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Background: Diabetes mellitus (DM) is a chronic disease with hyperglycemia. If

not treated in time, it may lead to lower limb amputation. At the initial stage, the

detection of diabetes-related foot ulcer (DFU) is very difficult. Deep learning

has demonstrated state-of-the-art performance in various fields and has been

used to analyze images of DFUs.

Objective: This article reviewed current applications of deep learning to the

early detection of DFU to avoid limb amputation or infection.

Methods: Relevant literature on deep learning models, including in the

classification, object detection, and semantic segmentation for images of

DFU, published during the past 10 years, were analyzed.

Results: Currently, the primary uses of deep learning in early DFU detection are

related to different algorithms. For classification tasks, improved classification

models were all based on convolutional neural networks (CNNs). The model

with parallel convolutional layers based on GoogLeNet and the ensemble

model outperformed the other models in classification accuracy. For object

detection tasks, the models were based on architectures such as faster R-CNN,

You-Only-Look-Once (YOLO) v3, YOLO v5, or EfficientDet. The refinements

on YOLO v3 models achieved an accuracy of 91.95% and the model with an

adaptive faster R-CNN architecture achieved a mean average precision (mAP)

of 91.4%, which outperformed the other models. For semantic segmentation

tasks, the models were based on architectures such as fully convolutional

networks (FCNs), U-Net, V-Net, or SegNet. The model with U-Net

outperformed the other models with an accuracy of 94.96%. Taking

segmentation tasks as an example, the models were based on architectures

such as mask R-CNN. The model with mask R-CNN obtained a precision value

of 0.8632 and a mAP of 0.5084.
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Conclusion: Although current research is promising in the ability of deep

learning to improve a patient’s quality of life, further research is required to

better understand the mechanisms of deep learning for DFUs.
KEYWORDS

diabetic foot ulcer, medical image, deep learning, classification, object detection,
semantic segmentation
1 Introduction

Diabetes mellitus (DM) is a chronic disease due to

impaired insulin secretion or insulin resistance or both (1).

According to the International Diabetes Federation, the

number of people with diabetes worldwide is 500 million in

2019 (1) and the number is expected to grow to 700 million

adults by 2045 (2). Several complications associated with DM,

including heart attack, stroke, blindness, kidney failure, and

lower limb amputation (3) will increase mortality and

decrease quality of life (2). About 19% to 34% of diabetic

patients will develop diabetes-related foot ulcers (DFUs) (4).

A person with DFU has a risk of poor wound healing. DFU

may lead to lower limb amputation and may reduce survival

rates (5). In addition, the most important risk factors

involved in the development of foot ulcers in patients

with diabetes are peripheral neuropathy and peripheral

vascular disease (4).

With the development of artificial intelligence, artificial

intelligence techniques have been applied to many medical

images. Machine learning as a conventional artificial

intelligence technique has become dominant for a long

period. Here are some applications for the analysis of DFUs

based on machine learning. Wang et al. (6) presented a

cascaded two-stage classifier using support vector machines

(SVMs) to determine the wound boundaries on foot-ulcer

images, in which they extracted features from various colors

and textures by using super pixels in the classifier training.

Patel et al. (7) introduced a foot-ulcer detection system to

recognize and classify DFUs into three categories, namely,

granulation, slough, and necrosis by using a K means

algorithm. They converted the color space from Red,

Green and Blue (RGB) to Hue, Saturation and Intensity

(HIS) and removed noise in image preprocessing. However,

conventional machine-learning techniques have the following

disadvantages: manual feature extraction is often affected by

skin color and lighting and image resolution are less robust to

combat the large change in normal and abnormal patterns in

the population (8, 9). In addition, conventional machine-

learning algorithms face many challenges such as the
02
limitations of dealing with large image data, lack of

sufficient domain knowledge, and having a multi-level

abstract data representation (10).

Owing to the development of computer vision, deep-

learning approaches demonstrated outstanding performance

in image-processing tasks. Compared with conventional

machine-learning algorithms, the advances in deep-learning

approaches provided effective end-to-end automatic learning

models from raw images. There are some reviews about

applying deep-learning technology in medical-image

analysis. Chan et al. (9) summarized medical-image

analysis based on deep learning to aid diagnosis and face

many related challenges. Hesamian et al. (11) summarized

the achievements and chal lenges of medical-image

segmentation by using deep-learning techniques. Cai et al.

(12) wrote a review about the application of deep learning in

medical-image classification and segmentation. These reviews

extensively discussed the application of deep learning in

various medical images, but none of the articles specifically

reviewed the applications of deep-learning technology in the

medical images of DFU. Yap et al. (13) summarized the object

detection of DFUs for the Diabetic Foot Ulcers Grand

Challenge (DFUC2020) data set with 2,000 images for

training and 2,000 images for testing, but they only

summarized the application for object detection of DFUs

forDFUC2020. They did not mention the applications for

classification, semantic segmentat ion, and instance

segmentation for DFUs and object detection for DFUs for

other data sets. Therefore, this review aims to understand and

compare various deep-learning architectures for DFUs and

the prediction accuracy of models established in various

literature. This review will be analyzed from the following

aspects: (1) popular deep-learning architectures used for

image analysis, which focused on their pros and cons; (2)

deep learning used in images of DFUs that included four

applications: classification, object detection, semantic

segmentation, and instance segmentation; (3) various types

of challenges correlated with images of DFUs analyzed by

using deep-learning techniques; and (4) conclusion and the

future of deep learning.
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2 Deep-learning techniques and
application categories

In recent years, deep learning, as a subset of machine

learning, has seen a rapid development. Unlike conventional

machine learning, which requires manual feature extraction and

considers domain expertise, deep learning can automatically

extract features with a change from hand-designed to data-

driven features (14). The difference between conventional

machine learning and deep learning in terms of extracting

features is shown in Figure 1. Feature extraction in

conventional machine learning often requires several processes

such as pre-processing and feature extraction or feature

selection. However, deep learning is often a computational

model composed of multiple processing layers to automatically

learn representations of data by transforming input information

into multiple levels of abstraction (16) with simple but non-

linear modules. By these transformations, deep-learning models

will learn a very complex function. Importantly, because the

learning process is automated, deep learning makes it easy to

analyze thousands of cases that even human experts may not see

and remember. As a result, deep learning can be more robust to a

wide range of variations in features between different

categories (9).

The applications of deep-learning technology are mainly

divided into four categories, namely, classification, object

detection, semantic segmentation, and instance segmentation

(8, 17). These categories are illustrated in Figure s1.

Classification is commonly used to identify the type of class of

an object in an image or to provide a series of classes of objects in

an image by their classification scores. Object detection in an

image refers to classifying different objects and identifying the

locations of classified image objects, which are marked by

boundary boxes (18). Semantic segmentation consists of

classifying each pixel of an image into an instance, where each

instance corresponds to a class (19). Instance segmentation
Frontiers in Endocrinology 03
provides different labels for separate instances of objects

belonging to the same object class (17).
3 Deep learning and classification in
DFU images

This section discusses commonly used classification

architectures of deep learning, including convolutional neural

networks (CNNs) and deep convolutional neural networks

(DCNNs). Then, a comprehensive description of deep learning

in the classification of DFU images is introduced.
3.1 Deep-learning architectures of
classification

Image classification, defined as the task of categorizing

images into one of several predefined classes, is a fundamental

problem in computer vision (20). CNNs, as one of the deep-

learning architectures, have been widely used in image

classification problems. CNN architectures originated from

neural networks with a stack of layers to form a deep model

(11, 20). Due to the advent of larger data sets and technological

advances [the invention of graphics processing units (GPUs) and

improved algorithms] (16, 19), DCNNs based on CNN

architectures have become the most commonly used. In 2012,

Krizhevsky et al. (21) proposed a DCNN called AlexNet

containing five convolutional layers and three fully connected

(FC) layers to classify approximately 1.2 million images into

1,000 classes. In 2014, Simonyan et al. (22) developed VGG16

(13 convolutional layers and 3 FC layers) and VGG19 (16

convolutional layers and 3 FC layers) that improved accuracy,

respectively. In 2014, Szegedy et al. (23) proposed GoogLeNet

with a module called inception and a 22-layer deep network to

improve the utilization of computing resources. In 2015, He et al.
FIGURE 1

The difference between conventional machine learning and deep learning. After images of diabetes-related foot ulcer (DFU) are inputted into a
machine-learning model, these images are processed following this pipeline: pre-processing, feature extraction, or feature selection. Then,
these images are finally classified. However, after images of DFU are inputted into a deep-learning model, the model automatically learns
representations of these images. Then, these images are finally classified. According to the Wagner–Meggitt (15) wound classification for foot-
ulcer evaluation, the images of DFU was are considered grade 1 (superficial ulcer).
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(24) presented a residual network (ResNet) to solute

degradation, improving the image classification effect by

increasing network depth.
3.2 Overview of CNN architecture

CNNs have been used earlier in image classification. A typical

CNN architecture consists of convolution, pooling, dropout, and

FC layers (Figure 2). The convolutional layers learn the feature

maps from input images as feature extractors (20). The different

local matrices of the image are multiplied by a convolution kernel

matrix, and then, they are added from the previous layer to the

next layer as the convolved result (21). Non-linear features are

extracted from the convolved results by the non-linear activation

function such as sigmoid, tangent (Tanh), and rectified linear unit

(ReLU). The non-linearity is used to adjust or cut off the generated

output (25). The pooling layers are used to reduce the resolution

and achieve invariance for the feature maps (20). They will avoid

overfitting and reduce computational complexity. Pooling

operations include max pooling, average pooling, and min

pooling. The feature matrices in the last pooling layer are

flattened and transformed into a vector to the first layer in the

FC layer (21), and the number of FC layers is often more than one.

The output of the last FC layer will be classified into a label by

using the vector, which is flattened and transformed from the

above feature matrices. If there are multiple classifications, the

softmax will produce a distribution for more than one class

labels (26).
3.3 Deep learning in the classification for
images of DFU

CNNs and their improved architectures as deep-learning

techniques have been applied in the classification for images of

DFU. Goyal et al. (10) used convolutional layers based on CNNs,

called DFUNet, for the first time in DFU classification with 292
Frontiers in Endocrinology 04
images. Traditional convolution layers with a single

convolutional filter and parallel convolutional layers were used

for the extraction of multiple features to classify two classes as

normal skin (healthy skin) and abnormal skin (DFU). The

architecture of DFUNet is shown in Figure 3. DFUNet

achieved an area under curve (AUC) score of 0.961, in which

these evaluation metrics outperformed those of the conventional

machine learning and other deep-learning classifiers based on

DCNNs such as LeNet, AlexNet, and GoogLeNet, because these

DCNNs with more layers in a CNN do not lead to better

performance or cause worse performance due to the gradient.

In 2020, Alzubaidi et al. (27) designed and implemented an

architecture called DFU_QUTNet based on deep-convolutional

neural network with 754 images. The improved CNN

architecture included a series of layers such as input layer,

convolutional layer, batch normalization (BN) layer, ReLU, an

summation layer, average pooling layer, dropout layer, and FC

layer. Their model increased the width and kept the depth of the

network without drastically increasing its computational cost.

The architecture of DFU_QUTNet is shown in Figure s2. The

network was beneficial for gradient propagation and back

propagation for the error. DFU_QUTNet was used to train

SVM and K-nearest neighbor (KNN) classifiers to classify

normal skin against abnormal skin (DFUs). Their model not

only helped boost the details to learn and improve the extraction

of major features but also handled many hard cases including

small sizes of DFU, skin wrinkles, and patches with a toe. The

DFU_QUTNet network outperforms DFUNet network (10),

GoogleNet, VGG16, and AlexNet.

Goyal et al. (28) introduced the ensemble CNN model for

binary classification to classify ischemia versus non-ischemia and

infection versus non-infection with 1,459 images. The architecture

is shown in Figure 4. They used hand-crafted super pixel color

descriptors to extract the region of colors of interest from the

images to improve visual cues for identifying ischemia and

infection in DFUs. They also used a novel data-augmentation

method based on faster R-CNN to avoid missing the regions of

interest (ROIs) of the images. They proposed that the model
FIGURE 2

Architecture of a convolutional neural network (CNN) for image classification. Images of the DFU are inputted into the CNN model, which
included convolution, pooling, dropout, and fully connected (FC) layers. After these images are processed by the model, they are finally
classified.
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performed better than the hand-crafted machine-learning

algorithms for classification. The disadvantages of the model

were that the number of ischemia and non-ischemia in DFU

were unbalanced, the ground truth is labeled by visual inspection of

experts and not supported by the medical notes or clinical tests,

and the computer algorithm is not suitable for predicting the depth

and the size of the wound based on non-standardized images.

Das et al. (29) introduced a DCNN based on ResKNet

including a series of unique residual blocks of 2D convolution,

batch normalization, and LeakyReLU with skip connections. For

ischemia recognition of DFUs, they used four unique residual

blocks (Res4Net) with 1,459 full foot images (210 ischemia and

1,249 non-ischemia). They achieved an AUC value of 0.9968.

For infection recognition of DFUs, they used seven residual

blocks (Res7Net) with 1,459 full foot images (628 infections and

831 non-infections). They achieved an AUC value of 0.8890.

Xu et al. (30) presented a model classifying DFUs based on a

pre-trained vision transformer models with class knowledge banks

(CKBs) as trainable units with 628 non-infection and 831

infection images of DFU, and 1,249 non-ischemia and 210

ischemia images of DFUs. The CKBs can extract and represent

class knowledge to improve the performance of prediction with an

accuracy of 90.90%. Cruz-Vega et al. (31) exhibited a model with

fewer layers for 110 images compared with the 22 layers of

GoogLeNet, which can classify diabetic foot thermograms into

five categories. The model achieved some good results for some

classes. For example, the model could well separate classes like 1-5,
Frontiers in Endocrinology 05
2-5, 4-1, and so on. However, for neighboring classes, especially in

classes like 3-4 and 4-5, the patterns were so similar and the

training images did not provide sufficient information to learn in

the model. It presented the lowest values in precision and

accuracy. Wijesinghe et al. (32) presented an ensemble model

based on DenseNet201, ResNet-18, and VGG-16 with 400 images,

which was a mobile application with the best user performance.

The summary of deep learning in the classification for images of

DFU is shown in Table 1. Although many architectures of DCNN

based on CNN have been developed, whose performances are better

than those of CNNs, we can see from the published papers that the

ensemble models based on improved CNN architecture have better

performance than many models based on a single DCNN. For

example, Wijesinghe et al. (32) exhibited an ensemble model with

an accuracy greater than 97% for the classification of diabetic foot

thermograms. Goyal et al. (28) presented the ensemble model with

a 90% accuracy in the ischemia classification.
4 Deep learning in the object
detection for images of DFU

This section introduces commonly used object-detection

architectures of deep learning. At present, popular deep-learning

architectures of object detection include faster R–CNN (33), YOLO

(34),EfficientDet(35),andSSD(36).Wewilldiscussacomprehensive

description of deep learning in object detection of DFU images.
FIGURE 4

Overview of the architecture based on ensemble CNNs in literature (28). Features are extracted from CNNs and are fed into the support vector
machine (SVM) classifier to perform the classification of infection or no infection, ischemia or no ischemia.
FIGURE 3

Overview of the architecture based on CNNs for DFU image classification in literature (10).
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4.1 Deep-learning architectures of object
detection

Object detection in images refers to identifying the locations of

objects and classifying the different objects contained in each image

(37). At present, object detection based on deep learning can be

divided into two categories: two-stage detection architecture and

single-stage detection architecture. The former generates region

proposals at first and then classifies each proposal into different

object categories, and its advantage is accuracy, while the latter

regards object detection as a regression or classification problem,

adopting an integrated process to achieve final results (categories

and locations) directly (18, 37), which are relatively fast but less

accurate, compared with the former. The two categories of object

detection based on deep learning are shown in Figure 5. Two-stage
Frontiers in Endocrinology 06
architectures include R-CNN 40], fast R-CNN (38), faster R-CNN

(33), and feature pyramid network (FPN) (39) while one-stage

architectures include YOLO (34), EfficientDet (35), and SSD (36).
4.2 Overview of the faster R-CNN
architecture

Faster R-CNN, introduced by Ren et al. in 2015, is an object-

detection architecture with two stages (33). CNN architecture is

the backbone of faster R-CNN, which generates feature maps by

extracting features from the input image. The region proposal

networks (RPNs) were introduced to take the convolution

feature map as input, and then to output a series of proposing

regions with objectness score generated by a sliding window
TABLE 1 Summary of deep learning in the classification for images of diabetes-related foot ulcers.

Reference Purpose Network structure Contributions Limitations Results

Goyal et al.,
2018 (10)

Discriminating
healthy and DFU

Parallel convolutions with
a single filter

•Adopted for the first time
•Better extraction

•Less automatic
•Fewer images

•AUC: 0.961

Alzubaidi
et al., 2019
(27)

Distinguishing
healthy and DFU

Increasing DNN width
with SVM and KNN as
classifiers

•No computing increase
•Increased accuracy
•Better extraction
•Handling small sizes

•Not mentioned •Precision:
95.4%
•Recall: 93.6%
•F1-Score:
94.5%

Goyal et al.,
2020
(28)

•Identifying non-
ischemia and
ischemia;
•Identifying non-
infection and
infection

Ensemble CNN and SVM •Improving identification
•Avoid missing the region

•Data unbalance
•Lacking depth and size

•Accuracy of
ischemia:
90%
•Accuracy of
infection:
73%

Das et al.,
2021 (29)

•Identifying non-
ischemia and
ischemia;
•Identifying non-
infection and
infection

A DCNN based on
ResKNet

•Achieving more than 95% in every
evaluation metric in ischemia
recognition
•Improving its performance by
increasing the number of residual
blocks

•Not improving classification performance
by further increasing the number of residual
blocks

•AUC: 0.9968
for ischemia
•AUC: 0.8890
for infection

Xu et al.
2022 (30)

•Identifying non-
ischemia and
ischemia;
•Identifying non-
infection and
infection

A pre-trained vision
transformer models with
CKBs

•Improving the performance of DFU
classifications

•Performance relies on the pre-trained
network
•Not considering the contrastive idea in
samples

•Accuracy:
90.90 ± 1.74%
•Sensitivity:
86.09 ± 2.98%
•Precision:
95.00 ± 1.29%
•Specificity:
95.59 ± 0.71%
•F-measure:
90.30 ± 1.83%
•AUC score:
96.80 ± 1.16%

Cruz- Vega
et al., 2020
(31)

Discriminating
diabetic foot
thermograms

Shallow GoogLeNet Multiple classes Not easy to distinguish •Sensitivity:
0.95
•Specificity:
0.94
•Accuracy:
0.94
•AUC: 0.95

Wijesinghe
et al., 2019
(32)

The Wagner Ulcer
Grading Scale using
DNN

Ensemble model •Best performance
•Diabetic Retinopathy classification

No mention Accuracy:
>97%
fr
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convolution applied on the input feature map. The object

detection network used in faster R-CNN is very much similar

to that used in fast R-CNN. It is also compatible with VGG-16 as

a backbone network. It also uses the region of interest (ROI)

pooling layer for making a region proposal of fixed size and twin

layers for the softmax classifier and the bounding box regressor,

which is also used in the prediction of the object and its

bounding box. In addition, the RPN and ROI pooling layer

share the feature map, which reduces the number of parameters

and prediction time. A typical architecture of faster R-CNN is

shown in Figure 5B.
4.3 Object detection for images of DFU
based on faster R–CNN

Compared with image classification, object detection

includes the identification and location of the target (40). So

far, there are few articles about deep learning in object detection

for images of DFU based on faster R-CNN architecture. Da

Costa et al. (41) proposed an adaptive faster R-CNN architecture

with two main modules called the RPN and the classifier for the

DFU detection. The architecture is shown in Figure s3. The

feature maps extracted by ResNet-50 as the convolution layers

serve as shared input for the RPN and the classifier. RPN

suggests a set of rectangular object proposals with objectness

score as input for the classifier, and each rectangular object

proposal is classified with a score. The accuracy in the detection

of small lesions was improved by adding the 64×64 anchor size

to the set of standard anchor scales of faster R-CNN to maintain

the original aspect ratios. The response time and precision were

improved by using 100 ROI suggestions instead of 300 ROI

suggestions as noted in a previous article. The detection time was

reduced by sharing convolutional layers with the RPN as an

advantage of the faster R-CNN. The model based on ResNet-50
Frontiers in Endocrinology 07
had a better performance than that of the faster R-CNN with

higher accuracy in the ROIs, a greater variety of ulcer formats

detected, less false positives in the detection, and faster detection

time. Compared with the SSD300 model, the model had higher

precision and slower average speed.

Goyal et al. (8) proposed a faster R-CNN with theInception-

V2 model using two-tier transfer learning for DFU detection and

localization with 1,775 images of DFU. The architecture is

shown in Figure 6. Inception-V2 as a new iteration of

GoogleNet reduced the computations and introduced a batch

normalization layer to decrease the internal covariate shift and

improve convergence. The model specifically matched the

resource restrictions on mobile devices. The faster R-CNN

with Inception-V2 is a multiple-stage model that needs to

generate region proposals in advance, and then performs a

fine-grained object detection. So, the disadvantage of the

model is its slower speed than the SSD-MobileNet and SSD-

InceptionV2 models, but faster R-CNN was introduced in this

model due to the best trade-off between accuracy and speed. The

model was trained on desktop computers with a GPU card and

used on mobile devices due to the limited resources of

a smartphone.
4.4 Overview of the YOLO detection
architecture

Although faster R-CNN, as a two-stage architecture, is a

popular technology due to its accuracy at present, its training

needs more time for obtaining shared convolution parameters

(37) and large resources (37) due to iterations through all the

positions of the image by using a sliding window. To overcome the

above disadvantages, the one-stage detection architectures extract

features from the network to directly predict the classification and

location of the object, which can reduce time consumption by
B

A

FIGURE 5

Two categories of object detection based on deep learning. (A) One-stage detection architecture. (B) Two-stage detection architecture. The
difference between one-stage and two-stage models is that a two-stage model has a region-proposal process. Bbox regressor refers to the
bounding box regressor.
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generating bounding box and class probabilities. YOLO v1 model

as You-Only-Look-Once (YOLO) was introduced by Redmon

et al. (34) in 2016, which uses a single neural network for

predicting bounding boxes and class probabilities as a regression

problem. The model based on YOLO processes images faster than

previous models. Because YOLO v1 makes more localization

errors for small objects, YOLO v3 model was proposed by

Redmon et al. in 2018, which improved speed and precision,

compared with YOLO v1 (42). YOLO v5 is the latest in the YOLO

series which is more flexible than the previous series of YOLO

versions (42) and which uses a notable data augmentation called

mosaic augmentation to detect smaller objects easier than that of

previous YOLO versions (43).
4.5 Overview of the EfficientDet
detection architecture

EfficientDet is the one-stage detection architecture proposed

by Tan et al. (35) with optimizations. The model has EfficientNet

as the backbone network. A weighted bi-directional feature

pyramid network (BiFPN) as the feature network is used for

easy and fast multi-scale feature fusion. EfficientDet scales the

resolution, depth, and width with a compound scaling method.

The EfficientDet architecture is shown in Figure s4.
4.6 Overview of the SSD detection
architecture

Single-shot detector (SSD), introduced by Liu et al. (36), is a

single-stage detection architecture for multiple categories

without region-proposal generation and pixel or feature-

resampling stages. The model generated scores for each object

category and box offsets for a fixed set of default bounding boxes

by using small convolutional filters, which are applied to feature

maps. Additionally, the model produces predictions from
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multiple feature maps with different resolutions to achieve

high detection accuracy.
4.7 Single-stage object detection
architectures for DFU images

Han et al. (44) used the real-time detection and location

method for Wagner grades of DFU based on refinements on

YOLO v3 as a single-stage model, which predicted classes and

bounding-box regression simultaneously, without a region-

proposal stage. The architecture is shown in Figure 7.

Compared with the previous versions of YOLO v1, YOLO v3

has faster speed, better precision, and better object features by

adjusting the network structure and adding a residual block. They

presented the model in which several approaches were used to

improve the performance including visually coherent image mix-

up, classification head label smoothing, cosine learning rate, and

common data-augmentation methods. The model achieved better

speed and precision than SSD and faster R-CNN models and was

usable in smartphone, so, the model achieved a good trade-off of

speed and precision. The disadvantage of the model was that the

accuracy of the averages for some categories was degraded due to

the high inter-class similarity between Wagner grades, which led

to misjudgment or missed judgment.

Goyal et al. (45) proposed a refined EfficientDet architecture

for the detection of DFU images. To minimize false negative and

false positive predictions, the architecture used a score threshold

and removed overlapping bounding boxes. Their model, based on

EfficientDet architecture, used a weighted bi-directional feature

pyramid network (BiFPN) and a compound scaling method.

These methods uniformly scaled the resolution, depth, and

width so that the feature network, bounding box, and class

prediction networks were finished simultaneously. They did not

mention the performance of the model in their work.

Yap et al. (13) compared the deep learning-based

algorithms for the detection and recognition of DFUs
FIGURE 6

Faster R-CNN for DFU architecture (8) The model includes three stages. In stage 1, features are extracted by the CNN. In stage 2, region
proposals are generated and refined by using the feature map extracted in stage 1. In stage 3, all the ROI boxes are classified and the bounding
box regressor is used to refine the location of ROI boxes.
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proposed by the winning teams of the Diabetic Foot Ulcers

Grand Challenge (DFUC2020, with a comprehensive dataset

consisting of 2,000 images for training and 2,000 images for

testing), including faster R-CNN, three variants of faster R-

CNN and an ensemble method, YOLO v3, YOLO v5,

EfficientDet, and a new Cascade Attention Network. The

best performance was from a variant of faster R-CNN called

Deformable Convolution with a mean average precision

(mAP) of 0.6940, an F1-Score of 0.7434, and the best recall

value of 0.7687, while YOLO v5 achieved the lowest number of

false positives and lower mAP and F1-Score. They found that

these models had the following problems: many false positives

for automatically localizing the ulcers and struggling to

discriminate ulcers from other skin conditions.

The summary of deep learning in object detection for images

of DFU is shown in Table 2. In practice, two-stage detection

approaches with region proposal algorithms usually have a

slightly better accuracy but are slower to run, while single-

stage detection approaches are more efficient and do not have

good accuracy as that of two-stage detection approaches.
5 Deep learning in the image
segmentation for DFU images

This section discusses commonly used image segmentation

architectures of deep learning, including the two categories,

semantic segmentation and instance segmentation. Then, a

comprehensive description of deep learning in the image

segmentation for DFU images is introduced.
5.1 Semantic segmentation

Semantic image segmentation is a process where each pixel

of an image is labeled with the class of its enclosing object

without differentiating object instances (17). In other words,
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semantic segmentation deals with the identification/

classification of similar objects as a single class from the pixel

level. Current popular architectures for semantic image

segmentation include FCN (46), SegNet (47), and U-Net (48).
5.2 Overview of the fully convolutional
network (FCN) architecture

An FCN based on CNN was proposed by Long et al. (46)

who adopted previous models for classification such as

AlexNet, VGG net, and GoogLeNet by replacing previous

FC layers in CNNs with a fully convolutional layer for

semantic segmentation. FCNs usually use downsampling

and upsampling. In the first half of the model, the spatial

resolution of the image is downsampled to develop complex

feature mappings. With each convolution, finer information

of the image is captured. At this stage, highly efficient

discrimination between different classes is obtained;

however, the location information is lost. To recover the

location information, downsampling is followed by an

upsampling procedure, which takes multiple lower

resolution images as input and gives a high-resolution

segmentation map as output, with each pixel classified into

the highest probability class. The FCN architecture is shown

in Figure s5.
5.3 Overview of the U-Net architecture

U-Net based on FCN was designed by Ronneberger et al.

(48). U-Net is a common and successful algorithm used in

semantic segmentation for images. The architecture of FCN

includes an FC layer at the end, while U-Net simply applies

convolutional layers. U-Net is a perfectly symmetric architecture

with a U shape and consists of two paths, namely, a contracting

path and an expansive path. The contracting path is a typical
FIGURE 7

Detection flow chart of YOLO v3 without the region proposal process. Scale1, Scale2, and Scale3, respectively, represent the scale of detecting
a small, medium, or large object (44).
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architecture of a convolutional network, which produces a low-

dimensional representation to obtain feature extractions. The

expansive path increases the resolution of the output by

upsampling the various feature maps from the contracting

path. The architecture of U-Net is shown in Figure 8. U-Net is

very useful in dense prediction tasks, in which each pixel must be

labeled (so-called semantic segmentation), and it is able to

converge with few training samples (48).
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5.4 Instance segmentation

Instance segmentation is able to deal with the correct

detection of all objects in an image and provides different

labels for different instances of the same class, which combines

object detection and semantic segmentation simultaneously

(17). An example of a neural network that is used for instance

segmentation is mask R-CNN (49).
FIGURE 8

Architecture of U-Net for semantic segmentation (48). The model consists of a contracting path and an expansive path.
TABLE 2 Summary of deep learning in object detection for images of DFU.

References Purpose Network structure Contributions Limitations Results

Da Costa et al.,
2021 (41)

DFU detection •Adaptive faster R-CNN •Better performance
•Improving the accuracy of
detecting small lesions

•Slower speed •Precision: 91.4%
•F1-score: 94.8%

Goyal et al.,
2019 (8)

Detection and localization of DFU on
mobile devices

•Faster R-CNN with
InceptionV2
•Two-tier transfer learning

•Better performance
•More accurate
•Lightweight
•Reducing computation
•Decreasing internal covariate
shift
•Improving convergence

•Worse than R-
FCNResnet101

•Precision: 91.8%
•48 ms per image

Han et al.,
2020 (44)

Real-time detection and location for
the Wagner grades of DFUs

•Refined YOLO v3
•On smartphones

•Single-stage
•Better acquisition of object
features
•Improving accuracy

•Inter-class similarity •Accuracy:91.95%
•Outperformed
mAP
•Good trade-off

Goyal et al.,
2020 (45)

DFU detection •Refined EfficientDet with
distinct bounding boxes

•A weighted bi-directional
feature pyramid network
•Uniform scale
•Minimizing false positives and
false negatives

•No own data •Without a
report

Yap et al.,
2020 (13)

DFU detection •An ensemble model •A comprehensive evaluation
•A variant of faster R-CNN
with the best performance

•High false positives
rate
•Difficult to
discriminate from other
skin

•mAP: 0.6940
•F1-Score: 0.7434
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5.5 Overview of the mask R-CNN
architecture

Mask R-CNN was presented by He et al. (49) for object

instance segmentation in 2017, which was based on faster R-

CNN. In the first part of mask R-CNN, ROIs are selected. An

ROI is a patch of the input image that contains an object with

high probability. Multiple ROIs are identified for each input

image. In the second part of mask R-CNN, shown in Figure s6,

each ROI is able to obtain three model outputs simultaneously: a

class label and a bounding box for each candidate object from

faster R-CNN, and the object mask to extract a finer spatial

layout of an object from the addition of a third branch of mask

R-CNN. Therefore, mask R-CNN is an extension of faster R-

CNN and works by adding a branch for predicting an object

mask (ROIs) in parallel with the existing branch for bounding-

box recognition.
5.6 Deep learning in the semantic
segmentation for DFU images

There are few articles about deep learning in the semantic

segmentation and instance segmentation for images of DFU.

Goyal et al. (50) proposed a two-tier transfer learning to

train the FCNs to automatically segment the ulcer and

surrounding skin. They used three models, namely, FCN-32s,

FCN-16s, and FCN-8s based on the VGG-16 network and one

model called FCN-AlexNet for segmenting images of DFUs.

They found that these models can retrieve feature hierarchies.

FCN architectures with two-tier transfer learning performed

more effective pixel-wise segmentations on DFU data sets and

achieved better convergence of weights than random

initialization of weights for all layers of network. The FCN-16s

and FCN-8s models can produce more irregular contours of

both DFU and surrounding skin, but the FCN-AlexNet and

FCN-32s models struggled to draw irregular boundaries to

perform accurate segmentation because these models were not

able to detect the small DFU and to distinguish surrounding skin

or to detect very small parts of them. FCN-16s was the best
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performer and FCN-AlexNet was the worst performer among all

the FCN architectures. The overview of the FCN architecture is

shown in Figure 9.

Rania et al. (51) performed segmentation using U-Net for

DFUs. A smartphone and a small thermal camera were used to

obtain images with thermal information in which temperature

indicators from the thermal image can help detect tissue

infection and inflammation. Then, 112 DFU images were

resized to a resolution of 512 × 512 pixels and 92 images were

used to train the U-Net model, while 22 images were used for

validation, which was based on using the Keras framework with

the TensorFlow backend. The U-Net model could generate a

mask similar to the ground truth and correctly segment the ulcer

area using few images, demonstrating precise DFU segmentation

by automatically calculating the ulcer area after segmentation

and carrying out wound tissue analysis based on color

and temperature.

Hernández et al. (52) presented a model of automatic

segmentation based on U-Net architecture using multimodal

images to identify and delineate images of feet. The architecture

is shown in Figure 10. They obtained a foot image with both

RGB and depth information, and of the thermal infrared images

including 59 images, 30 images were employed for training the

supervised algorithm and 29 images were used for testing. Then,

they compared the temperature of two foot images of a patient to

monitor DFUs. The architecture was based on U-Net to perform

an automatic segmentation of the feet with the RGB information

of the images, and the depth information of the image was used

to improve the segmentation results provided by U-Net by a

segmentation of planes in the depth image. The segmentation

results were improved by an approach called RANdom SAmple

Consensus (RANSAC) for searching the best segmentation of

planes in images with the depth information. The model also

demonstrated a great performance by using fine-tuning for the

encoder path using a small training data set, and could provide

automatic segmentation results in a short time. The model

achieved a better performance than other traditional

segmentation methods and a basic U-Net segmentation system.

Gamage et al. (53) proposed a mask R-CNN model that

automated locating and segmenting ulcer boundaries for
FIGURE 9

Fully convolutional networks (FCNs) for the semantic segmentation of DFUs (50). The model learns features with forward and backward learning
for segmentation. C1–C8 are convolutional layers and P1–P5 are max-pooling layers.
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diabetic patients. The model extended the faster R-CNN

architecture and is shown in Figure 11. Firstly, region

proposals were generated with two different backbone CNNs,

namely, ResNet-50 and ResNet-101, and the features were

extracted from the backbone network, in which low level

features were extracted in the early layers of the network and

object instances were detected in the later layers of the network.

Then, ROIs and bounding boxes were generated by a region

proposal network. The ROIs were classified by the classifier and

bounding boxes were refined by the bounding-box regressor.

Finally, a mask was generated for the classified ROIs. The model

can be used in object detection, localization, and instance

segmentation of images of ulcer. The mask R-CNN model

obtained a higher accuracy and performed better than those of

U-Net models and can replace manual measurements of ulcers.

Zhao et al. (54) introduced an intelligent measurement model

for DFUs based on mask R-CNN and RetinaNet with 1,042 images

of DFUs, in which mask R-CNN was used for the ulcer tissue color

instance segmentation and RetinaNet was used for the digital scale

target detection. The mAPs of the color region segmentation were

87.9% and 63.9% for the training set and the test set, respectively.

ThemAPs of the ruler scale digital detection were 96.5% and 83.4%

for the training set and the test set, respectively, and the average

error of the intelligent measurement result was about 3 mm, which

compared with the manual measurement of DFUs. The summary

of deep learning in the semantic segmentation for images of DFU is

provided in Table 3.
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6 Performance evaluation

6.1 Performance evaluation metrics

Performance evaluation metrics are used to evaluate the

quality of machine-learning algorithms, and this is also true

in deep-learning algorithms. There are many different

performance evaluation metrics for a deep-learning model,

which can be often combined to evaluate a model. Moreover,

the correct use of performance evaluation metrics is a key

factor showing whether the model is working properly and

whether it works in the best way (26). Therefore, in this

section, the performance evaluation metrics used in the

research of the above literature on deep-learning models in

DFUs are described in Table 4 to help other researchers make

better choices on deep-learning models.

Confusion matrix contains information about actual and

predicted classifications in deep-learning models. Confusion

matrix is given in Table S1. Some conceptions in confusion

matrix are defined as follows: If a deep-learning model correctly

predicts the positive class, it is a true positive (TP), otherwise, it

is a false positive (FP). If a deep-learning model correctly

predicts the negative class, it is true negative (TN), otherwise,

it is false negative (FN). These conceptions are used in the

performance evaluation metrics of deep-learning models

for DFUs.
FIGURE 11

The mask R-CNN architecture proposed by Gamage et al. (53). The model is a region proposal network with two outputs (a class label and an
object region). Mask R-CNN outputs an object mask, ROI boxes, and a bounding box regressor. This mask supports object segmentation more
accurately.
FIGURE 10

Architecture based on U-Net for the automatic segmentation of DFUs (52). Images with RGB information are inputted into the U-Net model to
obtain the ROI. Then, the ROI is set on the depth image. After a second segmentation is applied to extract geometric models, the results of
semantic segmentation are obtained from the model.
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6.2 Improving performance

There are two methods to improve performance for deep-

learning models of the DFU analysis, namely, dropout and

transfer learning.
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6.2.1 Dropout
Deep-learning models based on deep neural networks with

many parameters have two disadvantages: Deep neural networks

with several non-linear hidden layers and limited training data

can learn complicated relationships and result in overfitting.
TABLE 4 Performance evaluation metrics used in the research of the above literature for deep learning in DFUs.

Evaluation metrics Formula and the source literature Source references

Accuracy
Accuracy =

TN + TP
TN + TP + FN + FP

(35)
(3, 28–30, 43, 50)

Sensitivity Sensitivity=TP/(TP+FN) (35) (29, 30)

Specificity Sensitivity=TN/(TN+FP) (35) (29, 30)

Precision Precision=TP/(FP+TP) (35) (8, 27, 29, 39, 51)

Recall Recall=TP/(TP+FN) (35) (27)

AUC

AUC =
oinsi∈postiveclassrankinsi −

M � (M + 1)
2

M � N
(35)

(10, 29, 30)

F1-Score
F Score = F Score =

2� Recall � Precision
Recall + Precision

(35)
(27, 28, 39, 45)

Average precision (AP)

AP =
oQ

q=1

TPi
TPi + FPi
Q

(35)

Mean average precision (mAP)
mAP = o

Q
q=1AveP(q)

Q
(35)

(43, 45, 51, 53)

Dice similarity coefficient (DSC)
DSC =

2� TP
2� TP + FP + FN

(50)
(50)

Union index (IoU)
IoU =

TP
TP + FP + FN

(50)
(50)
TABLE 3 Summary of deep learning in image segmentation for images of DFU.

References Purpose Network
structure

Contributions Limitations Results

Goyal et al.,
2017 (50)

•Automatic segmentation •Two-tier transfer
learning with three
models

•Obtaining pixel-wise prediction
•Better convergence
•Retrieving feature hierarchies
•Producing irregular contours

•Issues of small size and
part
•Accuracy of irregular
boundaries
•Some similar tissues of
DFU and surrounding
skin

•Dice (ulcer): 0.794 ±
0.104
•Dice (surrounding):
0.851 ± 0.148
•Combination: 0.899 ±
0.072

Rania et al.,
2020 (51)

•Semantic segmentation •U-Net
•V-Net
•SegNet

•Superior segmentation •Fewer images •Accuracy: 94.96%
•IoU: 94.86%
•DSC: 97.25%

Hernández
et al., 2019
(52)

•A monitoring system for automatic
segmentation with multimodal images

•No FC layers based
on U-Net

•Great performance
•Segmentation enhancement
•Plane segmentation with
RANSAC

•Fewer images •Short time
•Better performance

Gamage
et al., 2019
(53)

•Automatic detection of location and
segmentation of ulcer boundaries

•Mask R-CNN and
ResNet-50
•Mask R-CNN and
ResNet-101

•Object detection, localization,
and instance segmentation
•High accuracy and performance

•Not mentioned •Precision: 0.8632
•mAP: 0.5084

Zhao et al.,
2021 (54)

•An intelligent measurement model
for DFUs

•Mask R-CNN
•RetinaNet

•Instance segmentation of ulcers
•Digital scale target detection
•High accuracy compared with
the manual measurement of
DFUs

•Not mentioned •mAP of the region of
segmentation: 63.9%
•mAP of the ruler scale
digital detection: 83.4%
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Moreover, a combination of machine-learning models can

improve performance, but it is expensive for different

architectures of models to be trained on different data.

Therefore, it is difficult to overcome overfitting by combining

many different models at test time (55).

To solve the above issues, dropout, as a technique similar to

regularization, is presented. It can reduce the risk of overfitting and

efficiently combine many different neural network architectures

(55). In the dropout concept, the neurons are randomly turned on

and off in each layer from the deep-learning network during

training (27), that is to say, by dropout, the neurons are

temporarily removed from the network with their incoming and

outgoing connections. A dropout neural net model is shown in

Figure s7 (55). Dropout can improve the performance of neural

networks on a range of benchmark data sets.

6.2.2 Transfer learning
Transfer learning can recognize and apply knowledge and

skills learned in previous tasks to a novel task. Transfer learning

can be a powerful tool to enable training a large target network

without overfitting (56) and has better performance (11).

Alzubaidi et al. (27) have used three pre-trained CNN models,

namely, GoogleNet, AlexNet, and VGG16 by training and testing

image data sets such as ImageNet, and these models have been

fine-tuned on medical image data sets. Pre-trained models

enhance performance by using transfer learning. Goyal et al.

(50) used two-tier transfer learning to perform more effective

segmentation on a DFU data set. In a first-tier transfer learning,

relevant CNN models are trained on the ImageNet data set (20).

In a second-tier transfer learning, the models trained on the Pascal

Visual Object Challenge (VOC) segmentation data set. These pre-

trained models are used for training on DFU data sets for better

convergence of weights rather than random initialization of

weights. The two-tier transfer learning is shown in Figure s8 (50).
7 Challenges

7.1 Smaller data set

A typical deep-learning framework is often composed of

multiple neural network layers, thus, many parameters need to be

set and optimized. If there are few medical images in the training

data set and many parameters need to be optimized in the deep-

learning model, it will cause overfitting (11). Because collecting

medical images is a time-consuming and laborious task, the articles

we found used as few as 59 DFU images and as many as 4,500 DFU

images, and most of the articles used hundreds and a few of them

used more than 2,000 DFU images. Although there is no hard

requirement for the minimum training data set size, the general

experience is to have at least about 10 times the number of samples

as the number of parameters in the network (57). In addition, if the

training data set cannot represent the characteristics of real patients,
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the deep-learning model is unlikely to obtain accurate results. These

challenges could be solved in the following ways: Try to collect more

medical image data; use more kinds of image-capture equipment;

make the data sets more diverse; and adopt data augmentation.
7.2 Limited annotated data

Semi-supervised learning (SSL) provides a powerful

framework for leveraging unlabeled data when labels are

limited or expensive to obtain.

Deep-learning techniques usually need DFU images

annotated by a podiatrist specializing in the diabetic foot.

Goyal et al. (50) created ground truth for each image with

DFU by using the annotator by Hewitt et al. (10) and exporting

the output to an extensible markup language (XML) file. Deep-

learning models need a large number of annotated images to

train the models, and it is a laborious task to annotate a large

number of images. Oliver et al. (58) presented SSL. Its goal is for

a small number of labeled samples to be propagated to other

unlabeled data. The challenge of limited annotated data is solved

by SSL as it allows the classifier to achieve higher accuracy faster

while reducing the number of annotated samples.
7.3 Choosing the right deep-learning
architecture and hyperparameters

Different deep-learning architectures have different

advantages and disadvantages, and different deep-learning

architectures will be selected according to the characteristics of

the input data and research purposes. The analysis of medical

images of DFU can be divided into classification, object

detection, and semantic segmentation. For example, CNNs are

suitable for classification, faster R-CNNs are suitable for object

detection, and FCNs are suitable for semantic segmentation. At

present, choosing the right deep-learning architecture is a

challenging task, and more models and algorithms need to be

tried and further studied in the future.

When a deep-learning architecture is chosen, a large number

of hyperparameters will be set and optimized by training the deep-

learning model, in which hyperparameters are automatically set to

optimize performance and reduce human effort (59). At present,

automatically optimizing hyperparameters usually uses a random

search, such as Bayesian optimization (60).
7.4 Changing the black box into a white
box

Although deep-learning models have achieved good results

in many domains, a deep-learning model is still a black box and

lacks an explanation of its internal mechanism, which makes it
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difficult for clinicians to understand its results. It is very

important for the interpretability of medical image analysis

systems based on deep learning. It can help doctors

understand the disease and make the correct diagnosis for the

benefit of the patients. Xiang et al. (61) presented an

interpretable model called local interpretable model-agnostic

explanations (LIME) which was applied to extract evidence

from the skin images to support the classification results by

visualizing models. Wulczyn et al. (62) introduced a deep-

learning-based image-similarity model that generated human-

interpretable histologic features by clustering embeddings. The

model could explain majority of the variance. Wu et al. (63) used

a model for finding interpretable representations that can

explain medical imaging predictions. At present, although

some models have achieved some interpretable visualization

results, some researchers thought these results are far from

sufficient and some explanations are even unreliable. It is

believed that the transition from black box to white box is still

in the early stages of research.
8 Conclusion and future trends

Current deep learning has been successfully applied in

classification, target detection, and segmentation for medical

images. With the technology developed, more multimodal data

can be collected. These data include medical images (X-ray, CT,

MRI, PET, etc.) and other forms of medical resources (electronic

medical records, genomics, bioinformatics, drug responses, etc.).

The variety of data is so complicated that more advanced deep-

learning architectures need to be developed.

Deep learning has been widely used in medicine to solve

problems such as disease diagnosis, prediction, medical-image

classification, detection, and segmentation. The occurrence and

development of diseases often include multiple stages, and how

to better apply deep-learning models to all stages of medical

diagnosis and treatment has become more challenging and need

three aspects: technological advancement, more data collection,

and more medical experience.

At present, a number of excellent algorithms have been used

in medical domain, but setting deep-learning model parameters

and training data need more time; therefore, it is necessary to

accelerate the development of deep-learning models, improve

deep learning algorithm, and manufacture better and faster

hardware. We should improve the efficiency and accuracy of

algorithms by improving them or combining multiple

architectures. Furthermore, we should exploit approaches such

as using a graphic processing unit, large-scale clusters of

machines in a distributed environment, and a cloud

computing platform. Despite challenges such as small data

sets, limited annotations, lack of interpretability, and time-

consuming training, deep-learning technology will have a huge
Frontiers in Endocrinology 15
impact on medicine and will benefit medicine, doctors,

and patients.
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