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Abstract

Organizing experimentally determined protein associations as a hierarchy can be a good approach to elucidating the
content of protein complexes and the modularity of subcomplexes. Several challenges exist. First, intrinsically sticky
proteins, such as chaperones, are often falsely assigned to many functionally unrelated complexes. Second, the reported
collections of proteins may not be true ‘‘complexes’’ in the sense that they bind together and perform a joint cellular
function. Third, due to imperfect sensitivity of protein detection methods, both false positive and false negative
assignments of a protein to complexes may occur. We mitigate the first issue by down-weighting sticky proteins by their
occurrence frequencies. We approach the other two problems by merging nearly identical complexes and by constructing a
directed acyclic graph (DAG) based on the relationship of partial inclusion. The constructed DAG, within which smaller
complexes form parts of the larger, can reveal how different complexes are joined. By merging almost identical complexes
one can deemphasize the influence of false positives, while allowing false negatives to be rescued by other nearly identical
association data. We investigate several protein weighting schemes and compare their corresponding DAGs using yeast and
human complexes. We find that the scheme incorporating weights based on information flow in the network of direct
protein–protein interactions produces biologically most meaningful DAGs. In either yeast or human, isolated nodes form a
large proportion of the final hierarchy. While most connected components encompass very few nodes, the largest one for
each species contains a sizable portion of all nodes. By considering examples of subgraphs composed of nodes containing a
specified protein, we illustrate that the graphs’ topological features can correctly suggest the biological roles of protein
complexes. The input data, final results and the source code are available at ftp://ftp.ncbi.nlm.nih.gov/pub/qmbpmn/
ProteinComplexDAG/.
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Introduction

A living cell functions through coordination of its molecular

components, within which proteins play a key role. In many cases

proteins do not act individually but by joining with other proteins

to form functional complexes consisting of several identical or

different subunits. The last decade has seen a surge of interest in

generating networks of interactions between cellular proteins in a

variety of organisms [1–3]. Such interest resulted in development

of a large variety of techniques, both experimental and compu-

tational, for assessing which proteins interact with each other

within a cell and under what circumstances. Generally, the

experimental techniques can be divided in two complementary

classes. The first includes the methods such as yeast-two-hybrid

[4,5] and fluorescence resonance energy transfer (FRET) [6],

which determine whether two individual proteins can interact and

therefore report binary interactions. The second class of methods

isolate groups of proteins from cellular mixtures and therefore

report protein associations, without necessarily providing the

information about which proteins directly interact within the

mixture. These techniques may be based on fractionations of

cellular extracts using liquid chromatography [7,8], or on affinity-

based pull-downs thorough immunoprecipitation [9] or tandem

affinity purification [10,11]. While these isolation techniques have

a disadvantage that they do not reveal the exact binding patterns

of proteins, they offer more information than binary interactions

by associating several proteins together.

The results of more than a decade of intensive investigations of

protein interactions in model organisms can be easily retrieved.

Numerous existing public databases, such as BIND [12,13],

BioGRID [14], CORUM [15], DIP [16], HPRD [17], IntAct

[18], MINT [19], MPact [20], MPPI [21] and OPHID [22], store

that information and curate publications. The interactions

reported come both from large, systematic high-throughput

studies and from curations of publications focusing on particular

cellular subsystems. Thanks to the iRefIndex database [23], which

agglomerates the information from all the aforementioned public

databases in a easily accessible way, it is now possible to perform

systematic analyses of almost all evidences for interactions and

complexes.

In this paper we present a novel way to organize protein

association data, aiming to elucidate structure of protein

complexes and modularity of subcomplexes (which may be

PLOS ONE | www.plosone.org 1 June 2014 | Volume 9 | Issue 6 | e100098

ftp://ftp.ncbi.nlm.nih.gov/pub/qmbpmn/ProteinComplexDAG/
ftp://ftp.ncbi.nlm.nih.gov/pub/qmbpmn/ProteinComplexDAG/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0100098&domain=pdf


interchangeable). It is well known that proteins or complexes can

be multifunctional [24], that is, perform very different functions

depending on the context in which they appear. To elucidate the

structural relationships between various protein complexes we

propose to construct a hierarchy, where smaller complexes form

parts of the larger. To account for the possibilities that a complex

may serve as a subunit of several structurally and functionally

distinct larger complexes, our hierarchy takes the form of a

directed acyclic graph (DAG). The absence of cycles (acyclic),

implying that no node can reach itself after following several

directed edges in the graph, naturally prevents two distinct

complexes from being the subunit of each other. Another desirable

feature of a DAG is that a child node (or a subunit) may point to

multiple unrelated parent nodes (larger complexes). This is in

contrast to previous tree-resulting approaches, such as [25], that

only allow one immediate parent node for each child node

considered. The edges of our DAG are based on the relationship

of partial inclusion: u?v (u embeds into v) in the DAG implies that

u is a part of v but not vice versa. Since our goal is to reconcile the

unprocessed primary results, we only include the interaction and

association evidences that were experimentally obtained. It is

worth pointing out that another recent work [26], although also

resulting in a DAG, takes a very different route. It starts by

constructing a binary tree, then introduces heuristics to allow

modification of the tree structure to allow for more than two

children nodes per parent, followed by another heuristic to allow a

child node to link to multiple parent nodes to form a DAG.

There are several challenges associated with building a

hierarchy of protein complexes based on experimental findings.

The first challenge is what to do with the sticky proteins? Due to

their inherent trend to bind other proteins, intrinsically sticky

proteins may be falsely assigned to many groups of functionally

organized but unrelated complexes. Second, the reported collec-

tions of proteins may not be true ‘complexes’ in the sense that they

bind together and perform a joint cellular function. For example, it

is possible that the prey proteins retrieved using one bait may

belong to several independent complexes. Hence, the assemblies

derived from interaction databases should be properly called

‘associations’ (although we will for simplicity call them complexes).

Third, due to imperfect sensitivity of protein detection methods, it

is possible to obtain both false positive and false negative

assignments of a protein within a particular association. We

mitigate the first issue by down-weighting these sticky proteins

according to their numbers of associated complexes. To avoid

accidentally up-weighting infrequent proteins that only appear in a

very small number of associations, we set a lower bound on the

number of complexes each protein participates in. We tame the

other two problems by constructing a DAG and by merging nearly

identical complexes. The constructed DAG can show how

different complexes are joined by a common bait protein. By

merging almost identical complexes one can down-weight false

positives while at the same time allow false negatives in one

association data to be rescued by other nearly identical association

data.

Methods

Overview
We construct DAGs for protein complexes in yeast and human,

the two species with the most abundant association and interaction

data. Each node in the hierarchy represents a protein complex and

each edge a sub-part relationship. A directed edge links a complex

u to a complex v if u can be considered a part or a subunit of v.

Each complex is supported by one or more experimental evidences

and represented by a weight function that assigns positive weights

for all its member proteins and zero to all other proteins. The part-

of relationship is established by first comparing the weight

functions by similarity and then linking most similar complexes.

Datasets of protein complexes and binary interactions
We obtained the evidences for protein complexes (associations)

and protein-protein interactions in yeast (Saccharomyces cerevisiae)

and human (Homo sapiens) by running the ppiTrim [27] script

(Version 1.3) with the iRefIndex [23] database (Candidate for

Release 10.0, dated Nov 23rd 2012) as input (see Text S1 and

Figure S1). The ppiTrim script outputs evidences for three classes

of interactions: directed binary interactions (biochemical reactions

with asymmetric biological roles of participants), undirected binary

interactions (physical bindings), and protein complexes (associa-

tions of more than two proteins). Only the latter two categories

were used since the current study targets on physical bindings/

associations. Each evidence is associated with two or more protein

interactors, a source publication, and multiple annotations

including interaction detection method, interaction type and

experimental roles of interactors (bait/prey). An evidence may

originate from a record in a single source database or be an

agglomeration of several records from different sources. For each

investigated species, the output of ppiTrim was processed into a set

of direct binary interactions (PPI set) and a set of protein

complexes (PC set). The PPI set was obtained by selecting all

binary interaction evidences annotated with interaction type

‘direct interaction’ and grouping them by their protein interactors.

All interactions of a protein with itself were removed. The PC set

was constructed from all evidences for protein complexes with

more than three different proteins. To avoid apparent redundan-

cies, complex records sharing the same publication, experimental

annotation and bait protein were grouped together and considered

as a single complex. In addition to the complexes available

through ppiTrim, we also included in the PC set the human

complexes reported by Havugimana et al. [28], which were not

available in iRefIndex at the time we processed it. We took all

complexes of size greater than 3 reported by Havuginama et al.

and mapped their protein identifiers to Entrez Gene IDs using the

algorithm employed by ppiTrim. We excluded the interactions

from the Collins et al. paper [25] (in yeast), and from the OPHID

[22] database since they were obtained by computational analysis

of several primary datasets and hence do not represent direct

experimental evidences.

Protein Weights
Let T denote the set of all proteins for a given species. An

evidence for a protein complex is a set of proteins specified with a

record in the PC set. To account for its redundancy, an evidence x
is associated with a weight w(x), which takes the value 1=m when

this evidence and other m{1 evidences share the same

publication, experimental method annotation and bait protein.

When this happens, these m evidences are called equivalent.

However, due to differences in curation, equivalent evidences

may still be different, meaning that they can have different protein

lists. For this reason and because we intend to merge highly similar

complex nodes (as described later), a protein complex node u in our

formulation is generally associated with a set of evidences Eu, not

just a single evidence. Each protein complex node u also has three

weighting functions T?Rz that assign weights to member

proteins: support weights wu, adjusted weights xu, and information

flow weights yu,b, which depend on an additional parameter b:

We denote by
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Su~
[

x[Eu

x

the set of of all protein members (or supports) of u: Each weighting

function associated with u is positive on Su and zero outside of it.

We will use the operator ^ to denote the minimum (a ^ b~

minfa,bg) and _ to denote the maximum (a _ b~ maxfa,bg). For

a set x(T , Ix denotes the indicator function of x, which takes the

value 1 on x and 0 outside of it.

Support weights. The support weight function for a complex

u, denoted wu, indicates the strength of evidence for membership

in u for each protein in T . It only depends on the evidences

associated with u:

wu(i)~

X
x[Eu

w(x)Ix(i)X
y[Eu

w(y)
: ð1Þ

One can see that wu ranges between 0 and 1; wu(i)~0 if protein

i is not a member of any evidence in Eu, while wu(i)~1 if all

evidences contain i:
Adjusted weights. The adjusted weight function for a

complex u, denoted xu, is similar to wu, but penalizes proteins

that are overrepresented in the PC set. Let c(i) denote the

(weighted) number of evidences containing protein i :

c(i)~
X
x[E

w(x)Ix(i), ð2Þ

where E is the set of all evidences from the PC set. Then,

xu(i)~ 1 ^ m

c(i)

� �
wu(i), ð3Þ

where m is the weighted median of c. More precisely, let

L(z)~fi[T : c(i)ƒzg. Then, m is selected as the largest value of

z such that

X
i[L(z)

c(i)X
j[T c(j)

ƒ

1

2
: ð4Þ

Hence, for proteins that are infrequent and contribute cumula-

tively less than a half of the ‘mass’ of all complexes, their xu values

equal their wu values. The weight of each of the rest of the proteins

is proportionally reduced by the ratio m=c(i).
Information flow weights. Information flow weights gener-

alize adjusted weights by taking into account the direct protein-

protein interactions within complexes. We represent the PPI set A
as a symmetric adjacency operator (matrix) A : T|T?R, where

A(i, j)~
1 if (i,j)[A
0 otherwise:

�
ð5Þ

For each protein i[T , let p(i)~
X

j[T A(i, j), the total number

of proteins interacting with i in the PPI set, and let n be the median

value of p: Construct a stochastic transition matrix P with matrix

elements

P(i, j)~
A(i, j)

p(i) _ n
ð6Þ

and define the operator Gb by

Gb~( {bP){1, ð7Þ

where 0ƒbv1 and denotes the identity operator. Since the

matrix P is stochastic, (bP)n?0 as n??. Thus the operator Gb is

well defined. For a complex u and protein i, let

Hb(u,i)~
X
j[T

wu(j)Gb(j,i), ð8Þ

and let

Fb(i,u)~
X
k[Eu

Gb(i,k)
1{b

c(k) _ m
: ð9Þ

Then, the information flow weight function yu,b is defined by

yu,b(i)~
m

1{b
ISu (i)Hb(u,i)Fb(i,u) ð10Þ

~ISu (i)
X
j[T

X
k[Eu

wu(j)Gb(j,i)Gb(i,k) 1 ^ m

c(k)

� �
: ð11Þ

Information flow weights can be interpreted in the context of

the channel model of network information flow from [29].

Conceptually, we form an undirected network consisting of two

types of nodes: complexes and proteins (Fig. 1). Each protein in the

network is linked to each complex it belongs to, as well as to each

of its interaction partners in the PPI set. To characterize a complex

u, we place random walkers on the network nodes corresponding

to its protein members, and allow each walker to wander through

the network in discrete steps. The number of walkers initially

placed on the protein node i is proportional to wu(i): At each step,

a walker either moves to another protein node with the probability

b, or moves to a possibly different complex node with the

probability 1{b and terminates. Since a random walk is a

stochastic process, and each walk proceeds independently, we

evaluate the cumulative behavior of infinitely many walkers

following the same rules. The operator Gb is known as the Green’s

function or the fundamental matrix [30]. For two protein nodes i

and j, the value of Gb(i,j), provides the expected number of visits

to j by a random walker originating at i: Hence, the value of

Hb(u,i) gives the expected number of visits of the protein node i by

all random walkers associated with u before they terminate [31].

Each walker visits at least one member of u: its initial point.

Depending on the direct protein-protein links and the parameter

b, it may visit additional members of u or move outside of u: To

ensure that only the visits of the walkers that terminate at the u-

node count towards the final weights of proteins, Hb(u,i) is

multiplied by Fb(i,u), which can be interpreted as the probability

that a walker at i eventually terminates at u [29,31]. To do so, the
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walker must first reach a node j corresponding to a protein

member of u and then jump to u. The probability of this jump is

(1{b)=(c(j) _ m), where the expression c(j) _ m gives the adjusted

number of complexes containing j: To avoid the situation where

the proteins present in very few complexes carry excessive weights,

all proteins are assumed to belong to at least m complexes. In a

similar fashion, the parameter n ensures that the probability of a

protein-to-protein jump is at most b=n: Therefore, the expression

Hb(u,i)Fb(i,u) in (10) evaluates the expected number of walkers,

originating at the members of u and terminating at the u-node in

the adjusted protein-complex network, that visit protein node i:
The m=(1{b) factor in (10) ensures that yu,b and xu have the same

scale, while ISu
(i) sets the value for all non-members of u to 0:

Since yu,0~xu, the adjusted weights can be interpreted as

information flow weights without the contribution of the PPI set.

In general, the value of b indicates the relative importance of

direct binary interaction evidences from the PPI set compared to

evidences for complexes from the PC set. For small b, the final

information flow weights are close to adjusted weights. When b is

large (0:9vbv1), the final weights mostly depend on the direct

protein-protein interactions. The value of b can be related to the

average time ti(b) that a random walker originating at i[T spends

in the network before terminating [30]:

ti(b)~
X
j[T

Gb(i, j): ð12Þ

One can easily show that ti(b) monotonically increases for

0ƒbv1 and that for b~0 only the initial node is visited before

termination so that ti(0)~1 for every protein i. To facilitate

consistent interpretation of the information flow weights in

different species, we set the value of b to correspond to a specified

average time t̂t of the walk for a walker randomly placed at an

initial protein node. To do so, we define t(b)~
X

i[T ti(b)=DT D
and solve the equation t(b)~t̂t for b using Newton’s method.

Construction of a hierarchy
Here we describe the procedure for constructing a hierarchy

that treats a protein weight function as an input parameter. Each

protein weighting scheme results in a different final hierarchy.

Similarity measure between complexes. For a complex u,

let fu denote an arbitrary weight function associated with u (i.e.

either wu, xu or yu,b). The similarity of two complexes u and v,

denoted s(u,v), is defined by

s(u,v)~
X
i[T

fu(i) ^ fv(i),: ð13Þ

The rationale for s is that it generalizes the size of set

intersections. If u and v are each associated with a single evidence,

fu~wu, and fv~wv, (13) becomes

s(u,v)~DSu\SvD: ð14Þ

In general, the weights of proteins can vary significantly, both

within and between complexes. Hence, it is more robust to

compare the weight of each protein relative to the total weights of

complexes (self-similarities), rather than absolutely. Define the

relative distance measure D between complexes u and v by

D(u,v)~1{
s(u,v)

s(u,u)
: ð15Þ

Clearly, 0ƒD(u,v)ƒ1: D is an asymmetric distance measure,

and D(u,v)=D(v,u) unless s(u,u)~s(v,v): Note that D does not

satisfy the triangle inequality. By construction of D, D(u,v)~0 is

equivalent to fu(i)ƒfv(i) for each protein i (v dominates u). If all

identical complexes are treated as one unit, it can be shown that

the relation [ between complexes, defined by u[v D(u,v)~0

[ on the set of

Figure 1. Obtaining information flow weights. We first construct a protein-complex graph where each complex is linked to its members (A).
The hexagonal nodes labelled with upper case letters here denote complexes, while the circular nodes labelled with lower case letters denote
proteins. The grey edges represent memberships of proteins within complexes, while red edges are direct protein-protein interactions. For each
protein member of a given complex (complex C used here as an example), we evaluate its number of visits under our model (B). The numbers of
visits (multiplied by 100) are shown on the protein nodes and also indicated by color (darker means larger values). The computed numbers of visits
for all proteins constitute the ITM weight functions (C), which are used to construct the DAG. The values are multiplied by 100. This example uses
b~0:85 m~2 and n~3. Note that the weights for proteins b and d are smaller in the complex C than in B, because B also includes their direct
interaction partner a. Also observe that the proteins b and f are downweighted because they belong to 4 complexes while m is set to 2.
doi:10.1371/journal.pone.0100098.g001
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order naturally corresponds to a transitively closed DAG, where

two elements are linked by a directed edge if they are related

under the partial order.

Relationship graph. Although the partial order [ provides

a desirable mathematical structure for investigating sub-part

relationships, it is not sufficiently flexible to be directly applied

to experimentally determined protein complexes. From a practical

point of view, it is appropriate to consider u a subunit or a

subcomplex of v even when D(u,v) is greater than zero but still

small. For example, due to experimental uncertainties, u might be

totally covered by v except for a single protein with a low weight.

Given a set of complexes K and a parameter 0ƒav1, we

construct a directed graph C~(K,E) where

(u,v)[E D(u,v)ƒa: ð16Þ

The graph C captures approximate part-of relationships

between complexes. For a~0, it corresponds to the partial order

[ and hence is a transitively closed DAG. For aw0, C need not

be transitively closed and it may contain cycles. In particular, there

may be cases where both D(u,v)ƒa and D(v,u)ƒa, leading to a

double (bi-directional) edge between u and v in C: However,

Proposition 1 below indicates that C is always acyclic if it does not

have bi-directional edges.

Proposition 1. Let C~(K,E) be a directed graph where for u,v[K,

(u,v)[E if and only if D(u,v)ƒa for some 0vav1: Suppose that for any

u,v[K, (u,v)[E implies (v,u) 6 [E: Then, C contains no cycles.

Proof. Let u1,u2, . . . um be a sequence of points in K such that

(ui,uiz1)[E for all 1ƒivm, and suppose that it forms a cycle, that

is, u1~um: By our assumption, for all 1ƒivm, (uiz1,ui) 6 [E,
implying D(ui,uiz1)ƒavD(uiz1,ui): Hence, by (15), s(ui,ui)v
s(uiz1,uiz1) for all 1ƒivm implying s(u1,u1)vs(um,um): There-

fore, u1=um, contradicting the claim that u1,u2, . . . um forms a

cycle.

Iterative clustering of similar complexes. For small a, it is

reasonable to treat two complexes u, v[K such that

R(u,v)~D(u,v) _D(v,u)ƒa as equivalent, that is, as representa-

tives of the same biological entity. Clustering such equivalent

evidences for complexes produces a more informative hierarchy

and at the same time leads to an acyclic graph by Proposition 1.

To ensure that no equivalent complexes up to a remain, we

employ an iterative heuristic procedure that resembles hierarchical

(agglomerative) clustering. Each protein complex node in the

initial set K0 consists of all records sharing the same publication,

experimental method and bait. The first clustering step involves

merging all initial complexes that have identical support weights to

form the non-redundant set K1: At each subsequent step, all pairwise

distances between any two nodes are computed (or transferred

from the previous step), and the two closest complexes according

to the symmetrized distance R are replaced with a single node

associated with the union of their evidences. Aggregating evidence

sets Eu and Ev changes the weights of evidences in Eu

S
Ev, hence

changing the adjusted weights and information flow weights of

proteins belonging to Eu

S
: Therefore, for complexes containing

proteins within Eu

S
, their mutual distances and their distances

to all other nodes are now affected. Consequently, all the affected

pairwise distances need to be re-computed prior to next

aggregation. The procedure terminates when no pairwise R-

distances smaller than a remain.

Interpretation of complex hierarchies
Filtering complexes with small effective size. Since this

investigation focuses on the large heteromeric complexes, the

initial PC set includes only the evidences for complexes containing

at least four proteins. However, using adjusted and information

flow weights allows us to identify nominally large complexes that

contain many of the common proteins and hence have a small

effective size. For example, a four-subunit complex may contain

three very common chaperones and one other protein and hence

behave like a single-member complex with respect to the distance

D used to construct the hierarchy. To remove spurious links within

the hierarchy, it is desirable to remove from consideration such

nodes prior to further analysis. For a complex node u, we measure

its effective size using the participation ratio p(fu) [31] of its weight

function fu

p(fu)~

X
j[T f 2

u (i)

X
k[T fu(i)

� �2
: ð17Þ

All nodes with the participation ratio (effective size) smaller than

2:5 were removed from each hierarchy and considered separately.

A complex of effective size smaller that 2.5 reflects more of the

nature of binary interactions or a single protein.

Comparison of final DAGs constructed using different

weighting schemes. The hierarchies obtained using our

algorithm above contain different nodes and edges depending on

the type of the weight function used and the value of a. Hence, we

compare DAGs from the same species by converting them to

directed graphs over the non-redundant set K1, which is

independent of the weight function used. Any merged complex

node u is expanded into its constituent non-redundant nodes

u1,u2, . . ., that are all linked pairwise via directed links in both

directions. Each link u?v in the final hierarchy is expanded into

links u1?v1,u2?v1,u1?v2 . . . between the constituent non-

redundant nodes. Then, comparison between two directed graphs

(K1,E1) and (K1,E2) reduces to the comparison of the edge sets E1

and E2 to discover matching and mismatching edges.

Enrichment analysis of complexes and components. We

ascribed biological interpretation to the individual complexes and

connected components of the constructed hierarchies through

functional enrichment analysis based on the Gene Ontology (GO)

[32,33]. Each GO term annotates one or more proteins with a

description of a biological process, cellular location or molecular

function. To compute enrichment statistics, we used SaddleSum

[34,35], a tool we developed earlier. Given a set of weights over

proteins, SaddleSum scores each GO term with the sum of the

weights corresponding to its annotated proteins. It then estimates,

depending on the number of genes involved, the P-value for that

score by using the saddlepoint approximation [36] to the empirical

distribution function derived from all weights. We consider a term

significant if the E-value (the Bonferroni corrected P-value) for its

score is smaller than 0.01. When we considered individual

complexes (DAG nodes), we assigned to each protein its support

weight. When we considered connected components (sets of

nodes), we assigned to each protein the average support weight

over all nodes within the component. Using weights allows us to

take into account the representation of each protein within each

node or component so that the proteins that occur in relatively few

evidences have reduced influence on the enrichment results.
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Results

Initial datasets
Using the procedure described above, we first extracted from a

recent edition of iRefIndex the datasets of protein complexes and

direct interactions in human (Homo sapiens) and yeast (Saccharomyces

cerevisiae). These two species account for the overwhelming

majority of available evidences of multimeric protein complexes.

The summary of initial data sets is shown in Table 1. Overall, the

yeast dataset contains more evidences for complexes but fewer

reporting publications. Strikingly, most of the evidences in yeast

come from very few high-throughput publications [37–41] (Table

S1): the top ten most prolific publications in yeast account for 70%

of reported complexes, in contrast to only 16% in human. The

human dataset contains more participating proteins and more

direct interactions, but the rise in binary interactions does not

correspond to the rise in the number of proteins, making it sparser

relative to yeast.

The most common proteins in yeast complexes (Table S2)

include mostly chaperones, as well as cytoskeletal proteins (actin

and tubulin), DNA helicase and a histone protein (HHF1). Due to

their function, chaperones are naturally ‘sticky’ and associate with

a large variety of proteins. Hence, it is not surprising that they

would be found in many evidences for complexes. However, it

should be noted that their prevalence is also a result of publication

bias: the study of Gong et al. [37], the largest contributing

publication for yeast, is exclusively concerned with chaperones. It

uses all proteins as baits but only chaperones are considered as

prey. The list of the most abundant proteins in human complexes

(Table S3) is more varied. Apart from expected universal proteins

such as chaperones and ubiquitin with associated ligases, it also

contains the members of NuRD and SWI/SNF chromatin

remodeling complexes, RNA polymerase, DNA ligases and

helicases and the well studied p53 protein. Thus, the research

bias is even more evident in the human dataset.

Comparing protein weighting schemes
For both investigated species, we constructed three hierarchy

DAGs using each of the three protein weighting schemes: support

(code P), adjusted (code A), and information flow (code N4, where

4 indicates that on average four steps for random walks are allowed

before termination). The parameter a was set to 0.15, allowing

embedding under support weights if approximately one seventh

(1=7&0:15) of the proteins or fewer do not match. Our choice of a

noise tolerance level at 15% was inspired by the PageRank

algorithm [42]. This algorithm, evaluating the importance of web

pages, typically propagates 85% of each page’s rank forward,

indicating an intrinsic uncertainty at 15% level, which we

followed. Each DAG is referred to by concatenating an

abbreviation of a species’ name (sce for yeast, hsa for human)

with a weighting scheme code. For example, the DAG based on

the human dataset with supporting weights is labeled hsaP. In

addition to these three types of DAGs, for each species we

generated a DAG based on support weights and a~0 (code Z).

This graph serves as a baseline for all three methods since its nodes

are exactly the non-redundant (unique) complexes and each of its

edges (with minor exceptions due to merging patterns) is contained

in all other DAGs.

We estimated the parameters m, n and b for the information

flow weights from the initial datasets (Fig. 2). Due to abundance of

common proteins in yeast and sparsity of the human dataset, the

value of m differs significantly between the two (57 against 17).

However, the common proteins have comparable weights in both

datasets (Tables S2 and S3). In both cases, a relatively small

proportion of proteins participates in more than m complexes and

is thus down-weighted: 8.2% in yeast (344/4195) and 13.5% in

human (918/6790). On the other hand, the value of the parameter

b, obtained by allowing on average four steps for random walks

before termination, is very similar in both cases (0.84 for yeast and

0.85 for human). Although the networks of direct interactions in

two species have very different global properties (Table 1), using

the pseudocount parameter n ensures that their curves in Fig. 2B

are very close to each other.

Overall, all three weighting schemes produce DAGs with similar

numbers and types of nodes (Fig. 3A), with the main differences

arising from using filtering based on participation ratios for A and

N4 schemes, and from different merging patterns for similar nodes

(Fig. 3B). The final DAGs contain significant numbers of isolated

nodes, with a larger proportion in human. Of the nodes that are

connected, the number of inner nodes is in all cases smaller than

the number of either maxima (nodes with only incoming edges) or

minima (nodes with only outgoing edges). However, many of the

inner nodes contain merged identical or similar evidences (Fig. 3B).

The number of edges varies more, particularly in yeast (Fig. 3C).

When filtered and merged nodes are taken into account, the

number of edges increases with the amount of information used (Z

v P v A v N4). The number of edges is in all cases much

smaller in yeast than in human, both as an absolute number and

with respect to the number of connected nodes. The sets of non-

redundant edges, that is, induced relationships between non-

redundant nodes, significantly overlap between P, A, and N4

schemes (Fig. 3C). However, most of the overlap is due to

embeddings without any difference in protein composition, which

are present in the Z scheme. When such cases are removed from

consideration (Fig. 3D), it can be seen that while the overlap is still

significant, the full information flow scheme (N4) provides a

significant number of edges not established by other schemes. This

effect is more pronounced in yeast than in human. However, there

Table 1. Initial Datasets of Complexes and Direct Interactions.

Species Complexes Direct Interactions

evidences unique proteins publications m pairs proteins publications n

S. cerevisiae 9493 8754 4539 1560 57 20697 4950 3250 4

H. sapiens 7106 6153 7508 3366 17 34758 9451 11919 3

For protein complexes (PC set), the table shows the numbers of total evidences containing four or more proteins, compositionally unique (non-redundant) complexes,
participating proteins and reporting publications. The parameter m (see Methods and Fig. 2) is derived from the distribution of the number of complexes per protein. For
direct interactions, the table shows the numbers of total pairs, participating proteins and reporting publications. Note that a publication may report both pull down
experiments and direct interactions. The final column presents the parameter n, the median number of direct interactions per protein.
doi:10.1371/journal.pone.0100098.t001
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is also a non-negligible amount of relationships provided by the P

scheme that do not hold under information flow weights. To

qualitatively compare the differences in embeddings based on

support and information flow weights, we investigated their

conflicts on a case-by-case basis. Fig. 4 shows six selected examples

drawn using Cytoscape [43]. Information flow scheme sharpens

the cores of complexes by both strongly down-weighting extremely

common members and by strengthening the ones linked through

direct interactions (Fig. 4A–C). The latter feature distinguishes the

proteins that are common but appear consistently together from

the true ‘sticky’ ones, which occur almost randomly, and leads to

relationships that cannot be established using adjusted weights. On

the other hand, the majority of instances where embeddings occur

under support but not under information flow weights, such as in

Fig. 4D–F, arise between two functionally unrelated complexes. In

yeast, many of such examples are from the Gong et al. [37] study,

where two dissimilar bait proteins share the same set of chaperones

(Fig. 4D). Another potentially noise-causing scenario shared by

both yeast and human is when two different transcriptional

regulators are attached to the same common machinery, such as

the NuRD chromatin remodeling complex shown in Fig. 4E. By

preventing establishment of relationships between such complexes,

the information flow scheme distinguishes the ‘tool’ (a multifunc-

tional part of the complex), from the basic functional core, which

may be a single protein. The pattern from the examples in

Fig. 4D–F, where the weight of the bait protein causes the

embedding to fail under the N4 scheme, persists in a significant

number of cases (1631/2217 in yeast, 299/943 in human).

Topological features of the information flow hierarchies
Having shown in the previous section that the information flow

weights (N4 scheme) provide the most extensive and biologically

most sensible hierarchies, we will henceforth consider only sceN4

and hsaN4 as the representative hierarchies for yeast and human,

respectively. Here, we broadly examine some topological features

of these DAGs and their relation to biology.

Filtered and isolated nodes. As shown in Fig. 3A, the yeast

hierarchy contains a non-negligible number (1351/8023) of nodes

that are filtered due to very small effective size (participation ratio

smaller than 2.5). Most filtered evidences (99%) originate from

publications of Gong et al. [37], Gavin et al. [38] and Zhao et al.

[44]. A typical example involves a bait protein with regular weight

associated with a number of chaperones that are significantly

down-weighted. In contrast, the number of filtered nodes in the

human dataset is much smaller (157/5801) and no publication

reports more than six filtered evidences. A very small number of

removed nodes contains merged evidences (Fig. 3B).

Isolated nodes comprise 29% (2308/8023) of the entire

hierarchy in yeast and 55% (3198/5801) in human. While some

isolated nodes comprise merged evidences (Fig. 3B), the majority

are associated with a single reported complex. The largest

contributing publications provide most isolated nodes, both in

yeast and in human. It is notable that the vast majority of

evidences contributed by the largest human publications, such as

Havugimana et al. [28] and Ewing et al. [45], belong to isolated

nodes.

To investigate whether a node’s isolation can be explained by

plausible simple criteria, we compared the distributions of

participation ratios (effective complex sizes), proportions of

infrequent proteins and numbers of directed interactions per

protein for isolated and connected nodes in yeast and human

(Fig. 5). While the distributions indeed slightly differ, it is clear that

the isolated and connected groups cannot be separated using any

single criterion.

Figure 2. Estimating parameters for information flow weights from the initial datasets. A The parameter m is defined as the weighted
median number of complexes per protein: the proteins participating in more than m complexes account for 50% of the total ‘mass’ of all complexes.
Here each protein member is assumed to contribute a single unit of mass to a complex. B The parameter b and the average time a randomly placed
random walker spends in the protein-protein network are monotonically related. We set b so that the average random walk time is exactly 4 steps.
doi:10.1371/journal.pone.0100098.g002
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Figure 3. Comparison of complex hierarchies constructed using different protein weighting schemes. A Numbers of nodes. Each node
is classified as either filtered (removed due to very small participation ratio), isolated (not connected with any other node), maximum (has only
incoming edges), minimum (has only outgoing edges), and inner (has both incoming and outgoing edges). B Numbers of merged evidences. Each
node contains one or more original evidences for a protein complex. This chart shows the breakdown of evidences that belong to nodes with more
than one evidence, classified according to the type of the containing node. C Numbers of edges. For each DAG, shown are the numbers of total (left)
and expanded (right) edges. Expanded edges are obtained by expanding each node into its constituent non-redundant complexes and linking them
according to the links between the final nodes (see Methods). They are classified as ‘between nodes’, ‘within nodes’ or ‘filtered’ (either the source or
the destination node are filtered). D Overlaps between expanded edges for P, A, and N4 schemes. E Overlaps between expanded edges for P, A, and
N4 schemes, where the edges present in the baseline Z scheme are removed.
doi:10.1371/journal.pone.0100098.g003
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Connected nodes. We found 4364/8023 connected nodes in

yeast, and 2446/5801 in human. If the hierarchies are treated as

undirected graphs, where two complex nodes are linked if either

one is approximately a part of the other, they decompose into 420

connected components in yeast, and 360 in human. The

distribution of component sizes is very nonuniform. The largest

component contains 2807 nodes in yeast and 1031 in human,

while the remaining ones mostly encompass very few nodes (Fig. 6).

A summary of the components with ten or more nodes in yeast

and human are shown in Table S4 and S5, respectively. Based on

enrichment results, it appears that in both species most compo-

nents correspond either to a single complex or to few closely

related complexes. The clear exceptions are the largest compo-

nents in yeast and human, which cannot be characterized as a

whole, except that they mostly contain nuclear proteins.

The connectivity pattern of the final hierarchy provides a way to

describe the cellular compartmentalization of proteins from the

complex data. Every protein generates a subgraph of the DAG,

consisting of all nodes that contain the said protein. If the

generated subgraph mostly consists of isolated nodes, it is very

likely that the associations of the selected protein to these isolated

nodes are due to noise. On the other hand, if the generated

subgraph contains a relatively large set of related evidences, the

selected protein may be viewed as an integral member of a

persistent complex. This is often reflected by a relatively large set

of connected nodes.

As an example, consider the subgraph of the yeast DAG

induced by ELP3, a member protein of the transcriptional

elongator complex (Fig. 7A). It consists of 17 nodes, 10 of which

are connected together. The connectivity pattern of this compo-

nent, with two chains converging towards a central node, indicates

Figure 4. Examples of conflicting embeddings of complexes with respect to support and information flow weights. In each case a
‘smaller’ complex (X) embeds (?) into a ‘larger’ one (Y) under one model but not the other. Each panel shows the union of proteins from both
complexes linked by their direct interactions. Protein information flow weights are approximately indicated by the area of the corresponding nodes;
the support weights of all proteins are equal. Proteins present only in X are colored red, those present only in Y are colored blue, while those
belonging to both X and Y are displayed lightly colored. Top row (A, B, C) shows the cases where X ? Y under information flow but not under
support weights. A Members of the human Fanconi anaemia nuclear complex form a well-connected core of both X and Y. While Y contains an
additional member of the same complex (FANCC), X includes two chaperones and one cytoskeletal protein that have significantly smaller weights
than the shared core. Note that Y just fails to embed into X under a~0:15 because the weights of the core proteins are somewhat larger in Y than in
X due to interactions with FANCC not present in X. B Yeast TFIID complex is well-characterized through direct interactions. Hence, even though X
contains 11/20 sticky proteins (mostly chaperones), it still embeds into Y. C Different manifestations of the human DNA replication factor C retrieved
using the same bait protein. In this case both X ? Y and Y ? X, so X and Y would form a merged complex in the final hierarchy. Bottom row (D, E,
F) shows the cases where X ? Y under support weights but not under information flow weights. D Gong et al. [37] systematically studied
associations of yeast proteins with chaperones. In this case, X shares 6/7 proteins with B, which is sufficient for embedding under support weights.
However, the one excluded protein (ENO1) is the bait for X, which carries relatively large information flow weight. E Members of the NuRD nuclear
complex (light colored) are very common among evidences for human complexes and thus carry small information flow weights despite being well
connected. Here, they appear as preys to transcription factor ZEB2 and multifunctional peptidase PARK7, which need not be very closely functionally
related. F Yeast TRX1 and TRX2 are highly homologous isoenzymes that form a part of the cytoplasmic thioredoxin system. Although they share the
same binding partners, they do not appear together in a complex and thus it is not appropriate to consider X a part of Y.
doi:10.1371/journal.pone.0100098.g004
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two separate assembly attracting centers that eventually merge

into a stable core. Biologically, this suggests the existence of two

distinct sub-complexes of the core elongator complex. Although

this finding was first mentioned by Krogan and Greenblatt [46], it

is strongly supported by numerous pull-down results from other

publications in addition to theirs. The most central node of the

component (the inner node linked to two maxima) represents the

most comprehensive instance of the elongator complex. It contains

eight proteins (IKI3, ELP2, ELP3, ELP4, IKI1, ELP6, KTI12,

HRR25). Five out of seven nodes that are not connected to the

main component contain exactly one of the two sub-complexes

(IKI3, ELP2, ELP3). If three-member complexes were not filtered

out from our dataset and this sub-complex was present, the

connected component in this example would include most of the

nodes containing ELP3.

The subgraph generated by human RPTOR protein (Fig. 7B)

offers a different perspective. In this case, we observe two

connected components and numerous isolated nodes, suggesting

possible multiple biological functions of that protein. The GO

annotation of RPTOR shows agreement with this observation.

RPTOR is annotated as involved in the TOR signaling cascade,

insulin receptor signaling pathway, cellular response to nutrient

levels and cellular response to amino acid stimulus. We find that

the larger component consists of complexes enriched for TOR

signaling cascade, while the ones found in the smaller one are also

enriched for insulin receptor signaling pathway. One of the

isolated nodes is strongly enriched for cellular response to amino

acid stimulus.

In contrast to the above two examples, the subgraph of the yeast

GSY2 protein is almost completely disconnected. Given that the

enzyme GSY2 is a glycogen synthase, which has an important

metabolic role, this almost disconnected topological pattern is not

surprising. In fact, we could not find any documented stable

associations of GSY2.

Discussion

An important step in our methodology is the filtering of

complexes of small sizes that are most susceptible to accidental

associations or false negatives. By restricting to complexes of size

four or more (although effective size may be only 3), we are

dropping some possibly noisy connections but do not lose the

essential information. Coincidentally, this heuristic largely removes

in yeast a large number of complexes, each made of chaperones

and few other proteins, reported by Gong et al. in their high-

throughput study concentrating on chaperone-protein interactions

Figure 5. Comparison of empirical distributions of selected features of isolated and connected nodes. Each plot shows two histograms
of empirical probability density functions for a node feature, one for isolated and one for connected nodes. Top row (A, B, C) shows features in yeast,
bottom (D, E, F) in human. Features: participation ratio (effective complex size derived from protein weights –A, D), proportion of proteins
occurring in not more than 4 complexes (B, E), and number of direct interactions per protein member (C, F).
doi:10.1371/journal.pone.0100098.g005
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[37]. Another important step employed is to merge almost

identical complexes. The reasons are twofold. First, due to

nonuniformity in complex sampling, some complexes might be

overly represented in comparison to others. This procedure allows

one to merge overly represented but basically identical complexes

to arrive at a more balanced representation. Second, the merging

procedure effectively reduces the noise level because it down-

weights occasional false protein associations and allows false

negatives in one association data to be rescued by other nearly

identical association data. However, we merge only complexes

that are nearly equivalent but keep embedding relationships

otherwise.

A DAG naturally emerges as a consequence of merging and

embedding based on our similarity scoring. In this DAG

construction, however, there are other important ingredients:

downweighting frequently seen proteins, limiting the influence of

proteins having few associations, and use of protein-protein

interactions to emphasize proteins with documented binary

interactions. Downweighting frequently binding proteins is not

new [40], and this on its own is insufficient for our purpose. To

avoid undue over emphasis on proteins with incomplete associ-

ation and interaction information, two truncation parameters n
and m are introduced. To utilize independent information from

PPIs, we also incorporated the ITM weights. The goal of ITM

Figure 6. Histograms of sizes of connected components (in DAG nodes) for yeast (A) and human (B). Only the components with fewer
than 30 nodes are shown. This excludes larger initial components (four in both yeast and human).
doi:10.1371/journal.pone.0100098.g006

Figure 7. Examples of subgraphs of complex hierarchies induced by proteins. Each panel shows a subgraph of the entire hierarchy induced
by the set of nodes containing a single selected protein. Each node’s size indicates the participation ratio for the corresponding weight function,
while its color indicates the topological type (see legend). An arrow linking two nodes indicates an approximately-part-of relationship. For clarity, only
the ‘direct’ links are shown, while the links that could be replaced by a sequence of two or more direct links were removed. A Yeast ELP3 protein; B
Human RPTOR protein; C Yeast GSY2 protein.
doi:10.1371/journal.pone.0100098.g007
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weights is to highlight the core proteins of each complex through

resonance effect which amplifies weights of tightly connected sets of

members. By considering only the walkers that both start and end

at a complex u, ITM weights measure the consistency of each

complex, emphasizing proteins that are infrequent or that have

many PPI links within the complex. The visits are scaled by wu

(support weight of a complex) to allow for different sizes of

complexes.

Although PPIs play an important role in our DAG construction,

it is worth pointing out that using PPI data alone may miss

important information that only get revealed via association data.

In Figure 4F, the two highly homologous isoenzymes TRX1 and

TRX2 share the same binding partners. Therefore, these two

proteins appear to be functional partners based on PPIs. The two

complexes, headed by either TRX1 and TRX2 along with their

interacting partners, are clearly distinct but carry the same

function. However, TRX1 and TRX2 never appear together in a

complex, indicating that it is inappropriate to treat them as

members of the same complex. The only way one can faithfully

retain the information that they never appear together is through

association data. This shows that complexes complement binary

interactions and properly combining them help in reducing

unwanted noise.

We also note that, in the finally constructed DAG, there are

many disconnected components. There are several possible

reasons for this. Since we are pooling information from published

data, the final collection is susceptible to sparsity of data, is

dependent on different experimental/biological conditions, and

may be biased towards tissue/disease-specific studies. Ideally, such

less uniform samplings of complexes (protein associations) might

be remedied by unbiased high-throughput approaches. Another

way to mitigate the sparsity and bias in the human dataset is to use

information obtained from mammalian models such as rat and

mouse. This, however, requires appropriate functional mappings

of orthologs, which is beyond the scope of the current study. As for

the case of yeast DAG where many high-throughput data are

employed, we still see many disconnected components. While this

may simply suggest functional modularity, the largest components

in both human and yeast DAGs, containing respectively more

than 1000 and 2000 interconnected complexes, do not fit this

picture. As shown in Table S4 and Table S5, these two largest

components are mainly enriched for nuclear proteins and both

evidently deserve further analyses.

The constructed DAGs can serve as a starting point (or a

scaffold) for other algorithms for other computational analyses.

Basing on published association data, these DAGs also form a

knowledge database of complexes. Our DAG construction also

offers a natural and well-balanced integration of complex data and

binary data. By combining the DAGs with binary interaction data

to form the underlying dataset for a network analysis tool, one can

arrive at a stronger hypothesis-forming and exploration tool than

that using only complexes data or binary data.
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35. Stojmirović A, Bliskovsky A, Yu YK (2012) CytoSaddleSum: a functional
enrichment analysis plugin for Cytoscape based on sum-of-weights scores.

Bioinformatics 28: 893–4.
36. Lugannani R, Rice S (1980) Saddle point approximation for the distribution of

the sum of independent random variables. Adv in Appl Probab 12: 475–490.

37. Gong Y, Kakihara Y, Krogan N, Greenblatt J, Emili A, et al. (2009) An atlas of
chaperone-protein interactions in Saccharomyces cerevisiae: implications to

protein folding pathways in the cell. Mol Syst Biol 5: 275.
38. Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, et al. (2006) Proteome

survey reveals modularity of the yeast cell machinery. Nature 440: 631–6.
39. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, et al. (2006) Global landscape

of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440: 637–

43.
40. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, et al. (2002) Systematic

identification of protein complexes in Saccharomyces cerevisiae by mass
spectrometry. Nature 415: 180–3.
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