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Units of dendritic branches called dendritic spines represent more than simply decorative
appendages of the neuron and actively participate in integrative functions of “spinous”
nerve cells thereby contributing to the general phenomenon of synaptic plasticity. In
animal models of drug addiction, spines are profoundly affected by treatments with
drugs of abuse and represent important sub cellular markers which interfere deeply
into the physiology of the neuron thereby providing an example of the burgeoning and
rapidly increasing interest in “structural plasticity”. Medium Spiny Neurons (MSNs) of the
Nucleus Accumbens (Nacc) show a reduced number of dendritic spines and a decrease in
TH-positive terminals upon withdrawal from opiates, cannabinoids and alcohol. The
reduction is localized “strictly” to second order dendritic branches where dopamine
(DA)-containing terminals, impinging upon spines, make synaptic contacts. In addition,
long-thin spines seems preferentially affected raising the possibility that cellular learning
of these neurons may be selectively hampered. These findings suggest that dendritic
spines are affected by drugs widely abused by humans and provide yet another example
of drug-induced aberrant neural plasticity with marked reflections on the physiology of
synapses, system structural organization, and neuronal circuitry remodeling.
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INTRODUCTION
Dendritic spines have been recognized, described and named,
for the first time by Ramón y Cajal on the surface of Purk-
inje cells using the Golgi staining method (Cajal, 1888, 1891).
While other investigators and even Golgi himself, disregarded
spines as artifacts, Gray (1959) unambiguously showed that spines
were sites of synaptic contact. It is now clear that dendritic
spines are the main postsynaptic compartments of excitatory
synapses in the brain with peculiar and distinctive morphological
features.

Dendritic spines are heterogeneous in size and shape but,
mostly mature ones, consist of a bulbous head and a thinner
neck that connects the spine to the dendritic shaft (Wilson
et al., 1983; Svoboda et al., 1996). This morphological config-
uration is particularly important for synaptic efficacy. In par-
ticular, dimensions of the spine head (Kirov and Harris, 1999;
Holtmaat and Svoboda, 2009), rather than the neck, realistically
reflect the observed differences in synaptic strength (Harris and
Stevens, 1988). The neck constriction might serve to isolate
metabolic events in the vicinity of activated synapses without
significantly influencing the transfer of synaptic charge to the
parent dendrite (Harris and Stevens, 1988) and thus favoring
“local” changes in the number and shape of spines during synap-
tic plasticity (Engert and Bonhoeffer, 1999). Indeed, individ-
ual spines may represent partially autonomous compartments
with a cytoskeleton composed mostly of F-actin, and may hold
numerous specialized organelle such as the smooth endoplasmic

reticulum, which in the largest spines forms the “spine apparatus”
(Gray, 1959) with polyribosomes, near the base of the spine
(Steward and Levy, 1982) offering the possibility of local protein
synthesis.

At the ultrastructural level, the spine head is characterized by
an electron-dense matrix of receptors and supporting proteins
collectively known as the postsynaptic density (PSD; Yamauchi,
2002). This complex assembly, made of hundreds of distinct
proteins (Moon et al., 1994), dynamically changes its structure
and composition during development and in response to synaptic
activity. The PSD contains signaling molecules including the
subunits of the N-methyl-D-aspartate (NMDA) glutamate recep-
tors, the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic-acid
(AMPA), the subunits of Ca21/calmodulin-dependent protein
kinase II (CaMKII; Kennedy et al., 1983) and synGAP, a
ras GTPase-activating protein phosphorylated by CaMKII and
dopamine (DA) receptors (Zhang et al., 2007). Other prominent
PSD proteins are scaffold molecules, including the PSD-95 family
(Cho et al., 1992), that link receptors to signaling proteins or
to the cytoskeleton, thus helping organize the structure of PSDs
(Kornau et al., 1995).

CLASSIFICATION
Spine development is a dynamic process which includes transition
from small dendritic formations to large spines and vice versa,
through a series of sophisticated structural refinements (Calabrese
et al., 2006). The continuous and rapid change in shape of
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dendritic spines is essential for short and long term plasticity
(Kasai et al., 2003, 2010) and different shapes may reflect dynam-
ically different functions (Hering and Sheng, 2001).

A pioneering classification was proposed by Peters and
Kaiserman-Abramof (1970), where they distinguished three cat-
egories: stubby, thin, and mushroom spines. However, it was
necessary to introduce the dendritic filopodia in this classification.
In some cases, following establishment of contact with an afferent
fiber, these transient structures can become a spine (Ziv and
Smith, 1996; Fiala et al., 1998; Sorra and Harris, 2000). On the
other hand, some author prefers to distinguish mature spines into
two broad categories: large and small considering the head size
(Kasai et al., 2003, 2010) emphasizing spine function.

The confocal microscope is able to detect sufficient details of
the Golgi-Cox-stained neurons. In this case is possible to extract
numerical information from 3D recontruction and to establish
an unambiguous criterion of classification (Figure 1) which was
recently introduced (Spiga et al., 2014).

THE SPINE OF THE NUCLEUS ACCUMBENS
The Medium Spiny Neuron (MSN) of the Nucleus Accum-
bens (Nacc) plays a central role in the integration of cortical,
thalamic and mesencephalic afferents and MSNs (accounting
for 90–95% of the total striatal complex) are involved in var-
ious behavioral sequelae including movement control (Björk-
lund and Dunnett, 2007; Pissadaki and Bolam, 2013), motiva-
tion (Ostlund et al., 2014) and addiction (Diana, 2011). Ter-
minals of DA containing neurons from the ventral tegmentum
(VTA) are jumbled in a dense network of connections in many
forebrain regions. Although the number of these neurons is

FIGURE 1 | Representative Golgi-Cox stained MSN with various spines
types. Inset shows details of different morphologies. Image is color-coded.
Reconstructed with filament tracer algorithm (Imaris 7.4). Note relative
abundance of blu (long thin) spines which amount for 52% of all spines (see
Spiga et al., 2014 for further details).

relatively small, the projections from individual neurons are
very extensive having a total axonal length (including collat-
erals) of roughly 74 cm with 500,000 terminals (Björklund
and Dunnett, 2007; Pissadaki and Bolam, 2013) forming, in
the striatum, approximately 20% of all synapses (Zhou et al.,
2002, 2003). Basically, in this area every MSN is innervated
by a conspicuous number of DAergic axons (Yao et al., 2008).
MSNs also receive glutamate inputs from the PFC, thalamus,
hippocampus (Harris and Stevens, 1989), and amygdala (Bredt
and Nicoll, 2003). Accordingly, the Nacc plays a central role in
the integration of cortical and mesencephalic afferent systems.
Cell body and different portions of dendrites of MSNs, are tar-
geted by various inputs. Mainly the soma and most proximal
dendrites receive recurrent collaterals from other MSN (Groves,
1983), while cortical and DAergic afferents synapse onto spines
located more distally on the dendrite. On distal dendrites a
significant subpopulation of spines shows a particular synaptic
architecture, called “striatal microcircuit” or “synaptic triad”
(Freund et al., 1984), that involves both DAergic and gluta-
matergic axons (Figure 2). Similar innervation architecture is
also observed in pyramidal neurons in the cortex (Sesack and
Pickel, 1992), hippocampus (Totterdell and Smith, 1989) and
magnocellualar neurons of basolateral amygdala (Johnson et al.,
1994). In this configuration, DAergic terminals make a sym-
metric synapse with the neck whereas cortical terminals form
an asymmetric contact in the spine head (Bouyer et al., 1984;
Freund et al., 1984; Smith et al., 1994). In other words, DArgic
and prefrontal cortical terminals in the MSNs dually synapse on
a common dendritic spine (Sesack and Pickel, 1992; Moss and
Bolam, 2008). The significance of this heterosynaptic formation
is not very clear but it seems to suggest that DA (Pascoli et al.,
2011) is able to modulate the influence of cortical glutamatergic

FIGURE 2 | Synaptic triad in the Nucleus Accumbens. Tyrosine
Hydroxylase-positive terminals (green) are forming a putative contact with
the neck of a spine on a second order dendritic trunk (red), while the head
of the same spine is reached by a Golgi-Cox impregnated fiber (blue) from
an adjacent neuron.
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axons (see Spiga et al., 2014 for discussion on this point).
This aspect is particularly important because, despite their dis-
tinct targets, all addictive drugs commonly abused by humans
evoke variations on DA concentrations within the Nacc (Di
Chiara and Imperato, 1988) and it may have a role in spine den-
sity, morphology and synaptic strength. Because of this particular
synaptic configuration, even modest changes in the number of
dendritic spines, can have major effects on the entire neuronal
pathway. Accordingly, conditions of lowered DA tone such as
morphine withdrawal has been associated with spine loss (Spiga
et al., 2005). Similarly, cannabis-dependent subjects undergo
spine pruning in the shell of the Nacc (Spiga et al., 2010) with
a reduced MSN intrinsic excitability (Spiga et al., 2010) and
alcohol-dependent rats show a DA-dependent selective loss of
long thin spines associated with a lack of long term depression
(Spiga et al., 2014).

ABNORMAL SPINE PLASTICITY AND ADDICTION
The number and shape of dendritic spines, during patholog-
ical events, are extremely variable. A broad variety of psychi-
atric diseases and neurological disorders are accompanied by
patterns of spine disruption (Huttenlocher, 1970; Fiala et al.,
2002) and changes in morphology (Irwin et al., 2000; Kaufmann
and Moser, 2000). Schizophrenia, for example, is commonly
associated with fewer spines and synapses in many brain areas
and neuronal types (Garey et al., 1998; Glantz and Lewis, 2000;
Lewis and Levitt, 2002). Further, neurodegenerative disorders
such as Parkinson’s disease are characterized by a loss of den-
dritic spines in striatal neurons (Villalba et al., 2009). Likewise,
neural events related to chronic drug intake are linked to long-
lasting drug-induced whole cell plasticity (Miller et al., 2012;
Diana, 2013) and abnormal spine structure and density in crit-
ical brain areas (Robinson and Kolb, 2004; Russo et al., 2010).
Four functionally connected structures of the brain: medial PFC,
Nacc, lateral hypothalamus and the mesencephalic VTA, represent
the neuroanatomical substrate of the so-called reward pathway
(Koob, 1992; Melis et al., 2005). This fundamental system of
regulation of complex behavior, influences rudimentary func-
tions like food intake (Wise, 2006), sexual behavior (Robbins
and Everitt, 1996), sensory perception (Berridge and Robinson,
1998), emotions (LeDoux, 2000), intellectual evaluations and
processes of memory and learning (Robbins and Everitt, 2002;
Hyman et al., 2006). Drugs of abuse “illegally” occupy this cir-
cuit over-stimulating the reward mechanism, causing cumulative
impacts on neurotransmission. Addictive drugs, for example, can
release 2–10 times the amount of DA (Di Chiara and Imperato,
1988) that natural rewards do and they do it more quickly
and more reliably. Accordingly, addiction can be considered an
example of experience-dependent plasticity (Robinson and Kolb,
2004).

Drug-induced structural plasticity of dendritic spines was first
described by Kunz et al. (1976) and by Riley and Halkar (1978)
in hippocampal pyramidal neurons following long-term alcohol
consumption and is now an emerging field of investigation (Chen
et al., 2010). While chronic administration of ethanol (Zhou
et al., 2007) and morphine is accompanied by a decrease in
the density of dendritic spines and dendritic branching of NAcc

MSNs and mPFC pyramidal neurons (Robinson and Kolb, 1999b;
Robinson et al., 2002), administration (or self administration)
of amphetamine (Robinson and Kolb, 1997, 1999a; Heijtz et al.,
2003; Kolb et al., 2003; Li et al., 2003; Crombag et al., 2005),
cocaine (Robinson and Kolb, 1999a; Robinson et al., 2001; Li
et al., 2003; Norrholm et al., 2003) and nicotine (Brown and Kolb,
2001; Gonzalez et al., 2005) increases spine density and dendritic
branching on NAcc MSNs and pyramidal cells in the mPFC (Kolb
et al., 2003). Indeed, a direct comparison among different sub-
stances is not easy because researchers use a wide variety of doses
and ways of drug administration, producing, very often, diver-
gent results on neuron morphology, during different phases of
treatment with the same substance. In particular, the withdrawal
syndrome after chronic drug administration seems to be a crucial
point of the addictive process that is manifested by the induction
of rapid changes in dendritic spine density and morphology and
is thus experimentally appealing to gain insights when the drug
is not on-board, to avoid possible confounds. Accordingly, we
observed radical changes on spine density in accumbal MSNs dur-
ing the early phases of abstinence of various drugs of abuse (Spiga
et al., 2005, 2010). In fact, spontaneous and naloxone-induced
morphine withdrawal, after 14 days of escalating chronic mor-
phine administration, selectively alters spine density in the MSN
second order dendrites of the NAcc shell (Spiga et al., 2005; Diana
et al., 2006). Similar results we found when rats were subjected
to a chronic treatment with two different cannabinoid agonists
(Delta(9)-tetrahydrocannabinol and CP 55 940) and withdrawn
spontaneously and pharmacologically with the CB1 antagonist
SR141716A. Confocal analysis of Golgi-Cox-stained MSNs of
the NAcc revealed a decrease in spine density in the shell, but
not in the core only during withdrawal (both spontaneous and
pharmacologically-precipitated) (Spiga et al., 2010). In contrast,
no changes in the number of spines were observed during chronic
morphine, cannabis and ethanol treatment, thereby suggesting
that as long as the drug is “on-board” it supports spine persistence
and function, whereas abrupt withdrawal discloses spine pruning
and synaptic dysfunction. Interestingly, 3 weeks of daily cocaine
administration did not seem to alter spine density in the core
subregion of the Nacc (Shen et al., 2009) whereas other studies
showed an increased spine density in the shell (Ren et al., 2010)
1–2 days after interruption of consecutive cocaine injections in
mice. Further, increases were seen in the whole Nacc (Lee et al.,
2006) and the core (Kim et al., 2009). However, there are no
clear indications how and whether (and if) these additional spines
participate in the network activity (but see Heck et al., 2014).
These experiments cast doubt and urge caution on the notion
that chronic cocaine or morphine treatments are unequivocally
accompanied by an increase or a decrease of dendritic spines den-
sity in the NAcc, but suggest that the withdrawal itself might be
the time-window in which to observe unequivocally the reported
functional and morphological changes. Indeed, chronic treatment
(per se) without exact dosing, regimen, degree of tolerance etc.,
cannot offer clear-cut results. On the other hand, it should be con-
sidered that withdrawal, after (not during) chronic drug intake, is
one of the most powerful factor (negative reinforcement) driving
dependence (Koob and Volkow, 2010). Accordingly, it is during
this phase, to expect major changes at the neural level which in
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turn, will elicit behavioral changes and is considered the “driving
force” in the transition from chronic drug intake to “addiction”
(George et al., 2014). On the contrary, repeated exposure of drugs
of abuse (drug on-board) likely alters the brain, but adaptive
mechanisms intervened over the course of treatment may hide
objective observations, potentially misleading judgement and
spoiling conclusions (Kosten and George, 2002) because, mainly
due to the wide variety of drugs, diverse treatment regimens,
ample dosing, different pharmacokinetic properties, and various
degrees of adaptive mechanisms such as tolerance, sensitization
and others.

One possible explanation for these conflicting results, is pro-
vided by the particular nature of dendritic spines, relationships
with afferents and their dynamic nature in changing size, shape
and function (Kasai et al., 2010). For example, in the striatum
the loss of DA terminals, in animal models of Parkinson disease
(Schintu et al., 2009) and/or aging (Darbin, 2012), on the spine
neck removes a modulatory influence that determines if cortically
derived signals invade the dendritic shaft (Garcia et al., 2010).
Conversely, a decrease in activity results in elongation of spines
and a collapse of their heads (Segal, 2010) or a loss altogether
(Nägerl et al., 2004). Remodeling in size and morphology of
dendritic spines seems to be important at least as much as their
changes in density on behavioral plasticity (Grutzendler et al.,
2002; Trachtenberg et al., 2002). In drug addiction (Dumitriu
et al., 2012) and schizophrenia (Faludi and Mirnics, 2011), in
some brain areas, spines are approximately 30% smaller than con-
trols (Roberts et al., 1996). Two spine types seem to be particularly
involved in excitatory synaptic activity: long thin and mushroom.
Mushroom are large and more stable spines that can persist for
months (Bourne and Harris, 2007), whereas long thin seem to
be “designed” for rapid responses to changes imposed by salient
stimuli (Matsuzaki et al., 2004). Although long thin spines can
change their volume even independently from synaptic activity,
reflecting a native instability of these structures (Yasumatsu et al.,
2008), the stimulation of a single spine cause a nearly immediate
expansion of the spine head volume by 3–4-fold (Matsuzaki et al.,
2004). During the course of cocaine treatment, spines shift from
small to large (Shen et al., 2009) as a consequence of changes in
synaptic strength (Bourne and Harris, 2007). On the contrary,
thin spines shift toward smaller size in response to cocaine with-
drawal with the addition of new thin spines (Dumitriu et al.,
2012), perhaps immature, and silent synapses (Huang et al.,
2009), that contain NMDA but few or no AMPA receptors (Russo
et al., 2010). These newly formed spines appear to be highly “plas-
tic”, being able to retract or consolidate into larger spines (Shen
et al., 2009). Therefore, the stabilization of heads enlargement
of potentiated spines is associated with recruitment of additional
AMPA-type glutamate receptors (Nusser et al., 1998; Kharazia and
Weinberg, 1999) and an increase of protein synthesis as well as
actin remodeling (Matsuzaki et al., 2004; Okamoto et al., 2004;
Bramham, 2008; Honkura et al., 2008). In line with an active
remodeling theory, by the introduction of a new staining method
combining Golgi-Cox impregnation with immunofluorescence
(Spiga et al., 2011), we recently found that the reduction in
spine density in ethanol abstinent rats could be attributed almost
entirely to long thin spines (while “mushroom” remains relatively

unaffected) (Spiga et al., 2014). At the same time, PSD-95 and
tyrosine hydroxilase (but not DA transporters) immunoreactivity
were similarly reduced in association with ethanol withdrawal.
These results show a close relationship between morphology and
function of spines and reiterate on the trophic role of DA on
spines in addictive states (Melis et al., 2005; Diana, 2011) and
further support the “hypodopaminergic state” as a key element in
animal models of addiction. On the other hand, long thin spines,
in MSNs, could be strategically used as elements highly modifiable
to support important modulatory roles in synaptic transmission
(Jones, 2011).

It seems clear that even a single neuron respond differently
as a result of exposure to different drugs and different modal-
ity of intake of the same drug in a sort of learned addictive
behavior or “memory of addiction” (Mello, 1972; Kalant, 1973;
Boening, 2001; Nestler, 2013; Dong and Nestler, 2014). This
kind of “memory” may be similar to the long-term learning
model supported by excitatory synapses located on dendritic
spines (Kasai et al., 2010) of neurons in the dopaminoceptive
areas such as PFC and hippocampus. This raises the possibility
that long lasting changes in synapse formation and synaptic
organization induced by drugs of abuse, may interact and hinder
those produced by experience in the reward pathway. These drug-
paired memories and the drug withdrawal-associated aversive
feeling have been suggested to contribute to the high rate of
relapse among addicts (Nestler, 2001; Hyman et al., 2006; Robbins
et al., 2008). This wrong (aberrant) learning mechanism should
be strongly related to synapse formation, changes in efficacy of
synaptic transmission and morphology, modulated by DA tone
in different cell types and brain regions. The resulting changes in
neuronal connectivity are likely to contribute to hamper cognitive
functions such as decision making and emotional rigidity typical
of addicts.
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