times
Logistic mapping of Z0, and µ represents the control variable.
When µ = 4, the system is within a completely chaotic state and
the range of the chaotic space is [ 0, 1].

The steps of using chaos to initialize the PSO are summarized
as follows. First, an n-dimensional vector Z1 = (z1, z2, . . . , zn)
is randomly generated, and Equation (6) is used to map the
other vectors so as to generate a chaotic sequence Z1,Z2, . . . ,ZN .
Then the chaotic sequence zi is inversely mapped from the
chaotic space[0, 1] to the space [a, b] where the optimal solution

is located, and the particle position is xij = a + (b − a)zij,
j = 1, 2, . . . , n, i = 1, 2, . . . ,N. Finally, the particles with
higher fitness values are determined as the initial particles of
the population.

When the PSO is trapped in the local optimum, the algorithm
will select the historical optimal value of the particles in the
iterative process and convert it into a chaotic sequence through
inverse mapping to obtain the optimal position of the particle,
then randomly replace a certain particle position in the current
search space so that the local optimum can be jumped out by the
algorithm. Whether particles fall into precocity is determined by
the variance of the population fitness, calculated as,

σ 2 =
1

n

n
∑

i=1

(

fi − favg

f

)2

f = max(1,max
∣

∣fi − favg
∣

∣) (7)

where n is the size of the population, fi represents the adaptability
of the first particle, and favg represents the average adaptability of
the current swarm particles. The population variance σ 2 reflects
the precocious state of the particles.When σ 2 is less than a certain
threshold, it is calculated that the particle algorithm will fall
into precocity. Then the chaos is applied to process the optimal
particles to increase the diversity of the population. The detailed
steps are described as follows.

Step 1: Select the optimal position in the iterative process and
use the function Logistic tomap it into the chaotic space [ 0, 1].
Step 2: Use logistics to generate a new sequence and inversely
map the sequence to the population.
Step 3: Calculate the optimal adaptability of the particles and
conclude whether the particle has jumped out of the local
optimum; then record the optimal fitness value and set the
corresponding particles to α, β , and δ.
Step 4:Use the current optimal chaotic particles to manage the
particles in the particle swarm to make the particles leave the
local optimum.

After the particle swarm performs the chaotic initialization
operation, the particles are more evenly distributed in the search
space, and the chaotic sequence can be used to reduce the
prematurity, improve the diversity of particles, and enhance the
convergence speed of the algorithm.

A New Adaptive Inertial Weight
It is known that the quality of PSO is closely related to inertia
weight where the local search ability of the algorithm is higher
with smaller inertial weight and global search capability is
stronger with larger inertial weight. To enable the algorithm
maintaining higher search ability during the entire operation
process, many methods have been proposed to adjust the inertia
weight (Li et al., 2019a,b; Gopal et al., 2020; Wang et al., 2020;
Wang, 2021; Zhang et al., 2021). However, the current inertia
weight improvement methods have a close relationship with the
iteration number and cannot adapt to the nonlinear variations
well. For this reason, this paper deals with the inertia weight
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via the particle adjacent fitness values. The inertia weight can be
updated and calculated as,

w = (wmax + wmin) ∗ a−
wmax ∗ k

MaxIter

a =
pk
gbest

pk−1
gbest

(8)

In Equation (8), the global optimal fitness of the kth iteration is
pk
gbest

, and the global optimal fitness of the (k− 1)th iteration

is pk−1
gbest

; the maximum ωmax and minimum ωmin of ω is set

as 0.9 and 0.4, respectively. k is the current iteration number;
MaxIter represents the maximum number of the iterations.
It can be seen from Equation (8) that a is larger at the
beginning of the iteration, so the algorithm has strong global
searching ability, and a becomes smaller gradually at the later

iteration stage, so the algorithm has strong local search ability.
In summary, the inertia weight combined with the fitness ratio of
the neighboring particles can adaptively adjust the size of w with
the number of iterations so that the algorithm has a higher global
search ability.

Path Planning
The steps of the IPSO-GWO algorithm for path planning are
summarized as follows:

Step 1: The velocities and positions of the swarm particles are
initialized by chaos using logistic function, while the position
of each particle represents a path and the fitness of the particle
represents the length of the path;
Step 2: Collision detection is performed on the path
represented by the particles. If the path collides with an
obstacle, the path is adjusted without obstacle collision;

FIGURE 3 | Iteration comparison curves with different functions. (A) Iteration curve comparison diagram with Rosenbrock function. (B) Iteration curve comparison

diagram with Drop Wave function. (C) Iteration curve comparison diagram with Peaks function. (D) Iteration curve comparison diagram with Bukin function. (E)

Iteration curve comparison diagram with Booth function. (F) Iteration curve comparison diagram with Rastrigin function. (G) Iteration curve comparison diagram with

Easom function. (H) Iteration curve comparison diagram with Levy function. (I) Iteration curve comparison diagram with Styblinski-Tang function. (J) Iteration curve

comparison diagram with Six-Hump Camel function.

Frontiers in Neurorobotics | www.frontiersin.org 5 November 2021 | Volume 15 | Article 770361

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Cheng et al. Robot Path Planning of IPSO-GWO

Step 3: The fitness values of the particles are evaluated to select
the three particles with the largest fitness values, set as α, β ,
and δ;
Step 4: To update the positions of particles α, β , and δ based
on Equation (3), update the velocities and the positions of the
rest particles via Equations (4) and (5);
Step 5: Determine whether the algorithm has fallen into
prematurity via Equation (7); if so, chaos is applied to process
the premature particles and jump to Step 2;
Step 6: Determine whether the algorithm meets the
termination condition. If it is satisfied, the iteration stops and
the optimal path is obtained; otherwise, continue to Step 2
for calculation.

EXPERIMENT AND RESULT ANALYSIS

Benchmark Experiments
To verify the superiority of the IPSO-GWO algorithm, this paper
uses MATLAB R2018b software to perform benchmark function
tests on PSO and IPSO-GWO. The variables of the simulation
experiments are set as follows: the population size is 50, the
dimension of the optimization variable is 4, the learning factor
c1 = c2 = 2.05, and the test functions of the simulation
experiments are ten benchmark functions such as Drop Wave,
Peaks, Rosenbrock, etc. For Rosenbrock function, the number
of the iterations is 200, and the number of iterations of others
is 100. Simulation experiments are performed on the above
functions. The algorithm iteration curve is shown in Figure 3.
The experimental results of the three test functions are analyzed
and compared, as listed in Tables 1–10.

It can be seen from Figure 3 that, compared with the PSO
and PSO-GWO algorithms, the IPSO-GWO algorithm converges
the fastest. From Tables 1–10, it is seen that the results obtained

TABLE 1 | Rosenbrock function test results.

Algorithm Maximum Minimum Average

value

Standard

deviation

Global

Minimum

PSO 1.8143E−12 3.272E−16 1.70543E−13 4.4715E−13 0

IPSO-GWO 9.8215E−27 2.3419E−31 2.2383E−27 2.952E−27 0

TABLE 2 | Drop Wavefunction test results.

Algorithm Maximum Minimum Average

value

Standard

deviation

Global

minimum

PSO −0.93625 −0.99997 −0.99192 0.015633 −1

IPSO-GWO −0.93625 −1 −0.99636 0.009047 −1

TABLE 3 | Peaks function test results.

Algorithm Maximum Minimum Average

value

Standard

deviation

Global

minimum

PSO −3.0395 −6.5511 −4.62282 1.741408 −6.5511

IPSO-GWO −3.0496 −6.5511 −5.50012 1.604133 −6.5511

from IPSO-GWO is closer to the global minimum, which verify
that the performance of the IPSO-GWO algorithm is higher than
those of the other algorithms.

Path Planning Experiments
To verify the superiority of the IPSO-GWO optimization in
robot global path planning, we have carried out two kinds of
path planning simulation tests: one is the test of IPSO with
PSO, and the other is the test of IPSO with Genetic algorithm
(GA) and Ant Colony Optimization (ACO). Both tests use
20 × 20 and 30 × 30 map environments. For IPSO-GWO
and PSO, the population size is set to 50 and c1 = c2= 1.6.
For GA, the crossover probability is set to 0.8, the mutation
probability is set to 0.2, and the population size is set to 50.
For ACO, the stimulating factor of the pheromone concentration
α is set to 1, the stimulating factor of visibility β is set to 7,
pheromone evaporation coefficient ρ is set to 0.3, pheromone
intensity is set to 1, and the number of iterations of the four

TABLE 4 | Bukin function test results.

Algorithm Maximum Minimum Average

value

Standard

deviation

Global

minimum

PSO 27.5233 1.3670 2.1584 3.3801 0

IPSO-GWO 2.8783 0.1078 0.3540 0.7018 0

TABLE 5 | Booth function test results.

Algorithm Maximum Minimum Average

value

Standard

deviation

Global

minimum

PSO 16.1673 0.0020 0.3429 2.1682 0

IPSO-GWO 0.0278 0.0001 0.0042 0.0076 0

TABLE 6 | Rastrigin function test results.

Algorithm Maximum Minimum Average

value

Standard

deviation

Global

minimum

PSO 6.9599 0.0073 0.5837 1.2599 0

IPSO-GWO 1.1406 0 0.0835 0.2501 0

TABLE 7 | Easom function test results.

Algorithm Maximum Minimum Average

value

Standard

deviation

Global

minimum

PSO −0.6713 −0.9999 −0.9934 0.0351 −1

IPSO-GWO −0.9727 −1 −0.9992 0.0033 −1

TABLE 8 | Levy function test results.

Algorithm Maximum Minimum Average

value

Standard

deviation

Global

minimum

PSO 10.9906 0.0016 0.2517 1.3966 0

IPSO-GWO 0.5333 0.0001 0.0191 0.0890 0
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TABLE 9 | Styblinski-Tang function test results.

Algorithm Maximum Minimum Average

value

Standard

deviation

Global

minimum

PSO −76.0206 −78.3296 −78.2937 0.2377 −78.3322

IPSO-GWO −77.9984 −78.3322 −78.3231 0.0468 −78.3322

TABLE 10 | Six-Hump Camel function test results.

Algorithm Maximum Minimum Average

value

Standard

deviation

Global

minimum

PSO −0.3852 −1.0313 −1.0185 0.0726 −1.0316

IPSO-GWO −1.0141 −1.0316 −1.0307 0.0035 −1.0316

FIGURE 4 | Simulation results of IPSO-GWO and PSO in 20 × 20 map

environment. (A) Path comparison with PSO and IPSO-GWO algorithms. (B)

Iterative curves with PSO and IPSO-GWO algorithms.

algorithms is set to 200. The experimental results are illustrated in
Figures 4–7.

From Figure 4, IPSO-GWO and PSO simulate the path and
iterative convergence curve of the path planning in a 20 × 20
map environment; it can be concluded that the PSO can obtain
the optimal path at the 138th iteration with path length 30.36.
Whereas the proposed IPSO-GWO can acquire the optimization
at the 75th iteration with the obtained path length 28.63.

From Figure 5, IPSO and PSO simulate the path and iterative
convergence curve of the path planning in a 30 × 30 map

FIGURE 5 | Simulation results of IPSO-GWO and PSO in 30 × 30 map

environment. (A) Path comparison with PSO and IPSO-GWO algorithms. (B)

Iterative curves with PSO and IPSO-GWO algorithms.

environment. The PSO algorithm searches for the optimal path
at the 169th iteration, and the obtained path length is 45.36.
The proposed IPSO-GWO can find the optimal path in the 86th
iteration with acquired path length 42.77.

From Figure 6, IPSO, ACO, and GA are used to simulate the
path and iterative convergence curve of the path planning in a
20 × 20 map environment. It can be seen that IPSO-GWO can
acquire the optimal path length of 28.63 in the 11th iteration,
the optimal path length found by ACO in the 62th iteration is
29.21, and the optimal path length found by GA in the 22nd
iteration is 29.21. It can be concluded that the proposed IPSO-
GWO algorithm converges faster in a 20 × 20 map environment
with shortest path acquirement.

From Figure 7, IPSO, ACO, and GA are used to simulate the
path and iterative convergence curve of the path planning in
a 30 × 30 map environment. It can be seen that IPSO-GWO
can find the optimal path length of 42.77 in the 86th iteration,
the optimal path length found by ACO in the 166th iteration
is 42.77, and the optimal path length found by GA in the 33rd
iteration is 45.11. It can also be concluded that although GA finds
the optimal path faster, the path length is longer, whilst ACO
finds the same optimal path as IPSO-GWO, but it is slower than
IPSO-GWO. In summary, IPSO-GWO algorithm has the highest
performance efficiency.
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FIGURE 6 | Simulation results of IPSO-GWO, GA, ACO in 20 × 20 map

environment. (A) Path comparison with GA, ACO, and IPSO-GWO algorithms.

(B) Iterative curve with GA, ACO, and IPSO-GWO algorithms.

CONCLUSION

This paper makes a valuable contribution to the improvement of
PSO algorithm in robot path planning in terms of convergence
speed and shortest path acquirement. Combining the traditional
PSO with the GWO, chaos, and a new adaptive inertia weight,
it can address the problem of premature convergence and poor
global search ability, and improve the convergence speed for
faster path searching. The proposed IPSO-GWO algorithm has
been tested against the traditional PSO for ten benchmark
functions, and optimization results show that the IPSO-GWO
converges faster without premature convergence. Comparing
the IPSO-GWO with PSO and two other algorithms for path
planning, the IPSO-GWO can find an optimal path with faster
speed. In summary, the proposed IPSO-GWO algorithm exhibits
higher performance in path planning with the combination of
chaos for premature convergence avoidance. In the future, we will
continue to apply the proposed IPSO-GWO algorithms in more
practical applications.
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