
Article

Innate and Adaptive Immune Responses against
Bordetella pertussis and Pseudomonas aeruginosa in a
Murine Model of Mucosal Vaccination against
Respiratory Infection

Catherine B. Blackwood †, Emel Sen-Kilic † , Dylan T. Boehm, Jesse M. Hall,
Melinda E. Varney ‡, Ting Y. Wong, Shelby D. Bradford, Justin R. Bevere, William T. Witt,
F. Heath Damron and Mariette Barbier *

West Virginia University Vaccine Development Center, Department of Microbiology, Immunology and Cell
Biology, 64 Medical Center Drive, Morgantown, WV 26505, USA; cblackwo@mix.wvu.edu (C.B.B.);
emsen@mix.wvu.edu (E.S.-K.); boehmd@ohsu.edu (D.T.B.); jmh0059@mix.wvu.edu (J.M.H.);
varney31@marshall.edu (M.E.V.); twong4@mix.wvu.edu (T.Y.W.); sbradfo1@mix.wvu.edu (S.D.B.);
jubevere@hsc.wvu.edu (J.R.B.); william.witt@hsc.wvu.edu (W.T.W.); fdamron@hsc.wvu.edu (F.H.D.)
* Correspondence: mabarbier@hsc.wvu.edu
† The authors contributed equally.
‡ Current affiliation: Marshall University, Department of Pharmaceutical Science and Research, One John

Marshall Drive, Huntington, WV 25755, USA.

Received: 28 September 2020; Accepted: 28 October 2020; Published: 3 November 2020
����������
�������

Abstract: Whole cell vaccines are frequently the first generation of vaccines tested for pathogens
and can inform the design of subsequent acellular or subunit vaccines. For respiratory pathogens,
administration of vaccines at the mucosal surface can facilitate the generation of a localized mucosal
immune response. Here, we examined the innate and vaccine-induced immune responses to infection
by two respiratory pathogens: Bordetella pertussis and Pseudomonas aeruginosa. In a model of intranasal
administration of whole cell vaccines (WCVs) with the adjuvant curdlan, we examined local and
systemic immune responses following infection. These studies showed that intranasal vaccination
with a WCV led to a reduction of the bacterial burden in the airways of animals infected with the
respective pathogen. However, there were unique changes in the cytokines produced, cells recruited,
and inflammation at the site of infection. Both mucosal vaccinations induced antibodies that bind
the target pathogen, but linear regression and principal component analysis revealed that protection
from these pathogens is not solely related to antibody titer. Protection from P. aeruginosa correlated
to a reduction in lung weight, blood lymphocytes and neutrophils, and the cytokines IL-6, TNF-α,
KC/GRO, and IL-10, and promotion of serum IgG antibodies and the cytokine IFN-γ in the lung.
Protection from B. pertussis infection correlated strongly with increased anti-B-pertussis serum IgG
antibodies. These findings reveal valuable correlates of protection for mucosal vaccination that can
be used for further development of both B. pertussis and P. aeruginosa vaccines.

Keywords: vaccination; vaccine development; whooping cough; pneumonia; Pseudomonas aeruginosa;
Bordetella pertussis; whole cell vaccine; intranasal; mucosal

1. Introduction

Airway tissue, including nasal passages, throat, and lungs, are constantly exposed to bacterial,
viral, and fungal species in the air we breathe. As a result, respiratory infections are one of the leading
causes of death [1] and accounted for 1.3 million visits to the emergency room, 250,000 hospitalizations,
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and 50,000 deaths in the United States in 2017 [2,3]. Respiratory infection can be highly contagious and
spread easily within susceptible populations. In immunocompromised individuals and patients with
chronic health concerns such as cancer, chronic obstructive pulmonary disease, bronchiectasis, or cystic
fibrosis (CF), the risk and severity of respiratory disease is even higher [4]. To combat these infections,
medications such as antibiotics and antivirals can be used for treatment, or vaccines can be used as
preventatives. Over the last century, protection conferred by vaccination against respiratory diseases
such as diphtheria, pertussis, flu, pneumonia, or polio has decreased the burden of both bacterial and
viral respiratory infections and saved innumerable lives [5]. However, there are still pathogens for
which antibiotics are failing, and no vaccine is approved for clinical use.

Recently classified as an “ESKAPE” pathogen [6], Pseudomonas aeruginosa is a Gram-negative
bacterium causing difficult-to-treat infections. P. aeruginosa has a high intrinsic level of antibiotic
resistance and can survive in diverse environments and conditions [7]. This bacterium is a
common causal agent of hospital- and community-acquired pneumonia in individuals who are
immunocompromised or have the genetic disease CF [8,9]. The development of immunotherapies
such as vaccines or monoclonal antibody therapy for these patients would represent a step forward
in the prevention and treatment of P. aeruginosa infections and provide an answer where antibiotics
are failing [10]. For example, the vast majority of patients affected by CF suffer from intermittent
P. aeruginosa infections during their childhood and become chronically colonized by the time they reach
adolescence or adulthood [11,12]. P. aeruginosa is associated with chronic inflammation, tissue damage,
and increase in morbidity and mortality in these patients. Unfortunately, while extensive research has
been conducted in the field of vaccine development against P. aeruginosa, there is currently no vaccine
available. Therefore, it is of utmost importance to these at-risk populations that means of prevention,
rather than treatment, be developed.

Sometimes considered crude, whole cell vaccines (WCV) are often highly efficacious for the
prevention of infection by pathogens and are often the first generation of vaccines to be developed when
a pathogen emerges as a threat. WCVs are produced from cultured bacteria or viruses, either killed,
inactivated, or attenuated by treatments such as gamma irradiation, heat, or chemicals [13–17].
These preparations contain immunostimulatory endotoxin and a wide array of antigens. An example
of a successful WCV is one that prevents whooping cough, which is caused by the bacterium Bordetella
pertussis. B. pertussis is a respiratory pathogen that colonizes primarily the upper-respiratory airways
and is thought to be transmitted by aerosolization through cough. While the innate immune system is
involved in the initial control of B. pertussis during infection, complete clearance often depends on
the development of an adaptive immune response to the organism [18]. Pertussis WCVs (denoted
here as Bp-WCV) were originally developed in the 1940s and used in the US and Europe for most of
the second half of the 20th century before being replaced in the 1990s by less reactogenic acellular
vaccines [19]. These acellular vaccines induce a Th2 response and are protective against pertussis,
but the protection they provide quickly declines over time. As a result, countries in which acellular
pertussis vaccines were implemented are seeing a recrudescence in the number of cases since their
introduction [20]. In contrast to acellular vaccines, the protection provided by Bp-WCV lasts longer
and is associated with a Th1 or Th17 response [18,21,22]. Numerous studies in the field have provided
evidence that experimental pertussis vaccines that emulate the response triggered by Bp-WCV can
provide better protection than currently approved acellular pertussis vaccines [23,24].

The objective of our laboratory is to develop novel vaccines against the two respiratory pathogens
P. aeruginosa and B. pertussis. While the majority of vaccines approved for human use are administered
intramuscularly, we and others propose that administration routes that mimic the natural route of
infection lead to a localized and protective immune response [25,26]. In addition, we sought to induce
a strong Th17 response, important in development of immunity to mucosal pathogens, including both
P. aeruginosa and B. pertussis [27–30]. In this work, we studied the immune correlates of protection of
whole cell vaccines administered intranasally with the experimental adjuvant curdlan, in a murine
model of acute infection of B. pertussis or P. aeruginosa. Curdlan, a ß-1,3-glucan, is a polysaccharide that
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forms a gel-like substance and is capable of inducing a strong Th17 response [31,32]. We characterized
the adaptive immune response triggered by these vaccines and identified immunological signatures
and correlates of protection associated with whole cell vaccination.

2. Materials and Methods

2.1. Bacterial Strains and Growth

P. aeruginosa strain PAO1 was kindly provided by Dr. Michael L. Vasil (University of Colorado).
The PAO1 strain was grown on Pseudomonas Isolation Agar (PIA, Becton Dickinson) at 36 ◦C
overnight. Bacteria were then swabbed off the plate and resuspended in phosphate buffered saline
(PBS). The bacterial culture in PBS was centrifuged for 10 min at 1800 g and diluted with fresh PBS to
OD600 = 0.75 (equivalent of 3 × 109 Colony Forming Units (CFU)/mL) to be used for challenge unless
otherwise specified.

B. pertussis strain UT25 (UT25Sm1) was kindly provided by Dr. Sandra Armstrong (University of
Minnesota). B. pertussis was grown first on Bordet-Gengou (BG) agar (Remel) [33] supplemented with
15% defibrinated sheep blood (Hemostat Laboratories) for 2 days at 36 ◦C. Bacteria were then swabbed
off the plate, resuspended in Stainer Scholte medium (SSM) [34] and incubated at 36 ◦C under constant
shaking until reaching OD600 = 0.6. Bacteria were then diluted to OD600 = 0.3 in SSM (equivalent to
109 CFU/mL) before being used for challenge.

2.2. Vaccine Preparation

The bacteria present in the whole cell P. aeruginosa vaccine (Pa-WCV) were grown as described
above. This suspension was then heat-inactivated by treating the cells for 1 h at 60 ◦C. Pa-WCV vaccine
was prepared in 20 µL suspension containing 109 CFU/mL heat-killed P. aeruginosa PAO1 and 200 µg of
curdlan (Invivogen) in PBS.

The World Health Organization (WHO) standard whole cell B. pertussis vaccine (Bp-WCV) was
acquired from the National Institute for Biomedical Standards and Control (NIBSC). This vaccine was
diluted to 1/12th of a human dose and supplemented with 200 µg of curdlan in PBS in a final volume
of 20 µL before being administered to mice as Bp-WCV.

2.3. Vaccination with B. pertussis and P. aeruginosa Whole Cell Vaccines, Bacterial Challenge, and Euthanasia

In all experimental groups, 6-week-old outbred female CD1 mice (Charles River, Frederick, MD,
USA) were used. Mice were anesthetized by intraperitoneal injection (IP) of 0.2 mL of ketamine
(7.7 mg/mL) and xylazine (0.77 mg/mL) in 0.9% NaCl. Mice were immunized intranasally with adjuvant
only (200 µg of curdlan in PBS), Bp-WCV, or Pa-WCV at day 0 followed by a booster of the same
vaccine at day 21. A total of 34 days after the first vaccination, mice were challenged with either live
P. aeruginosa or B. pertussis as described above in 20 µL of sterile PBS. The mice were euthanized at day
1 or 7 days post-infection by IP injection of 390 mg euthasol/kg in 0.9% NaCl. Immediately following
euthanasia, one day post-challenge, body temperature was measured by a non-invasive infrared
thermometer on the abdominal region [35,36]. The lung and spleen of each mouse were aseptically
removed and weighed prior to processing, as described below.

2.4. Detection of Bacterial Load

To determine bacterial loads in the airways post-euthanasia, nasal washes (NW) were collected by
flushing the nasal cavity with 1 mL sterile PBS. Lung samples were homogenized with a 7 mL Dounce
homogenizer (VWR, Corning Pyrex Pestle) in 1 mL PBS. The lung samples and NW of each mouse
were serially diluted and plated on PIA plates if infected with P. aeruginosa, or BG agar if infected with
B. pertussis, to determine viable bacterial burden.
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2.5. Histology

To perform histology, the lung from vaccinated and 1-day post-challenge mice were cannulated
and 1 mL of 4% weight/volume (w/v) paraformaldehyde (Thermo Fisher Scientific, MA, USA) was
injected to the lungs. Samples were then fixed for 48 h in 10 volumes of 4% w/v paraformaldehyde.
Hematoxylin and eosin staining (H & E) was performed by the West Virginia University Pathology
Laboratory for Translational Medicine. Slides were imaged at 20× and 100×magnification on EVOS
XL Cell Imaging System (Thermo Fisher Scientific, Waltham, MA, USA).

2.6. Hematology

Hematological analysis was performed using a Hemavet 950FS Veterinary Multi-Species
Hematology System (Drew Scientific, Miami Lakes, FL, USA). The equipment was calibrated before
each experiment using mouse blood standards (Drew Scientific, FL, USA). Blood samples isolated
via cardiac puncture were placed in Microtainer blood collection tubes coated with K2EDTA (Becton,
Dickinson and Company, Franklin Lakes, NJ, USA), shaken, and kept at 4 ◦C until analysis. Total white
blood cells, neutrophils, lymphocytes, and monocytes were quantified using the Hemavet 950 FS.

2.7. Flow Cytometry Analysis

After harvesting the organs at day 1 post-challenge, the lungs were homogenized as described
above. The homogenized samples were strained for separation through a 100 µm cell strainer and
centrifuged at 1000× g for 5 min. The cell pellets were resuspended in 1 mL of red blood cell lysis buffer
BD Pharm Lyse (BD Biosciences, San Jose, NJ, USA) and incubated at 37 ◦C for 2 min. After lysing
red blood cells, the samples were centrifuged and resuspended in PBS with 1% fetal bovine serum
(FBS) and incubated for 15 min on ice. Cells were incubated with the cocktail of fluorescently labeled
antibodies (Supplementary Materials, Table S1) for 1 h at 4 ◦C in the dark. The samples were then
pelleted, resuspended in 500 µL of PBS, and processed on the BD LSR Fortessa in the West Virginia
University Flow Cytometry & Single Cell Core Facility. The analysis was performed using FlowJo
version 10.3 (FlowJo, Becton, Dickinson and Company, NJ, USA).

Seven days post-challenge, the splenocytes were Dounce homogenized and strained with 100 µm
cell strainer. The strained splenocytes were stained with specific cell surface receptor and intracellular
transcription factor markers (Supplementary Materials, Table S2). The cell surface staining was
performed as described above. Then, the surface stained cells were centrifuged at 1000× g for 5 min and
resuspend in PBS. We used BD Pharmingen™ transcription factor buffer and protocol for intracellular
staining. Briefly, the cells were fixed and permeabilized with 1 mL of 1× Fix/Perm buffer for 50 min
at 4 ◦C. The cells were washed using 1 mL of 1× Perm/Wash buffer. After the wash, splenocytes
were stained for intracellular staining for 50 min at 4 ◦C in the dark. The splenocytes were then
pelleted, washed, and resuspended in 500 µL PBS. The flow cytometry analyses were performed as
described above.

2.8. Cytokine Analysis

Cytokine analysis performed on the lung homogenate supernatant, collected following
centrifugation of lung tissue homogenate at 14,000× g for 4 min. The supernatants were assayed at a
dilution of 1:5 and 1:300 to detect the presence of cytokines using the Meso Scale Discovery’s V-Plex
Plus Pro-Inflammatory Panel 1 mouse multiplex assay kit; interferon-gamma (IFN-γ), interleukin
(IL)-1β, IL-2, IL-4, IL-5, IL-6, KC-GRO, IL-10, IL-2p70, and TNF-α were detected. The IL-17 levels were
measured by using Meso Scale Discovery’s mouse IL-17 Ultra-Sensitive kit (Meso Scale Diagnostics,
MD, USA). Results were analyzed following the manufacturers guidelines.



Vaccines 2020, 8, 647 5 of 21

2.9. Serology

Serology was performed using enzyme linked immunosorbent assay (ELISA) to determine
pathogen-specific antibodies in blood serum and nasal wash in vaccinated mice. Blood isolated via
cardiac puncture at 1-day post-challenge was centrifuged at 14,000× g for 2 min and the supernatant
serum was saved. Pierce high-binding 96-well plates were coated with 50 µl either P. aeruginosa
(2 × 107 CFU/well) or B. pertussis (2 × 107 CFU/well) overnight at 4 ◦C, then washed three times with
200 µl of PBS-Tween 20 (PBS-T). Nasal wash was collected as described above. Following coating, plates
were blocked and incubated at 4 ◦C overnight and then washed three times with PBS-T. P. aeruginosa
coated plates were blocked using with 200 µL of 2% w/v Bovine Serum Albumin (BSA) in PBS and
B. pertussis coated plates were blocked with 5% w/v milk in PBS. Serum samples were loaded at a
dilution of 1:50 in blocking buffer and then serially diluted. Nasal wash was loaded without dilution.
The serum or nasal wash-coated plates were incubated 2 h at 37 ◦C, washed four times with PBS-T,
then detected with 100 µL 1:2000 anti-IgG, -IgM, or -IgA (Southern Biotech, Birmingham, AL, USA)
secondary antibodies conjugated to alkaline phosphatase. After one-hour incubation at 37 ◦C, each
well was washed five times with PBS-T and loaded with 100 µl Pierce p-Nitrophenyl Phosphate (PNPP)
solution (Thermo Fisher Scientific, MA, USA), developed in the dark at room temperature for 30 min,
and the optical density at 405 nm was determined using a SpectraMax® i3 plate reader (Molecular
Devices, San Jose, CA, USA). Titers were determined by selecting the highest dilution at which the
absorbance was twice as high as the absorbance of the negative control wells which had received no
serum prior to development [37–39]. The limit of detection for serum titers were 1:50. Values below
the limit of detection were represented with a value of one.

2.10. Statistics

Statistical analyses were done by using GraphPad Prism version 7 (GraphPad). The group
comparisons were analyzed by one-way ANOVA (analysis of variance) with Tukey’s
multiple-comparison test unless otherwise stated. Unpaired Student’s t-test was used for comparisons
of two samples. For cytokine analysis, multiple comparison analysis was done by using Kruskal Wallis
test with the Dunn’s multiple comparison test. For linear regression and principal component analysis
(PCA) of correlates of protection, only biological replicates for which all data points were available
were included in analysis. Heatmap was created using Heatmapper web tool [40]. PCA was performed
using the ClustVis web tool, and all data were normalized using a ln(x + 1) transformation [41].

2.11. Animal Care and Use

All the mice experiments were approved by West Virginia University Institutional Animal Care
and Use Committees (WVU-ACUC protocols 14-1211 and 1606003173) and done in accordance of
National Institutes of Health Guide for the care and use of laboratory animals.

3. Results

3.1. Whole Cell Intranasal Vaccination Against B. pertussis and P. aeruginosa Reduces Bacterial Colonization
Following Challenge

The design of efficacious vaccines against bacterial pathogens requires a thorough understanding
of both innate and adaptive immune responses to these pathogens. In this work, we studied the immune
correlates of protection of WCVs administered intranasally in a murine model of acute infection of
B. pertussis and P. aeruginosa. Vaccines were formulated with the adjuvant curdlan, which induces a
Th17 response [27,29,31,32]. This type of T cell response has been considered desirable within the field
for both pathogens [10,29,30,39]. Following intranasal vaccination and boost with WCV or adjuvant
only, mice were challenged with live bacteria, and the immune response to infection was assessed
one day post-challenge. We observed that mice vaccinated intranasally with WCVs had reduced
bacterial burden in the upper and lower respiratory tracts when challenged with either P. aeruginosa and
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B. pertussis, compared to their adjuvant-only-vaccinated counterparts (Figure 1A,B). We also observed
that the bacterial burden in the upper airway (nares) correlated with the burden in the lower respiratory
tract for both whole cell-immunized and adjuvant-only immunized animals (Figure 1C,D). Together,
these data highlight that whole cell vaccination effectively reduced bacterial burden in both models.
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Figure 1. Intranasal administration of whole cell vaccination against P. aeruginosa or B. pertussis
reduces bacterial burden in lung and nasal wash following challenge with each pathogen, respectively.
Sixteen hours post-challenge, nasal wash (A) and lung (B) bacterial burden in euthanized mice groups.
Each dot represents an individual mouse. Circles indicate infection with P. aeruginosa, squares indicate
infection with B. pertussis, black-filled indicates adjuvant-vaccinate, white-filled points indicate whole
cell immunized. The error bars represent the standard error of the mean (n = 6–10 per group).
The asterisks and brackets refer to statistical significance determined by ANOVA with Multiple
Comparisons: ** p ≤ 0.01; **** p ≤ 0.001. (C) and (D) Correlation of number of bacteria in nasal wash to
number of bacteria in lung, per each type of infection. Color filled points indicate adjuvant vaccinated
animals and white filled points indicate animals that had received whole cell vaccination. The R2 and
p values were calculated using linear regression analysis.

Following challenge, we observed that infection with P. aeruginosa was associated with a decrease
in body temperature within the first 16 h of infection (Figure 2). This reduction in body temperature
was not associated with the administration of curdlan as naïve mice (no vaccination nor adjuvant
administration) also display a decrease in body temperature after challenge with P. aeruginosa (data
not shown). While whole cell vaccination resulted in a reduction of the bacterial burden in the
airway, a significant reduction in body temperature was still observed in response to challenge with
P. aeruginosa (Figure 2). Decreases in body temperature are often associated with an acute response to
lipopolysaccharide (LPS) [36]. This hypothermic response was not observed in the case of vaccination
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and infection with B. pertussis (Figure 2), whose outer membrane contains lipooligosaccharide (LOS),
rather than LPS.
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3.2. Innate Immune Response in the Lung Following Vaccination and Challenge

After observing that P. aeruginosa and B. pertussis whole cell vaccination lead to a decrease in viable
bacteria in the airway following challenge, we sought to determine if this protection is associated with
a decrease in tissue inflammation. P. aeruginosa respiratory infections lead to immune cell and fluid
influx in the lung [42]. When we measured the wet weight of the lung post-challenge, we observed that
in the case of P. aeruginosa infection in adjuvant-only vaccinated and challenged mice, the lung weight
nearly doubled when compared to adjuvant-vaccinated non-challenged mice (Figure 3A). This severe
increase in lung weight was significantly reduced in Pa-WCV immunized, challenged mice (Figure 3A).
In comparison, B. pertussis infection in adjuvant or Bp-WCV vaccinated mice did not cause a significant
increase in lung weight (Figure 3A).

These observations led us to hypothesize that P. aeruginosa and B. pertussis challenge each lead to
the recruitment of different immune cell populations to the lung. To test this hypothesis, lungs from
vaccinated mice challenged with P. aeruginosa or B. pertussis were extracted one day post-infection,
fixed, stained with H & E, and sectioned for histological analysis. In the case of P. aeruginosa infections
in adjuvant-vaccinated and challenged mice, a large number of polymorphonuclear cells were observed
in the bronchi and as multiple foci in the alveoli (Figure 3B). P. aeruginosa challenged mice that had
received Pa-WCV showed a reduced presence of these cells in the alveoli but not in the bronchi.
A different pattern was observed in the B. pertussis challenged mice: polymorphonuclear cells were
observed to a much lesser extent and were diffusely located throughout the lung parenchyma in the
B. pertussis adjuvant vaccinated and challenged mice and Bp-WCV mice. Unlike our observations
during P. aeruginosa infections, the accumulation of these cells was not observed in the bronchi (data
not shown).
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To identify the cell types involved in the acute response observed by histology, we performed
flow cytometry on the lung tissue. While no significant changes were observed in the proportion of
CD3e+ CD4+ T cells or CD3e+ CD8+ T cells present in the lungs (data not shown), significant increases
in myeloid cells (CD11b+ GR-1+) were observed in the lung of mice challenged with P. aeruginosa
(Figure 3C). This population included primarily neutrophils (CD11b+ GR1high) and supports the
histological observations from Figure 3B. Overall, the data presented here show that P. aeruginosa
infections result in the recruitment of myeloid cells, and in particular neutrophils, to the lung during
the acute phase of infection. This influx of cells occurs in parallel with the observed increase in lung
weight and obstruction of the airways. While vaccination with Pa-WCV is able to decrease lung weight
and recruitment of cells in the lung, it does not alter the overall composition of innate immune cells
recruited to the lung. These effects were not seen in mice challenged with B. pertussis, in which little to
no increase in lung weight and myeloid cell recruitment was observed in the lung.

3.3. Leukocytosis Occurs During B. pertussis but Not P. aeruginosa Infection

To fight infection, immune cells are mobilized from the bone marrow and circulate in the
blood before reaching the site of infection [43]. This increase in circulating white blood cells (WBC),
is sometimes severe enough to be termed leukocytosis. Specifically during B. pertussis infections,
secreted pertussis toxin (PT) prevents innate immune cell chemotaxis to infected tissue, effectively
trapping cells in the circulatory system [44]. Leukocytosis can lead to the development of pulmonary
hypertension and respiratory failure, which are major causes of death for infants that contract the
disease [45]. To examine the role of each pathogen and WCV on the mobilization of WBC after infection,
we performed hematology on mice one day post-challenge. First, we observed that B. pertussis infection
in adjuvant-vaccinated animals resulted in an overall increase in the number of WBCs (Figure 4A),
corroborating the hallmark leukocytosis that occurs in infected humans [46]. We observed that
this change was due in large to increases in circulating neutrophils (p = 0.0099) and lymphocyte
populations in B. pertussis-infected mice, compared to non-challenged controls (Figure 4B). However,
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mice that had been administered Bp-WCV prior to challenge did not have significant leukocytosis
(Figure 4A), nor significantly more neutrophils than non-challenged mice (Figure 4B). Leukocytosis is
not typically used as a marker for disease severity during P. aeruginosa respiratory infection. We did
not observe changes in the total number of WBC in the adjuvant-only vaccinated or the Pa-WCV
P. aeruginosa infected mice (Figure 4A). There were, however, other observable shifts in the types
of WBC present. Challenged groups had a higher proportion of circulating neutrophils, compared
to adjuvant only vaccinated, and this was exacerbated in animals which had received the Pa-WCV
(p = 0.0055). The opposite occurred in the B. pertussis groups: adjuvant vaccinated and pertussis
challenged mice had higher levels of neutrophils (p = 0.009) in their blood compared to non-challenged.
We also observed a reduction of leukocytosis in mice that received Bp-WCV, and the level of circulating
WBC in these animals were similar to those of the non-challenged controls (p = 0.88) (Figure 4B).
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3.4. Vaccination Plays a Role in Modulating the Cytokine Response to B. pertussis but Not
P. aeruginosa Infection

The mobilization and recruitment of immune cells during infection is orchestrated by changes in
the levels of various signaling molecules such as cytokines and chemokines [43]. To gain insights into the
differences in signaling underlying the recruitment of myeloid cells in the lung observed and described
above, we performed cytokine analysis of the lung supernatant fluid one day post-infection using
MSD multiplex assays (Supplementary Materials, Table S3). The levels of these cytokines were then
summarized and represented as log fold changes relative to adjuvant-only vaccinated non-challenged
mice in Figure 5A. Overall, we observed that P. aeruginosa infection, regardless of vaccination status,
induced a relative increase in pro-inflammatory cytokines in the lung supernatant, when compared
to the non-challenged control. P. aeruginosa infection in adjuvant-only vaccinated animals led to
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significant increases in IL-6, IL-1β, KC/GRO, TNF-α, and IL-10 relative to the non-challenged control
(Figure 5B,C,E,H,I). IFN-γ was further increased in the Pa-WCV group, and IL-1β was also significantly
increased compared to adjuvant-only vaccinated non-challenged mice, which suggests a Th1 type
immune response is induced as a result of these infections. Interestingly, we observed a significant
reduction in IL-6 and KC-GRO levels in the Pa-WCV compared to the adjuvant vaccinated group
(Figure 5F,N).
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Figure 5. Cytokine and T cell response to infection following whole cell or adjuvant only vaccination.
Cytokines were quantified in the lung homogenate supernatant following challenge, using the Meso
Scale Discovery’s V-Plex Plus Pro-Inflammatory Panel 1 mouse multiplex assay kit, and Meso Scale
Discovery’s mouse IL-17 Ultra-Sensitive kit. (A) Heatmap showing the log (fold change) of cytokines
in each group compared to adjuvant-vaccinated non-challenged mice. Color represents an increase
(dark green) or decrease (light green). (B–J) Cytokines measured by multiplex assay. White bars
indicate the adjuvant vaccinated, non-challenged group; gold bars indicate the adjuvant vaccinated,
B. pertussis challenged group; gold bars with diagonal lines indicate the Bp-WCV group; blue bars
indicate adjuvant vaccinated, P. aeruginosa challenged group; and blue bars with diagonal lines indicate
the Pa-WCV group. Asterisks over bars indicate comparison to adjuvant vaccinated, non-challenged
group, and asterisks over brackets indicate comparisons between groups. Statistical significance
determined by ANOVA: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001.

When examining cytokine changes during B. pertussis infection, we observed that the overall
changes were less pronounced than those observed in the P. aeruginosa challenged groups (Figure 5A–J).
Rather than inducing a cytokine storm-like response, B. pertussis infection, with or without
immunization, caused a more specialized response. B. pertussis infection in adjuvant-vaccinated
mice induced modest but non-significant increases in IL-6, IL-1β, KC/GRO, IFN-γ, TNF-α, and IL-17,
compared to non-challenged mice. However, in mice which had received Bp-WCV, we observed a
significant increase in IL-1β in the Bp-WCV group compared to non-challenged mice. We observed a
non-significant increase in IL-17 in mice which had received Bp-WCV prior to challenge, compared to
those which had only received adjuvant (p = 0.063). A similar increase in IL-6 expression was observed
in the adjuvant-only vaccinated, challenged group, but partially mediated by Bp-WCV, suggesting that
IL-6 production is mainly triggered by infection with B. pertussis, consistent with previous findings [47].
In addition, levels of IL-6, KC/GRO, IFN-γ, IL-12, and TNF-αwere slightly reduced in the Bp-WCV group
compared to adjuvant-vaccinated B. pertussis challenged, indicating that vaccination helps decrease
the production of pro-inflammatory cytokines upon challenge. Additionally, while P. aeruginosa
challenge, regardless of the vaccine administered, was associated with a non-significant increase in
IL-17, Bp-WCV, not infection, was associated with increased IL-17. Overall, the data obtained indicate



Vaccines 2020, 8, 647 11 of 21

that both pathogens trigger very distinct cytokine responses upon infection with the B. pertussis
challenge associated with a Th1/17 response, while P. aeruginosa triggers a cytokine storm. In addition,
only the Bp-WCV, and not the Pa-WCV seemed to alleviate the pro-inflammatory cytokine response
associated with challenge.

3.5. Whole Cell Vaccination Increases CD4+ Th17+ Cells in Spleen One Week Post Infection

In addition to the recruitment of immune cells to the site of infection, cytokines play a major role
in the stimulation of the T cell response in secondary lymphoid organs, such as the spleen. In the
case of vaccination against B. pertussis and P. aeruginosa, it was particularly important to identify
whether a Th17 type immune response was induced, as this has been shown to be efficacious for these
pathogens [10,42,48]. To characterize the type of T cell response triggered by vaccination and challenge
against each of these pathogens, we performed flow cytometry on the splenocytes, isolated 7 days
post-challenge. We did not observe changes in the total numbers of T cells or subpopulations of CD4+ or
CD8+ T cells in any of the groups (Figure 6A). However, significant increases in the proportion of CD4+

Th17 cells were observed in both the Pa-WCV and Bp-WCV groups compared to the adjuvant vaccinated,
non-challenged group (Figure 6B). This data corroborates the increase in IL-17 observed one day
post-infection and supports the importance of Th17 responses to these pathogens following vaccination.
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Figure 6. Whole cell vaccination leads to increase in Th17 cell populations within splenic T cells.
(A) The frequency of CD4+ (CD3e+CD4+) or CD8+ (CD3e+CD8+) T cells in splenocytes at day 7
post-infection (n = 5–9 per group). (B) The proportion of Th17 cells (CD3e+CD4+RorγT+) within the
CD4+ T cell population. The asterisks indicate statistical significance determined by ANOVA: * p ≤ 0.05.

3.6. Correlates of Protection for B. pertussis and P. aeruginosa, Using Intranasal Whole Cell Vaccination as
Protective Model

Taken together, these data illustrate the striking differences between infection- and vaccine-induced
protection against the respiratory pathogens B. pertussis and P. aeruginosa. Infection by either of these
pathogens without prior vaccination led to severe disease. Vaccination was associated with a significant
decrease in bacterial burden in the airway for either pathogen and their respective vaccine, but the
immune components correlated with this protection were unique. Typically, serum antibody titers
are used as a correlate of protection in human studies [49]. In order to examine the immunoglobulins
produced following vaccination and challenge, ELISA were performed to detect whole bacteria
specific antibodies in the blood serum. In both Pa-WCV and Bp-WCV groups, we detected significant
production of bacteria-specific IgG and IgA in the serum against the respective pathogens (Figure 7).
These findings support that intranasal immunization can induce systemic immune responses to their
respective pathogens.
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serum IgG and IgA titers. (n = 5–12 per group) The asterisks indicate statistical significance determined
by ANOVA: * p ≤ 0.05, *** p ≤ 0.001.

To get a bigger picture of the immunological factors correlated with the reduction of bacterial
burden in the airway, we performed linear regression analyses of the factors described in Figures 2–7,
and correlated data by biological replicate to the bacterial burden in the lung (Figure 8A). The factors
significantly correlated with protection from P. aeruginosa infection were decreased lung weight,
increased blood neutrophils, decreased blood lymphocytes, increased serum IgG, decreased IL-6,
TNF-α, KC/GRO, and IL-10, and increased IFN-γ (Figure 8). Nearly all the cytokines measured had
positive correlation slopes, highlighting the cytokine storm observed in P. aeruginosa-infected animals,
regardless of whether or not they had received immunization. Mice protected from P. aeruginosa
infection produced P. aeruginosa-binding IgG and IgA, suggesting that the B cell response plays
an important role in fighting P. aeruginosa acute pneumonia infection. Looking into B. pertussis
correlates of protection, we observed that protection was significantly correlated to serum IgG antibody
titers (Figure 8A). Notably, protection from P. aeruginosa was correlated with a trending decrease
in most cytokines, but protective from B. pertussis infection was correlated with trends of increases
in cytokines. Finally, using a principal component analysis, we compared each of these groups
using all the immune factors shown in Figure 8A, to examine overall variance between vaccinated
groups (Figure 8B). This analysis indicates that mice within each group formed a distinct cluster.
The healthy, adjuvant-vaccinated, non-challenged mice formed a cluster distinct from any challenged
group. Upon challenge with either P. aeruginosa or B. pertussis, the clusters shifted and separated
from the healthy animal group. However, they did not shift in the same direction, indicating that
their differences are pathogen specific. With prior whole cell vaccination, the shift away from the
adjuvant-vaccinated non-challenged group was diminished, but not totally abrogated. Taken together,
the PCA shows that the impacts of infection are pathogen specific, as expected, and that whole cell
vaccination can change the overall profile of the response to infection.
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Figure 8. Measurement of correlates of protection. (A). Correlation of bacterial burden with measured
immune components after challenge with B. pertussis or P. aeruginosa (n = 4 per group). The R2 and
p values were calculated using linear regression analysis. A higher absolute value of R2 indicates that
the factor was strongly correlated with the bacterial burden. Positive slope (pink) indicates that an
increase in that factor was associated with higher bacterial loads, whereas a negative slope (green) shows
that the increase in that factor was associated with reduced bacterial burden. Asterisks overlaying the
heatmap indicate linear regression analysis result: * p ≤ 0.05, ** p ≤ 0.01, **** p ≤ 0.0001. (B). Principal
component analysis of measured immune components, with experimental groups shown by color.
Purple is adjuvant-vaccinated non-challenged, blue is adjuvant-vaccinated, B. pertussis challenged,
red is Bp-WCV, green is adjuvant-vaccinated, P. aeruginosa challenged, and orange is Pa-WCV.

4. Discussion

One of the best ways to prevent life-threatening or antibiotic resistant respiratory infections is
to vaccinate. Interestingly, only a few vaccines exist for respiratory bacterial pathogens, including
B. pertussis, Mycobacterium tuberculosis, and Streptococcus pneumoniae. Therefore, there remains a
significant need to develop vaccines for other clinically relevant bacteria [50,51]. A frequent first choice
for vaccine development is whole cell vaccines (WCV), containing killed or attenuated versions of the
pathogen. These introduce to the host’s immune system hundreds or thousands of the pathogen’s
antigens. WCVs sometimes have strong reactogenicity that may cause undesired side effects following
administration [52]. In addition, batch-to-batch and manufacturer differences in the methods used in
the laboratory to grow the bacteria used for the formulation of WVC can strongly affect vaccine efficacy,
which was one of the issues with Bp-WCV [53]. Furthermore, laboratory-adapted strains are often used
and may not induce sufficient protection against the more diverse clinical strains [54,55]. However,
WCVs can be ideal tools for characterizing effective immune responses that can be used to benchmark
acellular or subunit vaccines. Here, a comparison of the standard version of a vaccine approved for use
in humans to prevent pertussis (NIBSC Standard; Bp-WCV) to a lab-produced WCV for P. aeruginosa
allows us to characterize the immune responses to each broadly. These studies identified some of the
ways each vaccine alters the response to acute infection by their respective pathogens.

While the protection elicited by Bp-WCV has been well characterized in the field, only a few
studies have focused on mucosal administration of pertussis vaccines [29,39]. In addition, this work
highlights some of the differences between the immune responses to Bp-WCV and Pa-WCV. In the
model used in this study, both intranasally administered vaccines were capable of inducing a systemic,
protective response to their respective pathogen. Following vaccination using Pa-WCV formulated
with heat killed P. aeruginosa and the adjuvant curdlan, mice had reduced bacterial burden in their nasal
wash and lung, compared to mice vaccinated only with the adjuvant curdlan. Similarly, when mice
were vaccinated with the Bp-WCV containing the adjuvant curdlan, they had decreased bacterial
burden in both their nasal wash and lung, compared to when they are vaccinated with adjuvant
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only. In both infection models, we identified a significant correlation between bacterial burden in the
nasal wash to the burden in the lung. Against infection with either pathogen, whole cell vaccination
was sufficient to induce a protective immune response and increased bacterial clearance. However,
when we delved further into the nuances of the immunological response in each vaccination group,
we observed key pathological differences, highlighting that whole cell vaccines are not the final answer
for all pathogens.

One of the hallmarks of respiratory infection is the induction of inflammation and cell recruitment
to the lung, causing severe damage to the tissue, altering lung function, and in severe cases, leading to
pneumonia [2,3]. Concurrent with these findings in humans, we observed that infection by P. aeruginosa
triggered a pneumonia-like response, including an increase in the weight of the lung following infection
and recruitment of immune cells to the tissue. This observation may be caused by the actions of LPS,
endotoxin A, and phospholipase C [56]. Using histological and flow cytometric analysis of the lung,
we identified the key contributors to the inflammation in the lung following P. aeruginosa challenge as
myeloid cells and neutrophils. While mice that were vaccinated with the Pa-WCV had a reduction in
lung weight compared to the adjuvant vaccinated, and P. aeruginosa challenged mice, the percentage of
myeloid cells, and in particular neutrophils, remained elevated. Therefore, we hypothesize that the
increase in lung weight following P. aeruginosa challenge is more likely a result of pulmonary edema,
which is in line with observations of pneumonia in murine models and could be more thoroughly
analyzed in future studies [57,58].

Within the field of P. aeruginosa vaccine research, it has been difficult to identify the required
immune components for a protective immune response [10]. It is hypothesized that a delicate balance
between neutrophils, macrophages, and dendritic cells is vital for successful clearance of the pathogen
from infected tissue [10,59]. Neutrophils in particular have been recognized within the field as
important players for both the clearance of P. aeruginosa, and also for lung-pathologies associated
with exacerbated responses [60–63]. In various animal models, P. aeruginosa infection in neutropenic
animals is lethal [63–65]. Neutrophils can kill pathogens by phagocytosis and secretion of neutrophil
extracellular traps (NETs) that trap pathogens. Neutrophils have been detected at elevated levels in
chronically infected CF patients, but evidence showing that this response is beneficial to the patient is
debated [66–68]. In fact, neutrophils may lose the ability to kill the bacteria, and instead induce gene
expression changes in the bacteria that help them establish chronic infection [66,68]. Macrophages,
particularly alveolar macrophages, which are the first line of defense in the lower airway, have also
been shown to fight P. aeruginosa respiratory infections [64]. Likely, it is a combination of each of these
cell types responsible for preventing and fighting P. aeruginosa infections in this model.

Contrary to what we observed in the P. aeruginosa groups, infection using B. pertussis in naïve
or vaccinated mice did not result in an increase in the weight of the animal’s lung. This observation
was in line with a lack of infiltration of myeloid cells or neutrophils in the lung observed by both flow
cytometry and histology. The lack of neutrophil infiltration in the lung in B. pertussis-infected animals
is likely associated with the presence of leukocytosis in these animals. Leukocytosis, or accumulation
of leukocytes in the blood to an abnormally high level, is one of the hallmark characteristics of a
B. pertussis infection [69]. Leukocytosis is present in most pertussis cases in humans and is one
of the main contributors to infant death due to pertussis [70]. The pathogen’s namesake toxin,
PT, is the agent responsible for this response. The neutralization of PT is essential for protection
against B. pertussis. For this reason, PT is one of the primary components (and sometimes the
sole component) of acellular pertussis vaccines. To characterize leukocytosis in our murine model,
we quantified total white blood cells, neutrophils, lymphocytes, and monocytes in the blood of mice 16 h
post-challenge, utilizing complete blood cell analysis. As expected, leukocytosis was detected only in
naïve pertussis challenged mice, compared to naïve non-challenged animals. Leukocytosis in response
to B. pertussis challenge was reduced in Bp-WCV vaccinated mice compared to adjuvant-vaccinated
mice. Since the levels of anti-PT antibodies produced in response to Bp-WCV vaccination are typically
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low [21,29], the decrease in leukocytosis is likely associated with better control of bacterial burden and
infection severity.

The chemokines and cytokines secreted by the antigen presenting cells, other first responders such
as neutrophils, and the memory cells formed following vaccination can interact to dictate the type of
immune response that occurs rapidly following challenge. To characterize this interplay, we used MSD
multiplex assays to quantified cytokines in the lung supernatant 16 h post-challenge, and calculated
fold changes relative to the levels detected in mice that were adjuvant vaccinated and not challenged.
We observed two very striking phenotypes. First, P. aeruginosa challenge induced increase of every
cytokine measured. This phenomenon of overall increase in cytokines is known as cytokine storm,
and together with decreases in body temperature, can be related to LPS toxicity during infection [36,71].
Cytokine storm frequently occurs with severe P. aeruginosa challenge [71,72]. Interestingly, the Pa-WCV
immunization reduced the pro-inflammatory cytokines IL-6, IL-12, and KC-GRO, compared to the
levels of these cytokines observed in adjuvant-vaccinated and challenged mice. IL-6 is produced by
phagocytes following activation, which helps to increase neutrophil antimicrobial functions, and push
differentiation of Th17 cells. In the context of P. aeruginosa, where the toxin ExoA can induce IL-6
expression, this cytokine has a role in effective recruitment of neutrophils to the cornea during
P. aeruginosa infection [73,74]. IL-12 is required for Th1 differentiation and is known to increase
production of IFN-γ, and other cytokines by phagocytic cells. Finally, KC-GRO, also known as CXCL1
or neutrophil-activating protein 3 (NAP-3), is a chemokine that can be produced in response to IL-1 to
recruit neutrophils and other phagocytic cells following LPS and other pathogen associated molecular
pattern (PAMP) exposures [75]. An increase in KC-GRO levels may result in the observed increase of
neutrophils in the lung tissue of infected animals. A significant decrease of these three cytokines in
the lung supernatant may indicate that, while there are still elevations of all cytokines at this early
time point, whole cell vaccination may eventually lead to the immune system being able to resolve the
inflammation and recruitment of neutrophils caused by infection.

Recent works in both the Pseudomonas and Bordetella fields have demonstrated the importance of
inducing Th17 responses [27,30]. Here, the vaccines were formulated with the Th17 skewing adjuvant
curdlan and administered in a mucosal route. The adjuvant curdlan is known to induce a Th17 type
response [27,29,32]. Intranasal immunization triggers Th17-biased immune responses and is associated
with IL-17 and IL-6 production [76]. IL-17 production in the lung is also associated with the induction
of IgA, which we also observed during serological analysis [77]. Put together, we hypothesized that
intranasal administration of a curdlan adjuvanted vaccine should induce a strong Th17 and IL-17
response, which is consistent with what we observed for both of the whole cell vaccines tested in this
report. However, the strong activation of a pro-inflammatory response may not be optimal in each of
these infections. Having observed that this combination resulted in a response to Pa-WCV that was
unable to resolve the inflammation observed, the formulation of adjuvant and route of immunization
may need to be revisited in the future.

B. pertussis challenge in adjuvant-vaccinated animals induced modest increases in some of the
cytokines measured, but we observed that vaccination led to the accentuated expression of IL-1β,
IL-5, TNF-α, IL-12, and IL-10. IFN-γ was elevated in both B. pertussis-infected groups and increased
even further in the Bp-WCV. Pertussis toxin can stimulate dendritic cells to produce IL-12, and NK
and T cells to produce IFN-γ to push a Th1 response [78,79]. IFN-γ is required for the control of
B. pertussis infections [80]. Th1 cells play an essential role in the clearance of B. pertussis in the context
of primary infection or after immunization with Bp-WCV [81], and children who survive whooping
cough and become convalescent have primarily a Th1 response [82,83]. Interestingly, we observed
that IL-17 was detected in both of the B. pertussis challenged groups, but the expression was more
strongly pronounced in the Bp-WCV group, a finding that has been previously observed in mice during
B. pertussis infection. This might be in part driven by the pore-forming activity of adenylate cyclase
toxin (ACT) that promotes NLRP3 activation, pro-IL-1β processing to mature IL-1β, and expression
of IL-23 [84]. IL-17 is important for protection against B. pertussis and is often observed at later time
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points in naïve infected mice (7–14 days post-challenge) [47,85], and is more highly induced by the
B. pertussis whole cell vaccine than the acellular B. pertussis vaccine [18]. Consistent with the increase
in IL-17 in lung supernatant, we observed an increase in splenic Th17 cells in the Bp-WCV group
compared to adjuvant-vaccinated and non-challenged mice. B. pertussis has been shown to lead to
the production and expansion of IL-17 producing pathogen-specific resident memory γδ T cells in the
lung of B. pertussis-infected mice [85]. While this localized adaptive response to infection is thought
to be crucial for immunity to subsequent re-infections, currently used Bp-WCVs are administered
intramuscularly, and few researchers have investigated the use of mucosal immunization against
B. pertussis.

One notable difference between B. pertussis and P. aeruginosa is the type of endotoxin produced by
each bacterium. P. aeruginosa produces LPS, whereas B. pertussis produces LOS, which contains
Lipid A and the core domains, but lacks the O antigen component found in LPS. This loss
results in overall decreased immunogenicity and toxicity by LOS compared to LPS, and likely
impacts the immunogenicity and reactogenicity of each whole cell vaccine. The adjuvant-like
role of endotoxin in vaccine-mediated responses has been more deeply appreciated in recent years.
Research exploring the use of modified LOS or LPS components as adjuvants, including the development
of monophosphorylated lipid A (MPLA) as a TLR4 agonist, has open new doors for the development
of effective vaccines [86,87]. In future studies, this difference could be further examined to determine
the impact of unique endotoxins on the efficacy of whole cell vaccines, as well as the use of these
bacterial products as adjuvants in subsequent acellular vaccines.

Our observation that mucosal immunization induced strong systemic antibody response supports
the use of this vaccination strategy in the future. IgG is a hallmark of vaccine-mediated protection
and can have functions such as complement-mediated killing or opsonization, and typically signals
a systemic response to a vaccine or pathogen exposure. This is important, given that these vaccines
were administered intranasally, which is considered a less immunostimulatory route for vaccine
administration [25]. In addition to IgG, we observed the presence of circulating pathogen-specific
IgA antibodies. IgA antibodies are found in circulation and on mucosal surfaces and are thought to
be important for mucosal immune response as one of the first lines of defense against respiratory
pathogens such as P. aeruginosa and B. pertussis.

This study highlights that the immune response to respiratory infections varies widely between
bacterial pathogens, even when performed in the same infection model and with the same vaccination
parameters. In addition, this work gives evidence to support that whole cell vaccination with different
pathogens do not induce identical adaptive responses, even when identical adjuvants and routes of
immunization are used. We demonstrated that mice administered the Bp-WCV were able to resolve
many of the pro-inflammatory reactions to infection by B. pertussis, but that Pa-WCV immunized
animals did not as effectively resolve inflammation during P. aeruginosa infection. While both vaccines
increased the clearance of bacteria by one day post-challenge, the symptoms of illness associated to
P. aeruginosa infection persisted regardless of Pa-WCV administration. Overall, this study demonstrated
many of the key differences in the pathogenesis of B. pertussis and P. aeruginosa and how whole cell
vaccination elicits protection for each against an acute respiratory challenge. These findings lay the
foundation for the identification of mechanistic correlates of protection for each pathogen, which will
be vital for the development of next generation vaccines.
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