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A B S T R A C T   

Traumatic brain injury (TBI) is a major cause of death and lifelong disability around the world that predomi-
nantly affects young and middle-aged people. Erythropoietin (EPO) is a promising therapeutic agent for a variety 
of neurological injuries including TBI due to its neuroprotective effects. Here we review the impact of exogenous 
erythropoietin administration on the expression of brain-derived neurotrophic factor (BDNF), stromal cell- 
derived factor-1 (SDF-1), and neuron-specific enolase (NSE) levels in cerebrospinal fluid after TBI as bio-
markers for neuron regeneration and survival to predict TBI outcome.   

1. Introduction 

The administration of erythropoietin (EPO) can positively impact the 
clinical outcome of patients with severe traumatic brain injury (TBI) [1, 
2]. This review discusses the possibility that the therapeutic effects of 
EPO may affect neurological function, neurological performance, and 
neurological recovery through the expression mechanisms of 
brain-derived neurotrophic factor (BDNF), stromal cell-derived factor-1 
(SDF-1), and neuron-specific enolase (NSE). 

TBI has a high prevalence worldwide and is one of the leading causes 
of disability in adults. TBI is accompanied by a series of biochemical and 
physiological changes that can cause additional damage to the neurons 
in the affected area [3,4]. Secondary injury is very important for neu-
rosurgeons as most of the treatment and intervention is carried out at 
this stage. The therapeutic interventions for primary injuries are very 
limited; however, secondary injuries can be curtailed to minimize the 
extent and severity of the brain injury [3,5]. 

Research over the last few years has established that erythropoietin 
(EPO) is a strong promoter of neuronal survival [6]. The administration 
of exogenous EPO in rodent trials provides neuroprotection after cere-
bral ischemia, TBI, and spinal cord injury. In vitro, EPO protects neurons 
from various models of neuron death due to apoptosis. Several 

mechanisms may mediate the neuroprotection conferred by EPO, 
including decreased levels of inflammation, activation of kinase path-
ways, and antiapoptotic genes. Systemically administered EPO can 
bypass the blood-brain barrier (BBB) and has been effective in stroke 
patients where EPO plays a protective role in the ischemic lesions of the 
brain and spinal cord [6,7]. 

BDNF is mediated by the high-affinity tyrosine kinase receptor 
(TrkB) to provide neuroprotection. Increased expression of TrkB mRNA 
has been detected at the injury site after TBI [8–10]. 

The second most common biomarker of brain injury is NSE. When 
released into the blood, it has a half-life of about 24 h in patients un-
affected by brain injury and up to 48 h in patients with brain injury. 
Recent reviews and meta-analyses highlight its role as an independent 
marker of functional outcome and mortality [11–13]. 

The third most prevalent biomarker of brain injury is SDF-1. An in-
crease in chemokine SDF-1α expression was observed within 24 h after 
nerve injury and persisted for up to 3 days before decreasing. Both in 
vitro and in vivo data suggest that a local increase in SDF-1α after nerve 
injury is generated by reactive astrocytes in the surrounding tissue. 
However, this relationship has not been fully elucidated in the context of 
TBI [14,15]. 

EPO represents a promising therapeutic agent that can be used in the 
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treatment of traumatic brain damage [16–18]. A single, high dose of 
exogenous EPO administered within a short interval of TBI may increase 
vascular endothelial growth factor (VEGF). EPO directly increases BDNF 
and SDF-1 expression. BDNF and SDF-1 are likely direct contributors to 
the angiogenesis and neurogenesis associated with brain repair and may 
reduce concertation of NSE in the cerebrospinal fluid - indirect mecha-
nisms underlying EPO’s efficacy. Moreover, when administered subcu-
taneously, EPO maintains the autoregulation of cerebral blood flow. 

2. Discussion 

As seen in Table 1, EPO given 6 h or less after TBI reduces brain 
damage and promotes functional recovery. The therapeutic time win-
dow may not be limited to the initial hours after TBI [19]. However, the 
effective therapeutic window, dosage, and dose intervals required for 
EPO to reduce brain injury and promote neuronal recovery after TBI 
have not been fully elucidated. In the aforementioned studies, the doses 
of EPO used to treat TBI were much higher than those used to correct 
anemia [20]. 

EPO is administered intravenously and intraperitoneally in high 
doses at short intervals in the hopes of providing a rapid and maximal 
effect on injuries that are assumed to be in the acute phase. The neu-
roprotective effects of systemic or intraperitoneal EPO suggest that a 
sufficient amount of exogenous EPO crosses the BBB to provide a direct 
neuroprotective effect, or exogenous EPO acts on the other side of the 
BBB and provides neuroprotection through indirect mechanisms [21]. 

EPO treatment increases BDNF and SDF-1 expression in animal 
model [37]. BDNF and SDF-1 help neurons survive and stimulate new 
growth and synapse formation [7]. EPO mobilizes BMSCs to lesion sites 
following TBI and enhances the anti-apoptotic effect of BMSCs by 
regulating SDF-1 expression [38]. NSE is a biomarker of acute brain 
damage (e.g., brain injury due to hypoxia, ischemia, and trauma to the 
central nervous system) found in the cerebrospinal fluid and blood due 
to the rupture of neuron cell membranes Although NSE is used to 
directly assess neuronal damage, it may also be involved in nerve repair 
mediated by EPO. NSE has been shown to control neuron survival, dif-
ferentiation, and neurite regeneration by activating the PI3K/Akt and 
MAPK/ERK signaling pathways [39]. 

Graham et al. found that EPO stimulates hematopoiesis and possesses 
neuroprotective and neurodegeneration effects through reducing 
apoptosis, relieving inflammation, dampening oxidative stress, and 
buffering excitotoxicity [40]. However, the impact of EPO therapy on 
mortality and long-term functional outcomes following severe TBI has 
yet to be determined as well as the optimal dose and duration of EPO 
therapy in patients with TBI [41]. Overall, these results indicate that 
EPO offers some neuroprotective effects and improves functional out-
comes in patients with severe TBI. Although there is some experimental 
evidence that the administration of erythropoiesis-stimulating agents in 
small animal models of TBI is associated with improved outcomes, there 
is little information about the impact of EPO on the outcomes of patients 
with severe TBI. Conducting large-scale clinical trials in this area re-
mains a challenge from both technical and ethical perspectives [24,42]. 
The EPO treatment group was treated with a daily dose of 100 units/kg 
(average 6000 units) EPO delivered by subcutaneous injection [42]. 

The previous study by Li et al. recommended delivered five doses (on 
day 1, 3, 6, 9, and 12 following severe traumatic brain injury in humans) 
at a daily dose of 100 units/kg EPO via subcutaneous injection in their 
study. This dosing regimen was linked to decreased serum biomarkers 
NSE and S-100β for brain lesions and improved functional recovery 
three months later after treatment [43]. 

3. Conclusion 

EPO has a direct neuroprotective effect and patients with traumatic 
brain damage who are given EPO have better outcomes. EPO is linked to 
lower levels of brain tissue injury indicators (BDNF, SDF-1, and NSE). 

Table 1 
Comparative studies vary based on dosage, administration time, and patient 
outcome.  

Author EPO dosage and administration Results or EPO activity 

Wu Y. et al. [22]. •Injection of EPO (1000 U/kg) 
Intravenously 

High doses of EPO given 
under hypothermia for 
hypoxic-ischemic 
encephalopathy can 
reduce magnetic 
resonance imaging brain 
injury and improve motor 
function. 

•in newborns aged 1, 2, 3, 5, 
and 7 days. 

Mahmood A. et al. 
[23]. 

•EPO injection (5000 U/kg) 
intraperitoneally. 

post-TBI (6 h or 24 h) 

•performed 6 or 24 h after TBI. significantly increased 
BDNF expression and 
improved spatial learning 
at 5 weeks after injury in 
mice. 

Xiong Y. et al. [24]. •rhEPO (5000 U/kg) was 
administered intraperitoneally 

rhEPO initiated 6 h post- 
TBI provides 
neuroprotection by 
reducing lesion volume as 
well as neurorestorative 
by increasing 
neurogenesis, then 
enhancing sensorimotor 
function and spatial 
learning. 

•at 6 h and 3 and 7 days post- 
TBI 

Viviani B. et al. 
[25]. 

•One dose 
intracerebroventricular (ICV) 
injection (100 U) 

rhEPO significantly 
increased BDNF mRNA 
after 1 h, further 
increased up to 4 h and 
18 h of rhEPO treatment. 
Thus, BDNF protein levels 
were significantly 
increased at 1 and 4 h 
then slightly decreased at 
18 h. 

•at 1, 4, and 18 h 

Rajabpour H. and 
Edalatmanesh 
MA [26]. 

•Subcutaneous injection of EPO 
in doses of 500, 1000, and 2000 
IU/kg until they are born in 
neonates 

A significant reduction 
was observed in spatial 
memory, EPO treatment 
improved spatial memory 
by increasing BDNF levels 
in the entorhinal cortex. 

Vinberg M. et al. 
[27]. 

•EPO injection (40,000 IU) 
intravenously 

EPO decreased regulated 
plasma BDNF levels in 
patients with treatment- 
resistant depression, 
whereas no effect was 
observed in patients with 
BD. 

•Every week for 8 weeks 

Schober ME. et al. 
[28]. 

•A single dose of 5000 U/kg Rh 
EPO is given intraperitoneally 

EPO improves cognitive 
outcomes in mice after 
controlled cortical impact 
as a result of increased 
neuronal survival via 
caspase-dependent 
inhibition of apoptosis 
earlier after injury. 

•at 1, 24, and 48 h after 
controlled cortical impact 
(CCI). 

Pei XM. et al. [29]. •EPO injection 200 IU/(kg.d) 
intravenously 

The serum NSE levels on 
the ninth day after birth 
were significantly lower 
than the first day after 
birth in neonates with 
hypoxic-ischemic 
encephalopathy. 

•from day 2 after birth to 7 days 

Li ZM. et al. [30]. •EPO injection at a daily dose of 
100 IU/kg (average 6000 IU) 
subcutaneously 

The serum protein levels 
of NSE and S100–B were 
lower in patients treated 
with EPO. These results 
suggest that EPO offers 
some neuroprotective 
effects and improves 
functional outcomes in 
patients with severe TBI. 

•on the first day (within 2 h), 
and a, 6, 9, and 12 days after 
admission. 

(continued on next page) 
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