
sensors

Article

Fault Detection of Electric Impact Drills and Coffee
Grinders Using Acoustic Signals

Adam Glowacz

Department of Automatic Control and Robotics, Faculty of Electrical Engineering, Automatics, Computer
Science and Biomedical Engineering, AGH University of Science and Technology, al. A. Mickiewicza 30,
30-059 Kraków, Poland; adglow@agh.edu.pl

Received: 20 December 2018; Accepted: 8 January 2019; Published: 11 January 2019
����������
�������

Abstract: Increasing demand for higher safety of motors can be noticed in recent years. Developing
of new fault detection techniques is related with higher safety of motors. This paper presents
fault detection technique of an electric impact drill (EID), coffee grinder A (CG-A), and coffee
grinder B (CG-B) using acoustic signals. The EID, CG-A, and CG-B use commutator motors.
Measurement of acoustic signals of the EID, CG-A, and CG-B was carried out using a microphone.
Five signals of the EID are analysed: healthy, with 15 broken rotor blades (faulty fan), with a
bent spring, with a shifted brush (motor off), with a rear ball bearing fault. Four signals of
the CG-A are analysed: healthy, with a heavily damaged rear sliding bearing, with a damaged
shaft and heavily damaged rear sliding bearing, motor off. Three acoustic signals of the CG-B
are analysed: healthy, with a light damaged rear sliding bearing, motor off. Methods such as:
Root Mean Square (RMS), MSAF-17-MULTIEXPANDED-FILTER-14 are used for feature extraction.
The MSAF-17-MULTIEXPANDED-FILTER-14 method is also developed and described in the paper.
Classification is carried out using the Nearest Neighbour (NN) classifier. An acoustic based analysis
is carried out. The results of the developed method MSAF-17-MULTIEXPANDED-FILTER-14 are
very good (total efficiency of recognition of all classes—TED = 96%, TECG-A = 97%, TECG-B = 100%).
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1. Introduction

Today rotating machinery is used for a wide variety of industrial applications such as electrical
motors, engines, home appliances and electric power tools. It can also find applications in mining, oil,
car, energy, and the steel industry. Cost-effective and non-destructive fault detection is profitable for
industry. It can be used for rotating machinery. Reliable operation of rotating machinery is essential
for many factories, oil refineries, industrial plants. Gas turbines, motors, pumps, aircraft engines,
drive trains can be diagnosed by fault diagnosis techniques. Machines must operate safely without
interruptions. If faults occur, the consequences can be catastrophic. Damaged machines generate costs,
for example replacement of the machine or stopped production lines in the factory. Thus, the benefits
of fault detection are maintenance cost savings.

There are lots of studies in the literature related to fault diagnosis and fault detection of rotating
machinery. Analysis of electric currents is developed in the articles [1–5]. The results of current
recognition are very good. However it can only be used for limited number of electrical faults such as
broken bars, shorted rotors, stator coils. Electric current-based methods are usually useless for many
mechanical faults such as damaged teeth on sprockets, faulty gears, faulty fans, etc. The next methods
developed in the literature are based on vibration analysis [6–13] and acoustic analysis [14–22].
They are very effective. There is no need to connect a measuring sensor with the machine for
acoustic-based measurements. Vibration-based measurements require a connection between the sensor
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and the machine. Vibration signals are less noisy than acoustic signals. Both of them can measure
signals immediately. Vibration and acoustic analysis can also detect mechanical and electrical faults of
rotating machinery.

The next method of fault detection is thermal analysis. Thermal analysis methods are described
in [23–25]. Temperature detection can be performed using thermal imaging cameras, infrared
thermometers and portable laser thermometers. If we use a thermal imaging camera or portable
laser thermometer, then we can measure from a distance. The next method of fault detection of
rotating machinery is oil analysis. It can provide diagnostic information about the condition of
rotating machinery. In [26,27] some methods are mentioned: rotating disc electrode spectroscopy,
inductively coupled plasma spectroscopy, FPQ-XRF, acid digestion, light blocking, light scattering,
laser imaging, laser imaging, ferrography, light blocking, light scattering, laser imaging, fuel sniffer,
gas chromatography, gravimetric, Karl Fischer titration, viscosity, etc. Multidimensional prognostics
for rotating machinery was also presented [28].

This article describes the application of the acoustic-based approach to an electric impact
drill (EID)—Verto 50G515, made in China, and two coffee grinders designated as coffee grinder
A (CG-A)—Metrox ME-1497, made in China, and coffee grinder B (CG-B)—Sencor SCG 1050WH,
made in China. The EID, CG-A, and CG-B use commutator motors. The commutator motor is a type
of electrical motor used for power tools and home appliances such as blenders, coffee grinders and
hair driers. The author analysed five electric impact drills (one healthy and four faulty). Each of them
generates acoustic signals. Five signals are analysed: healthy (Figures 1 and 2), with 15 broken rotor
blades (faulty fan) (Figure 3), with a bent spring (Figure 4), with a shifted brush (Figure 5), with a rear
ball bearing fault (Figure 6).
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Figure 6. EID with a rear ball bearing fault (indicated by yellow square).

Four signals of the CG-A were analysed: healthy CG-A (Figure 7), CG-A with a heavily damaged
rear sliding bearing (Figure 8), CG-A with a damaged shaft and heavily damaged rear sliding bearing
(Figure 9), motor off (Figure 10).
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Three signals of the CG-B were analysed: healthy CG-B (Figure 11), CG-B with a light damaged
rear sliding bearing (Figure 12), motor off (Figure 13).
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Figure 13. Motor off (CG-B off).

In Section 1, the author presents a review of the fault detection methods. In Section 2, the
author describes the acoustic based approach and proposed methods of signal processing. In Section 3,
the recognition results of the EID, CG-A, and CG-B are presented. A discussion is presented in Section 4.
In Section 5, summary and conclusions are described.

2. Developed Acoustic Based Approach

The developed acoustic-based approach used signal processing methods and the acoustic data
of the EID, CG-A and CG-B. Acoustic data were obtained using a HAMA 00057152 microphone.
The parameters of the microphone are: frequency response 30–16,000 Hz, rated impedance 1400 Ω,
sensitivity −62 dB. The microphone was placed 0.2–0.3 m away from the EID, CG-A and CG-B.
Other types of microphones could be also used. Acoustic data were split (using “MPlayer library—The
Movie Player”—wav file parameters sampling frequency 44,100 Hz, single channel, 16 bits resolution,
stationary signal) and normalized. Normalization of amplitude divided each sample (in the time
domain) by the maximum value of the signal (in time domain). After that feature vectors were
formed using the RMS or MSAF-17-MULTIEXPANDED-FILTER-14 (the methodology is presented in
Section 2.1). Next the Nearest Neighbour (NN) classifier compared feature vectors in the classification
step. The developed acoustic based approach is shown in Figure 14.
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An experimental setup consisted of the microphone and a computer. It was used to analyse
the electric impact drill/coffee grinder (Figure 15a). Measurement of acoustic signals is depicted in
Figure 15b.
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2.1. MSAF-17-MULTIEXPANDED-FILTER-14

The Method of Selection of Amplitudes of Frequency Multiexpanded Filter (MSAF-17-
MULTIEXPANDED-FILTER-14) was developed and implemented. This feature extraction method
used differences between FFT spectra. It consists of seven signal processing steps:

(1) Compute Fast Fourier Transform (FFT) spectra for all states of the EID (for all training
vectors). In the presented acoustic based approach the FFT provided a vector of 16384-elements.
For 16,384 frequency components, the frequency spectrum is 22,050 Hz. Therefore, each frequency
component is every 1.345 Hz. The computed vectors were defined as follows: healthy EID—h =
[h1, h2, ..., h16,384], EID with 15 broken rotor blades (faulty fan)—f = [f 1, f 2, ..., f 16,384], EID with a
bent spring—s = [s1, s2, ..., s16,384], EID with a rear ball bearing fault—b = [b1, b2, ..., b16,384].

(2) For each training vector compute: h − f, h − s, f − s, b − h, b − f, b − s.
(3) Compute: |h − f|, |h − s|, |f − s|, |b − h|, |b − f|, |b − s|.
(4) Find 1–17 Common Frequency Components (CFCs) or set a parameter Threshold of CFCs (ToCFCs).

If there are no CFCs, then set a parameter ToCFCs. The parameter is defined as Equation (1):

ToCFCs =
Number o f required CFCs

Number o f all di f f erences
(1)

Let’s analyse the following example: three training sets are given. Each of them has four training
samples. Eighteen differences are computed (six for the first training set, six for the second training set,
six for the third training set). Let’s suppose that frequency component 130 Hz is found three times
for |h − f|. Let’s suppose that frequency components 110, 160 Hz are found two times for |h − s|.
Let’s suppose that frequency components 110, 140 Hz are found two times for |f − s|. Let’s suppose
that frequency component 500 Hz is found three times for |b − h|. Let’s suppose that frequency
components 600, 610 Hz are found two times for |b− f|. Let’s suppose that frequency components 600,
710 Hz are found two times for |b − s|. There are no CFCs. Only frequency components 110 Hz and
600 Hz are found four times. The MSAF-17-MULTIEXPANDED finds frequency components 110, 130,
140, 160, 500, 600, 610, 710 Hz, if ToCFCs is equal to 0.1111 (2/18). The MSAF-17-MULTIEXPANDED
method finds 0 frequency components, if ToCFCs is equal to 0.2777 (5/18).

(5) Form groups of frequency components for a proper recognition. Considering the presented
example, it can be noticed that the frequency component 110 Hz is good for |h − s| and |f − s|.
The frequency component 130 Hz is good for |h − f|. The frequency component 500 Hz is good
for |b − h|. The frequency component 600 Hz is good for |b − f| and |b − s|. The MSAF-17-
MULTIEXPANDED-FILTER-14 finds 1 group consisted of 110, 130, 500, 600 Hz.

(6) Form bandwidths of frequency. Considering the presented example, 14 Hz bandwidths are
selected. The MSAF-17-MULTIEXPANDED-FILTER-14 uses a value of 14 Hz. The value of 14 Hz
is set experimentally. The middle of the first bandwidth is located at 110 Hz. The middle of the
second bandwidth is located at 130 Hz. The middle of the third bandwidth is located at 500 Hz.
The middle of the fourth bandwidth is located at 600 Hz. Following bandwidths are selected
<103–117 Hz>, <123–137 Hz >, <493–507 Hz>, <593–607 Hz>.

(7) Using computed bandwidths, form a feature vector.

In other words, we can say that: 17—means that, we analyse 17 (local) maximum values of
analysed difference between FFT spectra of acoustic signals, for example |h − f|, 14—means that,
we set 14 Hz frequency bandwidth, for example for frequency 50 Hz it will be <50 − 7 Hz, 50 + 7Hz>.

A block diagram of the developed method MSAF-17-MULTIEXPANDED-FILTER-14 is presented
in Figure 16.
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The developed method MSAF-17-MULTIEXPANDED-FILTER-14 found the following frequency
components: 278, 280, 457, 464, 468, 477, 479, 480, 481, 483, 557, 558, 2297, 2313, 2316, 2317, 11098,
11099, 11103, 11106, 11110, 11111, 11190, 11192, 11193, 11197, 11198, 11205, 11207, 11208, 11209, 11213,
11239, 11240, 11242, 11244, 11246 Hz.

Next the MSAF-17-MULTIEXPANDED-FILTER-14 selected seven frequency bandwidths of
the EID: <271–287 Hz>, <450–490 Hz>, <550–565 Hz>, <2290–2324 Hz>, <11091–11118 Hz>,
<11183–11220 Hz>, <11232–11253 Hz>.

The frequency component 278 Hz was found, so the first frequency bandwidth is 271–285 Hz
(278 − 7 Hz, 278 + 7 Hz). The MSAF-17-MULTIEXPANDED-FILTER-14 method computed
frequency bandwidth 14 Hz. It can be noticed that frequency component 280 Hz is within the
frequency bandwidth. Thus, the frequency bandwidth is 271–287 Hz etc. The selected frequency
bandwidths/features of the EID were depicted in Figures 23–26. The value of the parameter ToCFCs
was equal to 0.25 for the EID.
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The MSAF-17-MULTIEXPANDED-FILTER-14 selected two frequency bandwidths of the CG-A:
<515–537 Hz>, <1560–1575 Hz>. The selected frequency bandwidths/features of the CG-A are depicted
in Figures 27–29. The value of the parameter ToCFCs was equal to 0.5 for the CG-A.
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The MSAF-17-MULTIEXPANDED-FILTER-14 selected three frequency bandwidths of the CG-B:
<94–109 Hz>, <194–207 Hz>, <463–488 Hz>. The selected frequency bandwidths/features of the CG-B
are depicted in Figures 30 and 31. The value of the parameter ToCFCs was equal to 0.5 for the CG-B.
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Figure 31. Values of features of the CG-B with a light damaged rear sliding bearing (43 features,
three frequency bandwidths, <94–109 Hz>, <194–207 Hz>, <463–488 Hz>).

Next computed features were classified. To classify features the NN classifier [29–31] was used
(please see Section 2.3). There are 145 features in the feature vector. It can be noticed that distance
classifiers (for example: k-means, Nearest Mean) should have also good results. Fuzzy classifiers [32]
and neural network [33–35] can be also suitable for the acoustic-based approach. The NN classifier
was selected because of its good recognition efficiency for multi-dimensional vectors.

2.2. RMS

The second method of feature extraction used for the proposed acoustic based approach is the
Root Mean Square (RMS). The RMS is a well-known method for feature extraction. It is defined as
Equation (2):

xRMS =

√
1
n
(x2

1 + x2
2 + ... + x2

n) (2)
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where xRMS—RMS for 1-s sample (44,100 values), n—number of all samples, n = 44,100, x1, ...,
xn—values of samples 1, ..., n (sampling rate 44,100 Hz).

In the presented analysis (please see Section 3) the author used 50 1-s samples for each class of the
EID. Two hundred and fifty 1-s samples were used for five classes (of the EID). There were xRMS1, ...,
xRMS50—RMS values of the healthy EID, xRMS51, ..., xRMS100—RMS values of the EID with 15 broken
rotor blades (faulty fan), xRMS101, ..., xRMS150—RMS values of the EID with a bent spring, xRMS151, ...,
xRMS200 − RMS values of the EID with a shifted brush (motor off), xRMS201, ..., xRMS250—RMS values of
the EID with a rear ball bearing fault. The computed RMS values of the EID are presented in Tables 1–5.

Table 1. RMS values of the healthy EID.

Number of Samples RMS Value Number of Samples RMS Value

xRMS1 0.237122 xRMS5 0.240819
xRMS2 0.231192 xRMS6 0.236356
xRMS3 0.234878 xRMS7 0.239650
xRMS4 0.238282 xRMS8 0.238406

Table 2. RMS values of the EID with 15 broken rotor blades (faulty fan).

Number of Samples RMS Value Number of Samples RMS Value

xRMS51 0.322252 xRMS55 0.312347
xRMS52 0.316197 xRMS56 0.318529
xRMS53 0.317383 xRMS57 0.310883
xRMS54 0.305535 xRMS58 0.302719

Table 3. RMS values of the EID with a bent spring.

Number of Samples RMS Value Number of Samples RMS Value

xRMS101 0.250579 xRMS105 0.245578
xRMS102 0.244888 xRMS106 0.243813
xRMS103 0.244461 xRMS107 0.246395
xRMS104 0.249611 xRMS108 0.246297

Table 4. RMS values of the EID with a shifted brush.

Number of Samples RMS Value Number of Samples RMS Value

xRMS151 0.006427 xRMS155 0.006478
xRMS152 0.006338 xRMS156 0.007226
xRMS153 0.008981 xRMS157 0.007020
xRMS154 0.009021 xRMS158 0.006644

Table 5. RMS values of the EID with a rear ball bearing fault.

Number of Samples RMS Value Number of Samples RMS Value

xRMS201 0.235278 xRMS205 0.234696
xRMS202 0.236730 xRMS206 0.236078
xRMS203 0.233518 xRMS207 0.237600
xRMS204 0.234478 xRMS208 0.237778

The values of the RMS of acoustic signals “Healthy EID” and “EID with a rear ball bearing fault”
were similar. It will be difficult to recognise these two classes. In the presented analysis (please see
Section 3) the author used 50 1-s samples for each class of the CG-A. Two hundred 1-s samples were
used for four classes (of the CG-A). There were xRMS251, ..., xRMS300—RMS values of the healthy CG-A,
xRMS301, ..., xRMS350—RMS values of the CG-A with a heavily damaged rear sliding bearing, xRMS351,
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..., xRMS400 − RMS values of the CG-A with a damaged shaft and heavily damaged rear sliding bearing,
xRMS401, ..., xRMS450—RMS values of the motor off (CG-A off). The values xRMS401, ..., xRMS450 were the
same as RMS values of the EID with a shifted brush (EID off). The computed RMS values of the CG-A
are presented in Tables 6–8.

Table 6. RMS values of the healthy CG-A.

Number of Samples RMS Value Number of Samples RMS Value

xRMS251 0.203343 xRMS255 0.209252
xRMS252 0.203521 xRMS256 0.215012
xRMS253 0.201109 xRMS257 0.209241
xRMS254 0.205511 xRMS258 0.205984

Table 7. RMS values of the CG-A with a heavily damaged rear sliding bearing.

Number of Samples RMS Value Number of Samples RMS Value

xRMS301 0.234359 xRMS305 0.234927
xRMS302 0.234860 xRMS306 0.233882
xRMS303 0.231783 xRMS307 0.235229
xRMS304 0.237120 xRMS308 0.229835

Table 8. RMS values of the CG-A with a damaged shaft and heavily damaged rear sliding bearing.

Number of Samples RMS Value Number of Samples RMS Value

xRMS351 0.239449 xRMS355 0.248779
xRMS352 0.246317 xRMS356 0.250027
xRMS353 0.246894 xRMS357 0.250791
xRMS354 0.247325 xRMS358 0.250203

The values of the RMS of acoustic signals “CG-A with a heavily damaged rear sliding bearing”
and “CG-A with a damaged shaft and heavily damaged rear sliding bearing” were similar. It will be
difficult to recognise these two classes.

In the presented analysis (please see Section 3) the author used 50 1-s samples for each class of the
CG-B. One hundred and fifty 1-s samples were used for three classes (of the CG-B). There were xRMS451,
..., xRMS500—RMS values of the healthy CG-B, xRMS501, ..., xRMS550—RMS values of the CG-B with
a light damaged rear sliding bearing, xRMS551, ..., xRMS600—RMS values of the motor off (CG-B off).
The values xRMS551, ..., xRMS600 were the same as RMS values of the EID with a shifted brush (EID off).
The computed RMS values of the CG-B are presented in Tables 9 and 10.

Table 9. RMS values of the healthy CG-B.

Number of Samples RMS Value Number of Samples RMS Value

xRMS451 0.248146 xRMS455 0.248331
xRMS452 0.254812 xRMS456 0.259062
xRMS453 0.248951 xRMS457 0.263240
xRMS454 0.240446 xRMS458 0.264600

Table 10. RMS values of the CG-B with a lightly damaged rear sliding bearing.

Number of Samples RMS Value Number of Samples RMS Value

xRMS501 0.131587 xRMS505 0.103367
xRMS502 0.121155 xRMS506 0.095910
xRMS503 0.103567 xRMS507 0.108105
xRMS504 0.094650 xRMS508 0.105756
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2.3. NN Classifier

The NN classifier is very known in the literature [29–31]. This type of a classifier is based on lazy
learning. It does not generalize the training data. Each training feature vector has a label with a class
(ID of the class). The label (ID of the class) is given to the feature vector in the training phase.

An unlabeled test feature vector is used in the classification (testing) phase. The NN classifier
assigns the label, which is the closest to the training data. For this reason, distance metric is used.
The author used Euclidean distance, although other distance functions could be used. Similar results
were obtained using other distance functions (Manhattan distance and Minkowski distance). Euclidean
distance was defined as Equation (3):

ED(x− y) =

√
n

∑
i=1
|(xi − yi)

2| (3)

where x—test feature vector, y—training feature vector, ED(x−y)—Euclidean distance, n—number of
features (it is 1 feature for the RMS).

The NN classifier is useful for classification of feature vectors. It was found application in pattern
recognition, speaker recognition, image recognition, text recognition, face recognition etc. The NN
classifier is described in detail in [29–31].

3. Recognition Results of the EID, CG-A, CG-B

The analysed EID was powered from the 230 V/50 Hz mains. The author used 50G515 electric
impact drills. Other devices could be used. It generated five acoustic signals denoted as: healthy
EID, EID with 15 broken rotor blades (faulty fan), EID with a bent spring, EID with a shifted brush
(motor off), EID with a rear ball bearing fault. Measurements were carried out in the room 3 m × 3 m.
The analysed EID had rated power PD = 500 W, rotation speed RD = 3000 rpm and weight MD = 1.84 kg.

The analysed CG-A was also powered from the 230 V/50 Hz mains. The author used a ME-1498
coffee grinder. Other devices could be used. The analysed CG-A consisted of a FY5420 motor (rated
power 140 W). It had rotor speed of 28,000–30,000 rpm. It generated four acoustic signals denoted as:
healthy, with a slightly damaged rear sliding bearing, with a moderately damaged rear sliding bearing,
motor off.

The analysed CG-B was also powered from the 230 V/50 Hz mains. The author used a SCG
1050WH coffee grinder. The analysed CG-B consisted of a HC5420 motor (rated power 150 W). It had a
rotor speed of 11,300 rpm. It generated three acoustic signals denoted as: healthy, with a light damaged
rear sliding bearing, motor off.

Patterns were computed using 32 training samples of the EID, 24 training samples of the CG-A,
and 24 training samples of the CG-B. Each training sample had 44,100 values. The results of recognition
were computed using 250 test samples of the EID, 200 test samples of the CG-A and 150 test samples
of the CG-B. Test samples had the same audio parameters (sampling rate 44,100 Hz, single channel) as
training samples.

The efficiency of the proposed approach was evaluated using Equation (4). This Equation (4)
defined the efficiency of recognition of the EID (ED):

ED1 = (ND1)/(NALL−D1) · 100% (4)

where: ED1—the efficiency of recognition for D1 class (in the analysis it is one of five classes, for example
healthy EID), ND1—the number of test samples classified as D1 class, NALL-D1—the number of all test
samples in D1 class. The values of ECG-A and ECG-B were computed similarly to ED1.

The total efficiency of recognition of all classes (TED) was also introduced. It was defined as
follows Equation (5):

TED = (ED1 + ED2 + ED3 + ED4 + ED5)/5 (5)
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where TED—the total efficiency of recognition of all classes (five states of the EID), ED1—the efficiency
of recognition for D1 class (in the presented analysis D1 class—healthy EID), ED2—the efficiency
of recognition for D2 class (in the presented analysis D2 class—EID with a bent spring), ED3—the
efficiency of recognition for D3 class (in the presented analysis D3 class—EID with 15 broken rotor
blades), ED4—the efficiency of recognition for D4 class (in the presented analysis D4 class—EID with a
shifted brush), ED5—the efficiency of recognition for D5 class (in the presented analysis D5 class—EID
with a rear ball bearing fault). The values of TECG-A and TECG-B were computed similarly to TED.
Four acoustic signals were used for TECG-A. Three acoustic signals were used for TECG-B. The computed
values of ED and TED were presented in Tables 11 and 12. Acoustic signals of the EID were processed
by the MSAF-17-MULTIEXPANDED-FILTER-14 method and the NN classifier (Table 11).

Table 11. Computed values of ED and TED of the EID using the MSAF-17-MULTIEXPANDED-FILTER-14
method and the NN classifier.

Type of Acoustic Signal ED (%)

Healthy EID 100
EID with a bent spring 92

EID with (15 broken rotor blades) faulty fan 100
EID with shifted brush (motor off) 100

EID with rear ball bearing fault 88
TED (%)

Total efficiency of recognition of the EID 96

Table 12. Computed values of ED and TED of the EID using the RMS and the NN classifier.

Type of Acoustic Signal ED (%)

Healthy EID 56
EID with a bent spring 100

EID with (15 broken rotor blades) faulty fan 100
EID with shifted brush (motor off) 100

EID with rear ball bearing fault 60
TED (%)

Total efficiency of recognition of the EID 83.2

Acoustic signals of the EID were processed by the RMS and NN classifier (Table 12).
The computed values of ED and TED of the proposed approach were following: ED = 88–100%,

TED = 96% for the MSAF-17-MULTIEXPANDED-FILTER-14 method and ED = 56–100%, TED = 83.2%
for the RMS. The computed values of ECG-A and TECG-A were presented in Tables 13 and 14. Acoustic
signals of the CG-A were processed by the MSAF-17-MULTIEXPANDED-FILTER-14 method and the
NN classifier (Table 13).

Table 13. Computed values of ECG-A and TECG-A of the CG-A using the MSAF-17-MULTIEXPANDED-
FILTER-14 method and the NN classifier.

Type of Acoustic Signal ECG-A (%)

Healthy CG-A 100
CG-A with a heavily damaged rear sliding bearing 100

CG-A with a damaged shaft and heavily damaged rear sliding bearing 88
Motor off 100

TECG-A (%)
Total efficiency of recognition of the CG-A 97
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Table 14. Computed values of ECG-A and TECG-A of the CG-A using the RMS and the NN classifier.

Type of Acoustic Signal ECG-A (%)

Healthy CG-A 100
CG-A with a heavily damaged rear sliding bearing 92

CG-A with a damaged shaft and heavily damaged rear sliding bearing 92
Motor off 100

TECG-A (%)
Total efficiency of recognition of the CG-A 96

Acoustic signals of the CG-A were processed by the RMS and NN classifier (Table 14).
The computed values of ECG-A and TECG-A of the proposed approach were following: ECG-A =

88–100%, TECG-A = 97% for the MSAF-17-MULTIEXPANDED-FILTER-14 method and ECG-A = 92–100%,
TECG-A = 96% for the RMS. The computed values of ECG-B and TECG-B were presented in Tables 15
and 16. Acoustic signals of the CG-B were processed by the MSAF-17-MULTIEXPANDED-FILTER-14
method and the NN classifier (Table 15).

Table 15. Computed values of ECG-B and TECG-B of the CG-B using the MSAF-17-MULTIEXPANDED-
FILTER-14 method and the NN classifier.

Type of Acoustic Signal ECG-B (%)

Healthy CG-B 100
CG-B with a light damaged rear sliding bearing 100

Motor off 100
TECG-B (%)

Total efficiency of recognition of the CG-B 100

Table 16. Computed values of ECG-B and TECG-B of the CG-B using the RMS and the NN classifier.

Type of Acoustic Signal ECG-B (%)

Healthy CG-B 100
CG-B with a light damaged rear sliding bearing 100

Motor off 100
TECG-B (%)

Total efficiency of recognition of the CG-B 100

Acoustic signals of the CG-B were processed by the RMS and NN classifier (Table 16).
The computed values of ECG-B and TECG-B of the proposed approach were following: ECG-B=

100%, TECG-B = 100% for the MSAF-17-MULTIEXPANDED-FILTER-14 method and RMS.

4. Discussion

The acoustic-based fault-detection technique is significant for the recent research area of electrical
motors. This approach is useful for inspection of motor condition. It can analyse acoustic signals
in places with limited or no access. The novelty of the proposed work was to detect faults of an
EID and two coffee grinders. The author focused on feature extraction of five acoustic signals of
the EID, four acoustic signals of the CG-A and three acoustic signals of the CG-B. The method
MSAF-17-MULTIEXPANDED-FILTER-14 was developed and described. One of the difficulties to solve
was selection of training samples. It can be noticed that the recognition results depended on selected
training samples. All samples is measured by one microphone. If the acoustic signal is measured by
another type of microphone, then it can cause errors of recognition. The proposed acoustic-based
approach should use one type of microphone for training as well as testing.

The second of the difficulties to solve was the testing (classification) of a new unknown test
samples. It is difficult to recognize, for example, the acoustic signal of a car if we have training samples
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of an EID. To solve this problem the proposed acoustic-based approach used the NN classifier. The NN
classifier found the nearest feature vector (analysed frequency bandwidths). If the acoustic signal of the
car is measured, then it will be recognised as an unknown state of the EID. The training set consisted
of acoustic signals of the EID and several unknown sounds of cars, ships, helicopters, animals, etc.

It can be noticed that the RMS was very good for recognition of acoustic signals of the EID
with a shifted brush (motor off). This class of acoustic signal should be detected by the RMS.
However, the RMS method was not good for similar sound intensity level values. The classes of
acoustic signals “Healthy EID” and “EID with a rear ball bearing fault” had low values of TED.
The classes of acoustic signals “CG-A with a heavily damaged rear sliding bearing” and “CG-A
with a damaged shaft and heavily damaged rear sliding bearing” had lower values of TECG-A.
The MSAF-17-MULTIEXPANDED-FILTER-14 method was good method of feature extraction for
all analysed classes of acoustic signals.

5. Summary and Conclusions

This paper presented fault-detection techniques for an electric impact drill (EID), coffee grinder A
(CG-A), and coffee grinder B (CG-B) using acoustic signals. Measurements of the acoustic signals of
the EID, CG-A, and CG-B were carried out using a microphone. Five signals of the EID were analysed:
healthy EID, EID with 15 broken rotor blades (faulty fan), EID with a bent spring, EID with a shifted
brush (motor off), EID with a rear ball bearing fault. Four signals of the CG-A are analysed: healthy
CG-A, CG-A with a heavily damaged rear sliding bearing, CG-A with a damaged shaft and heavily
damaged rear sliding bearing, motor off. Three acoustic signals of the CG-B are analysed: healthy
CG-B, CG-B with a light damaged rear sliding bearing, motor off.

Methods such as RMS, MSAF-17-MULTIEXPANDED-FILTER-14 were used for feature extraction.
The MSAF-17-MULTIEXPANDED-FILTER-14 was also developed and described in the paper.
The classification is carried out using the Nearest Neighbour (NN) classifier. An acoustic based analysis
was carried out. The computed values of ED and TED of the proposed approach were following:
ED = 88–100%, TED = 96% for the MSAF-17-MULTIEXPANDED-FILTER-14 and ED = 56–100%,
TED = 83.2% for the RMS. The computed values of ECG-A and TECG-A of the proposed approach
were following: ECG-A = 88–100%, TECG-A = 97% for the MSAF-17-MULTIEXPANDED-FILTER-14
method and ECG-A = 92–100%, TECG-A = 96% for the RMS. The computed values of ECG-B and TECG-B
of the proposed approach were following: ECG-B = 100%, TECG-B = 100%.

The acoustic-based analysis was inexpensive. The experimental setup consisted of a microphone
and computer. It cost about $500. Pros of this solution are instant measurement and online monitoring
of the motor. Cons of this solution are the higher cost and size of the computer. The developed
acoustic-based approach has many applications, for example in home and industrial appliances for
fault detection. It can be used for electrical motors, engines, machinery and electric power tools [36–42].
It can also find applications in mining, oil, car, energy, and the steel industry. It can analyse acoustic
signals in places with limited or no access. However, the proposed acoustic-based approach has one
limitation. It cannot work for a machine that does not generate acoustic signals. Background noises
can be also problem, if we analyse several motors in one place and at the same time.

In the future, the proposed acoustic-based approach can be further developed. Other faults of
commutator motors can be added to an acoustic signal database. Measurements can be carried out
using acoustic cameras and microphone arrays. Vibration-based methods can be added to the fault
detection system of commutator motors. New feature extraction methods can also be developed in
the future.
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